1
|
Ju X, Wang K, Wang C, Zeng C, Wang Y, Yu J. Regulation of myofibroblast dedifferentiation in pulmonary fibrosis. Respir Res 2024; 25:284. [PMID: 39026235 PMCID: PMC11264880 DOI: 10.1186/s12931-024-02898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024] Open
Abstract
Idiopathic pulmonary fibrosis is a lethal, progressive, and irreversible condition that has become a significant focus of medical research due to its increasing incidence. This rising trend presents substantial challenges for patients, healthcare providers, and researchers. Despite the escalating burden of pulmonary fibrosis, the available therapeutic options remain limited. Currently, the United States Food and Drug Administration has approved two drugs for the treatment of pulmonary fibrosis-nintedanib and pirfenidone. However, their therapeutic effectiveness is limited, and they cannot reverse the fibrosis process. Additionally, these drugs are associated with significant side effects. Myofibroblasts play a central role in the pathophysiology of pulmonary fibrosis, significantly contributing to its progression. Consequently, strategies aimed at inhibiting myofibroblast differentiation or promoting their dedifferentiation hold promise as effective treatments. This review examines the regulation of myofibroblast dedifferentiation, exploring various signaling pathways, regulatory targets, and potential pharmaceutical interventions that could provide new directions for therapeutic development.
Collapse
Affiliation(s)
- Xuetao Ju
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Kai Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Congjian Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Chenxi Zeng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Yi Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
2
|
Ejma-Multański A, Wajda A, Paradowska-Gorycka A. Cell Cultures as a Versatile Tool in the Research and Treatment of Autoimmune Connective Tissue Diseases. Cells 2023; 12:2489. [PMID: 37887333 PMCID: PMC10605903 DOI: 10.3390/cells12202489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Cell cultures are an important part of the research and treatment of autoimmune connective tissue diseases. By culturing the various cell types involved in ACTDs, researchers are able to broaden the knowledge about these diseases that, in the near future, may lead to finding cures. Fibroblast cultures and chondrocyte cultures allow scientists to study the behavior, physiology and intracellular interactions of these cells. This helps in understanding the underlying mechanisms of ACTDs, including inflammation, immune dysregulation and tissue damage. Through the analysis of gene expression patterns, surface proteins and cytokine profiles in peripheral blood mononuclear cell cultures and endothelial cell cultures researchers can identify potential biomarkers that can help in diagnosing, monitoring disease activity and predicting patient's response to treatment. Moreover, cell culturing of mesenchymal stem cells and skin modelling in ACTD research and treatment help to evaluate the effects of potential drugs or therapeutics on specific cell types relevant to the disease. Culturing cells in 3D allows us to assess safety, efficacy and the mechanisms of action, thereby aiding in the screening of potential drug candidates and the development of novel therapies. Nowadays, personalized medicine is increasingly mentioned as a future way of dealing with complex diseases such as ACTD. By culturing cells from individual patients and studying patient-specific cells, researchers can gain insights into the unique characteristics of the patient's disease, identify personalized treatment targets, and develop tailored therapeutic strategies for better outcomes. Cell culturing can help in the evaluation of the effects of these therapies on patient-specific cell populations, as well as in predicting overall treatment response. By analyzing changes in response or behavior of patient-derived cells to a treatment, researchers can assess the response effectiveness to specific therapies, thus enabling more informed treatment decisions. This literature review was created as a form of guidance for researchers and clinicians, and it was written with the use of the NCBI database.
Collapse
Affiliation(s)
- Adam Ejma-Multański
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (A.W.); (A.P.-G.)
