1
|
Soliman ERS, Abdelhameed RE, Metwally RA. Role of arbuscular mycorrhizal fungi in drought-resilient soybeans (Glycine max L.): unraveling the morphological, physio-biochemical traits, and expression of polyamine biosynthesis genes. BOTANICAL STUDIES 2025; 66:9. [PMID: 40095139 PMCID: PMC11914442 DOI: 10.1186/s40529-025-00455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/16/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Drought stress is a catastrophic abiotic stressor that impedes the worldwide output of commodities and the development of plants. The Utilizing biological antioxidant stimulators, Arbuscular mycorrhizal fungi (AMF) are one example increased the plants' ability to withstand the effects of drought. The symbiotic response of soybean (Glycine max L.) to AMF inoculation was assessed in the experiment presented herewith at different watering regimes (field capacity of 25, 50, and 90%). The vegetative, physio-biochemical traits, and regulation of genes involved in polyamine synthesis in G. max plants were evaluated. RESULTS The results obtained suggested that AMF inoculation has an advantage over plants that were non-inoculated in terms of their growth and all assessed criteria, which responded to drought stress by showing slower development. It is evident that the gas exchange parameters of the soybean plant were substantially reduced by 36.79 (photosynthetic rate; A), 60.59 (transpiration rate; E), and 53.50% (stomatal conductance gs), respectively, under severe stress of drought in comparison to control; non-stressed treatment. However, the AMF inoculation resulted in a 40.87, 29.89, and 33.65% increase in A, E, and gs levels, respectively, in extremely drought-stressful circumstances, when in contrast to non-AMF one that was grown under well-watered conditions. The drought level was inversely proportional to mycorrhizal colonization. The total antioxidant capacity, protein, and proline contents were all enhanced by AMF inoculation, while the malondialdehyde and hydrogen peroxide contents were decreased. Polyamine biosynthesis genes expression; Ornithine decarboxylase (ODC2), Spermidine synthase (SPDS) and Spermine synthase (SpS) were upregulated in drought and to even higher level in AMF's mild drought inoculated plants' shoots. This implies that AMF plays apart in the enhanced survival of soybean plants stressed by drought and reduced plant membranes damage by limiting the excessive production of oxidative stress generators; ROS. CONCLUSIONS In summary, the present investigation demonstrates that inoculation of AMF may be a supportable and environmentally advantageous method for improving the physio-biochemical traits, plant growth, and polyamine biosynthesis genes of soybean plants in the incident of limited water availability.
Collapse
Affiliation(s)
- Elham R S Soliman
- Cytogenetics and Molecular Genetics Unit, Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt
| | - Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
2
|
Pašakinskienė I, Stakelienė V, Matijošiūtė S, Martūnas J, Rimkevičius M, Būdienė J, Aučina A, Skridaila A. Growth-Promoting Effects of Grass Root-Derived Fungi Cadophora fastigiata, Paraphoma fimeti and Plectosphaerella cucumerina on Spring Barley ( Hordeum vulgare) and Italian Ryegrass ( Lolium multiflorum). Microorganisms 2024; 13:25. [PMID: 39858793 PMCID: PMC11767314 DOI: 10.3390/microorganisms13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Many endophytic fungi are approved as plant growth stimulants, and several commercial biostimulants have already been introduced in agricultural practice. However, there are still many species of fungi whose plant growth-promoting properties have been understudied or not studied at all. We examined the growth-promoting effect in spring barley (Hordeum vulgare) and Italian ryegrass (Lolium multiflorum) induced by three endophytic fungi previously obtained from the roots of Festuca/Lolium grasses. Surface-sterilized seeds were inoculated with a spore suspension of Cadophora fastigiata (isolate BSG003), Paraphoma fimeti (BSG010), Plectosphaerella cucumerina (BSG006), and their spore mixture. Before harvesting, the inoculated plants were grown in a greenhouse, with the barley being in multi-cavity trays for 30 days and ryegrass