| | | | | |
Collapse
|
3
|
Berra-Romani R, Vargaz-Guadarrama A, Sánchez-Gómez J, Coyotl-Santiago N, Hernández-Arambide E, Avelino-Cruz JE, García-Carrasco M, Savio M, Pellavio G, Laforenza U, Lagunas-Martínez A, Moccia F. Histamine activates an intracellular Ca 2+ signal in normal human lung fibroblast WI-38 cells. Front Cell Dev Biol 2022; 10:991659. [PMID: 36120576 PMCID: PMC9478493 DOI: 10.3389/fcell.2022.991659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Histamine is an inflammatory mediator that can be released from mast cells to induce airway remodeling and cause persistent airflow limitation in asthma. In addition to stimulating airway smooth muscle cell constriction and hyperplasia, histamine promotes pulmonary remodeling by inducing fibroblast proliferation, contraction, and migration. It has long been known that histamine receptor 1 (H1R) mediates the effects of histamine on human pulmonary fibroblasts through an increase in intracellular Ca2+ concentration ([Ca2+]i), but the underlying signaling mechanisms are still unknown. Herein, we exploited single-cell Ca2+ imaging to assess the signal transduction pathways whereby histamine generates intracellular Ca2+ signals in the human fetal lung fibroblast cell line, WI-38. WI-38 fibroblasts were loaded with the Ca2+-sensitive fluorophore, FURA-2/AM, and challenged with histamine in the absence and presence of specific pharmacological inhibitors to dissect the Ca2+ release/entry pathways responsible for the onset of the Ca2+ response. Histamine elicited complex intracellular Ca2+ signatures in WI-38 fibroblasts throughout a concentration range spanning between 1 µM and 1 mM. In accord, the Ca2+ response to histamine adopted four main temporal patterns, which were, respectively, termed peak, peak-oscillations, peak-plateau-oscillations, and peak-plateau. Histamine-evoked intracellular Ca2+ signals were abolished by pyrilamine, which selectively blocks H1R, and significantly reduced by ranitidine, which selectively inhibits H2R. Conversely, the pharmacological blockade of H3R and H4R did not affect the complex increase in [Ca2+]i evoked by histamine in WI-38 fibroblasts. In agreement with these findings, histamine-induced intracellular Ca2+ signals were initiated by intracellular Ca2+ release from the endoplasmic reticulum through inositol-1,4,5-trisphosphate (InsP3) receptors (InsP3R) and sustained by store-operated Ca2+ channels (SOCs). Conversely, L-type voltage-operated Ca2+ channels did not support histamine-induced extracellular Ca2+ entry. A preliminary transcriptomic analysis confirmed that WI-38 human lung fibroblasts express all the three InsP3R isoforms as well as STIM2 and Orai3, which represent the molecular components of SOCs. The pharmacological blockade of InsP3 and SOC, therefore, could represent an alternative strategy to prevent the pernicious effects of histamine on lung fibroblasts in asthmatic patients.
Collapse
Affiliation(s)
- Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Ajelet Vargaz-Guadarrama
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Josué Sánchez-Gómez
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Nayeli Coyotl-Santiago
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Efraín Hernández-Arambide
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - José Everardo Avelino-Cruz
- Laboratory of Molecular Cardiology, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Mario García-Carrasco
- Department of Immunology, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Monica Savio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giorgia Pellavio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Alfredo Lagunas-Martínez
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Morelos, México
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| |
Collapse
|
4
|
Hinchcliff M, Garcia-Milian R, Di Donato S, Dill K, Bundschuh E, Galdo FD. Cellular and Molecular Diversity in Scleroderma. Semin Immunol 2021; 58:101648. [PMID: 35940960 DOI: 10.1016/j.smim.2022.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the increasing armamentarium of high-throughput tools available at manageable cost, it is attractive and informative to determine the molecular underpinnings of patient heterogeneity in systemic sclerosis (SSc). Given the highly variable clinical outcomes of patients labelled with the same diagnosis, unravelling the cellular and molecular basis of disease heterogeneity will be crucial to predicting disease risk, stratifying management and ultimately informing a patient-centered precision medicine approach. Herein, we summarise the findings of the past several years in the fields of genomics, transcriptomics, and proteomics that contribute to unraveling the cellular and molecular heterogeneity of SSc. Expansion of these findings and their routine integration with quantitative analysis of histopathology and imaging studies into clinical care promise to inform a scientifically driven patient-centred personalized medicine approach to SSc in the near future.