being placed in an original cylindric element system for 63 days. All three newly tested fungi had a positive effect on the growth of the barley and ryegrass plants, with the most pronounced impact observed in their root size. The fungal inoculations increased the dry shoot biomass between 11% and 26% in Italian ryegrass, but no such impact was observed in barley. The highest root increment was observed in barley. Herein, P. cucumerina and C. fastigiata inoculations were superior to other treatments, showing an increase in root dry weight of 50% compared to 20%, respectively. All fungal inoculations significantly promoted root growth in Italian ryegrass, resulting in a 20-30% increase in dry weight compared to non-inoculated plants. Moreover, a strong stimulatory effect of the fungi-emitted VOCs on the root development was observed in plate-in-plate arrays. In the presence of C. fastigiata and P. cucumerina cultures, the number of roots and root hairs in barley seedlings doubled compared to control plants. Thus, in our study, we demonstrated the potential of the grass root-derived endophytes C. fastigiata, P. fimeti, and P. cucumerina as growth promoters for spring barley and Italian ryegrass. These studies can be extended to other major crops and grasses by evaluating different fungal isolates.
Collapse
Affiliation(s)
- Izolda Pašakinskienė
- Botanical Garden, Vilnius University, Kairėnų 43, 10239 Vilnius, Lithuania
- Life Sciences Center, Vilnius University, Saulėtekio 7, 10221 Vilnius, Lithuania
| | - Violeta Stakelienė
- Botanical Garden, Vilnius University, Kairėnų 43, 10239 Vilnius, Lithuania
- Life Sciences Center, Vilnius University, Saulėtekio 7, 10221 Vilnius, Lithuania
| | - Saulė Matijošiūtė
- Botanical Garden, Vilnius University, Kairėnų 43, 10239 Vilnius, Lithuania
- Life Sciences Center, Vilnius University, Saulėtekio 7, 10221 Vilnius, Lithuania
| | - Justas Martūnas
- Botanical Garden, Vilnius University, Kairėnų 43, 10239 Vilnius, Lithuania
| | - Marius Rimkevičius
- Botanical Garden, Vilnius University, Kairėnų 43, 10239 Vilnius, Lithuania
| | - Jurga Būdienė
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, 08412 Vilnius, Lithuania
| | - Algis Aučina
- Botanical Garden, Vilnius University, Kairėnų 43, 10239 Vilnius, Lithuania
| | - Audrius Skridaila
- Botanical Garden, Vilnius University, Kairėnų 43, 10239 Vilnius, Lithuania
| |
Collapse
|
3
|
Lo Porto A, Amato G, Gargano G, Giambalvo D, Ingraffia R, Torta L, Frenda AS. Polypropylene microfibers negatively affect soybean growth and nitrogen fixation regardless of soil type and mycorrhizae presence. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135781. [PMID: 39260000 DOI: 10.1016/j.jhazmat.2024.135781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Recent studies have indicated that soil contamination with microplastics (MPs) can negatively affect agricultural productivity, although these effects vary greatly depending on the context. Furthermore, the mechanisms behind these effects remain largely unknown. In this study, we examined the impact of two concentrations of polypropylene (PP) fibers in the soil (0.4 % and 0.8 % w/w) on soybean growth, nitrogen uptake, biological nitrogen fixation (BNF), and water use efficiency by growing plants in two soil types, with and without arbuscular mycorrhizal fungi (AMF). PP contamination consistently reduced vegetative growth (-12 %, on average compared to the control), with the severity of this effect varying significantly by soil type (more pronounced in Alfisol than in Vertisol). The extent of BNF progressively reduced with the increase in PP contamination level in both soils (on average, -17.1 % in PP0.4 and -27.5 % in PP0.8 compared to the control), which poses clear agro-environmental concerns. Water use efficiency was also reduced due to PP contamination but only in the Alfisol (-9 %, on average). Mycorrhizal symbiosis did not seem to help plants manage the stress caused by PP contamination, although it did lessen the negative impact on BNF. These findings are the first to demonstrate the effect of PP on BNF in soybean plants, underscoring the need to develop strategies to reduce PP pollution in the soil and to mitigate the impact of PP on the functionality and sustainability of agroecosystems.
Collapse
Affiliation(s)
- Antonella Lo Porto
- University of Palermo - Department of Agricultural, Food and Forestry Sciences, Italy
| | - Gaetano Amato
- University of Palermo - Department of Agricultural, Food and Forestry Sciences, Italy
| | - Giacomo Gargano
- University of Palermo - Department of Agricultural, Food and Forestry Sciences, Italy
| | - Dario Giambalvo
- University of Palermo - Department of Agricultural, Food and Forestry Sciences, Italy
| | - Rosolino Ingraffia
- University of Palermo - Department of Agricultural, Food and Forestry Sciences, Italy.
| | - Livio Torta
- University of Palermo - Department of Agricultural, Food and Forestry Sciences, Italy
| | | |
Collapse
|
4
|
Han M, Zhang H, Liu M, Tang J, Guo X, Ren W, Zhao Y, Yang Q, Guo B, Han Q, Feng Y, Feng Z, Wu H, Yang X, Kong D. Increased dependence on nitrogen-fixation of a native legume in competition with an invasive plant. PLANT DIVERSITY 2024; 46:510-518. [PMID: 39280977 PMCID: PMC11390700 DOI: 10.1016/j.pld.2024.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 09/18/2024]
Abstract
Suppression of roots and/or their symbiotic microorganisms, such as mycorrhizal fungi and rhizobia, is an effective way for alien plants to outcompete native plants. However, little is known about how invasive and native plants interact with the quantity and activity of nutrient-acquisition agents. Here a pot experiment was conducted with monoculture and mixed plantings of an invasive plant, Xanthium strumarium, and a common native legume, Glycine max. We measured traits related to root and nodule quantity and activity and mycorrhizal colonization. Compared to the monoculture, fine root quantity (biomass, surface area) and activity (root nitrogen (N) concentration, acid phosphatase activity) of G. max decreased in mixed plantings; nodule quantity (biomass) decreased by 45%, while nodule activity in N-fixing via rhizobium increased by 106%; mycorrhizal colonization was unaffected. Contribution of N fixation to leaf N content in G. max increased in the mixed plantings, and this increase was attributed to a decrease in the rhizosphere soil N of G. max in the mixed plantings. Increased root quantity and activity, along with a higher mycorrhizal association was observed in X. strumarium in the mixed compared to monoculture. Together, the invasive plant did not directly scavenge N from nodule-fixed N, but rather depleted the rhizosphere soil N of the legume, thereby stimulating the activity of N-fixation and increasing the dependence of the native legume on this N source. The quantity-activity framework holds promise for future studies on how native legumes respond to alien plant invasions.