Collapse
Affiliation(s)
- Monique Hinchcliff
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA.
| | | | - Stefano Di Donato
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK
| | | | - Elizabeth Bundschuh
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA
| | - Francesco Del Galdo
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK.
| |
Collapse
|
5
|
Hsu WL, Hsieh YC, Yu HS, Yoshioka T, Wu CY. 2-Aminoethyl diphenylborinate inhibits bleomycin-induced skin and pulmonary fibrosis via interrupting intracellular Ca 2+ regulation. J Dermatol Sci 2021; 103:101-108. [PMID: 34315630 DOI: 10.1016/j.jdermsci.2021.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Systemic sclerosis (SSc) causes progressive fibrosis of multiple organs with the low efficacy of immunosuppressive therapies. Our previous study indicated the SSc pathological pathways are closely correlated with Ca2+ signals, and blockage of the intracellular Ca2+ elevation facilitates inhibition of SSc pathogenesis. OBJECTIVE Transforming growth factor β (TGF-β)-modulated SMAD signaling is crucial in regulating SSc pathogenesis. Whether Ca2+ signals are involved in TGF-β1/SMAD signaling-induced fibrotic process has been further investigated. METHODS We utilized TGF-β1-induced myofibroblasts as a model to detect how Ca2+ signals affected SSc pathogenesis, and investigated the combination of treatment with store-operated Ca2+ entry (SOCE) associated inhibitors, 2-aminoethyl diphenylborinate (2-APB) and SKF96365 to restrain the increased Ca2+ signaling in myofibroblasts. In addition, the SSc bleomycin mouse model was used to detect the effect of 2-APB on SSc pathogenesis in vivo. RESULTS Our findings revealed increased levels of TGF-β1 production in SSc was associated with intracellular Ca2+ activity, and inhibition of intracellular Ca2+ regulation by 2-APB resulted in the dedifferentiation of TGF-β1-induced myofibroblasts. This was due to the fact that 2-APB restrained the expression fibrotic markers, α-SMA, fibronectin and vimentin through inhibiting TGF-β1/SMAD3 signaling. Thus, subcutaneous injection of 2-APB improved bleomycin-induced skin and pulmonary fibrosis. CONCLUSION 2-APB is a potential candidate for treating fibrosis, by disrupting intracellular Ca2+ regulation in SSc to induce the dedifferentiation of myofibroblasts and meliorates fibrosis pathogenesis via inhibiting TGF-β1/SMAD3 signaling.
Collapse
Affiliation(s)
- Wen-Li Hsu
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chun Hsieh
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Su Yu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tohru Yoshioka
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Ying Wu
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
6
|
Calcium Regulation on the Atrial Regional Difference of Collagen Production Activity in Atrial Fibrogenesis. Biomedicines 2021; 9:biomedicines9060686. [PMID: 34204537 PMCID: PMC8233809 DOI: 10.3390/biomedicines9060686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Atrial fibrosis plays an important role in the genesis of heart failure and atrial fibrillation. The left atrium (LA) exhibits a higher level of fibrosis than the right atrium (RA) in heart failure and atrial arrhythmia. However, the mechanism for the high fibrogenic potential of the LA fibroblasts remains unclear. Calcium (Ca2+) signaling contributes to the pro-fibrotic activities of fibroblasts. This study investigated whether differences in Ca2+ homeostasis contribute to differential fibrogenesis in LA and RA fibroblasts. Methods: Ca2+ imaging, a patch clamp assay and Western blotting were performed in isolated rat LA and RA fibroblasts. Results: The LA fibroblasts exhibited a higher Ca2+ entry and gadolinium-sensitive current compared with the RA fibroblasts. The LA fibroblasts exhibited greater pro-collagen type I, type III, phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII), phosphorylated phospholipase C (PLC), stromal interaction molecule 1 (STIM1) and transient receptor potential canonical (TRPC) 3 protein expression compared with RA fibroblasts. In the presence of 1 mmol/L ethylene glycol tetra-acetic acid (EGTA, Ca2+ chelator), the LA fibroblasts had similar pro-collagen type I, type III and phosphorylated CaMKII expression compared with RA fibroblasts. Moreover, in the presence of KN93 (a CaMKII inhibitor, 10 μmol/L), the LA fibroblasts had similar pro-collagen type I and type III compared with RA fibroblasts. Conclusion: The discrepancy of phosphorylated PLC signaling and gadolinium-sensitive Ca2+ channels in LA and RA fibroblasts induces different levels of Ca2+ influx, phosphorylated CaMKII expression and collagen production.
Collapse
|