Collapse
Affiliation(s)
- Meixu Han
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Haiyang Zhang
- College of Life Science, Hebei University, Baoding 071002, China
| | - Mingchao Liu
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinqi Tang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaocheng Guo
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Weizheng Ren
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yong Zhao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Qingpei Yang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Binglin Guo
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Qinwen Han
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yulong Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhipei Feng
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Honghui Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xitian Yang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Deliang Kong
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
5
|
Luo F, Mi W, Liu W. Legume-grass mixtures improve biological nitrogen fixation and nitrogen transfer by promoting nodulation and altering root conformation in different ecological regions of the Qinghai-Tibet Plateau. FRONTIERS IN PLANT SCIENCE 2024; 15:1375166. [PMID: 38938644 PMCID: PMC11208716 DOI: 10.3389/fpls.2024.1375166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
Introduction Biological nitrogen fixation (BNF) plays a crucial role in nitrogen utilization in agroecosystems. Functional characteristics of plants (grasses vs. legumes) affect BNF. However, little is still known about how ecological zones and cropping patterns affect legume nitrogen fixation. This study's objective was to assess the effects of different cropping systems on aboveground dry matter, interspecific relationships, nodulation characteristics, root conformation, soil physicochemistry, BNF, and nitrogen transfer in three ecological zones and determine the main factors affecting nitrogen derived from the atmosphere (Ndfa) and nitrogen transferred (Ntransfer). Methods The 15N labeling method was applied. Oats (Avena sativa L.), forage peas (Pisum sativum L.), common vetch (Vicia sativa L.), and fava beans (Vicia faba L.) were grown in monocultures and mixtures (YS: oats and forage peas; YJ: oats and common vetch; YC: oats and fava beans) in three ecological regions (HZ: Huangshui Valley; GN: Sanjiangyuan District; MY: Qilian Mountains Basin) in a split-plot design. Results The results showed that mixing significantly promoted legume nodulation, optimized the configuration of the root system, increased aboveground dry matter, and enhanced nitrogen fixation in different ecological regions. The percentage of nitrogen derived from the atmosphere (%Ndfa) and percentage of nitrogen transferred (%Ntransfer) of legumes grown with different legume types and in different ecological zones were significantly different, but mixed cropping significantly increased the %Ndfa of the legumes. Factors affecting Ndfa included the cropping pattern, the ecological zone (R), the root nodule number, pH, ammonium-nitrogen, nitrate-nitrogen, microbial nitrogen mass (MBN), plant nitrogen content (N%), and aboveground dry biomass. Factors affecting Ntransfer included R, temperature, altitude, root surface area, nitrogen-fixing enzyme activity, organic matter, total soil nitrogen, MBN, and N%. Discussion We concluded that mixed cropping is beneficial for BNF and that mixed cropping of legumes is a sustainable and effective forage management practice on the Tibetan Plateau.
Collapse
Affiliation(s)
- Feng Luo
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, China
- Laboratory of Tibetan Plateau Germplasm Resources Research and Utilization, College of Agricultural and Forestry Sciences, Qinghai University, Xining, China
| | - Wenbo Mi
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, China
- Laboratory of Tibetan Plateau Germplasm Resources Research and Utilization, College of Agricultural and Forestry Sciences, Qinghai University, Xining, China
| | - Wenhui Liu
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, China
- Laboratory of Tibetan Plateau Germplasm Resources Research and Utilization, College of Agricultural and Forestry Sciences, Qinghai University, Xining, China
| |
Collapse
|
6
|
Jing B, Shi W, Wang H, Lin F. 15 N labeling technology reveals enhancement of nitrogen uptake and transfer by root interaction in cotton/soybean intercropping. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6307-6316. [PMID: 37183484 DOI: 10.1002/jsfa.12704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Biological nitrogen fixation in legumes and their transfer of nitrogen to non-legumes in legume/non-legume intercropping systems are considered to be important for the improvement of productivity. However, research on interspecific interaction and root nitrogen transfer in cotton/soybean intercropping systems has rarely been undertaken. In this study, the roots of cotton and soybean were separated with either complete root barriers (CB), using plastic film, or semi-root barriers (SB), using nylon net. No root barrier (NB) was used as the control. RESULTS The results showed that cotton produced more above-ground dry matter (DM) than soybean. The above-ground DM and nitrogen uptake of cotton was greatest with the NB treatment. The above-ground DM and nitrogen uptake of soybean was greatest with the CB treatment. At the harvest stage, the nitrogen transfer rate from soybean to cotton was 22.47% with the SB treatment and 40.41% with the NB treatment. Interspecific root interaction increased the nitrogen transfer amount, especially for the cotton roots in the 0-15 cm soil layer and for the soybean roots in the 0-30 cm soil layer. The root distribution of soybean was the key factor affecting nitrogen transfer amount, and nitrogen transfer amount was the key factor affecting nitrogen uptake of cotton in the cotton/soybean intercropping system. CONCLUSION These results indicated that nitrogen transfer from soybean to cotton through root interaction improved cotton above-ground DM and nitrogen uptake. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bo Jing
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
| | - Wenjuan Shi
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
| | - Han Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
| | - Fengmei Lin
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
| |
Collapse
|
7
|
Luo X, Liu Y, Li S, He X. Interplant carbon and nitrogen transfers mediated by common arbuscular mycorrhizal networks: beneficial pathways for system functionality. FRONTIERS IN PLANT SCIENCE 2023; 14:1169310. [PMID: 37502701 PMCID: PMC10369077 DOI: 10.3389/fpls.2023.1169310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are ubiquitous in soil and form nutritional symbioses with ~80% of vascular plant species, which significantly impact global carbon (C) and nitrogen (N) biogeochemical cycles. Roots of plant individuals are interconnected by AMF hyphae to form common AM networks (CAMNs), which provide pathways for the transfer of C and N from one plant to another, promoting plant coexistence and biodiversity. Despite that stable isotope methodologies (13C, 14C and 15N tracer techniques) have demonstrated CAMNs are an important pathway for the translocation of both C and N, the functioning of CAMNs in ecosystem C and N dynamics remains equivocal. This review systematically synthesizes both laboratory and field evidence in interplant C and N transfer through CAMNs generated through stable isotope methodologies and highlights perspectives on the system functionality of CAMNs with implications for plant coexistence, species diversity and community stability. One-way transfers from donor to recipient plants of 0.02-41% C and 0.04-80% N of recipient C and N have been observed, with the reverse fluxes generally less than 15% of donor C and N. Interplant C and N transfers have practical implications for plant performance, coexistence and biodiversity in both resource-limited and resource-unlimited habitats. Resource competition among coexisting individuals of the same or different species is undoubtedly modified by such C and N transfers. Studying interplant variability in these transfers with 13C and 15N tracer application and natural abundance measurements could address the eco physiological significance of such CAMNs in sustainable agricultural and natural ecosystems.
Collapse
Affiliation(s)
- Xie Luo
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, China
- National Base of International Science and Technology (S&T) Collaboration on Water Environmental Monitoring and Simulation in the Three Gorges Reservoir Region and Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing, China
| | - Yining Liu
- National Base of International Science and Technology (S&T) Collaboration on Water Environmental Monitoring and Simulation in the Three Gorges Reservoir Region and Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing, China
| | - Siyue Li
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, China
| | - Xinhua He
- National Base of International Science and Technology (S&T) Collaboration on Water Environmental Monitoring and Simulation in the Three Gorges Reservoir Region and Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing, China
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Department of Land, Air and Water Resources, University of California at Davis, Davis, CA, United States
| |
Collapse
|
8
|
Monika G, Melanie Kim SR, Kumar PS, Gayathri KV, Rangasamy G, Saravanan A. Biofortification: A long-term solution to improve global health- a review. CHEMOSPHERE 2023; 314:137713. [PMID: 36596329 DOI: 10.1016/j.chemosphere.2022.137713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/20/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Biofortification is a revolutionary technique for improving plant nutrition and alleviating human micronutrient deficiency. Fertilizers can help increase crop yield and growth, but applying too much fertilizer can be a problem because it leads to the release of greenhouse gases and eutrophication. One of the major global hazards that affects more than two million people globally is the decreased availability of micronutrients in food crops, which results in micronutrient deficiencies or "hidden hunger" in people. Micronutrients, like macronutrients, perform a variety of roles in plant and human nutrition. This review has highlighted the importance of micronutrients as well as their advantages. The uneven distribution of micronutrients in geological areas is not the only factor responsible for micronutrient deficiencies, other parameters including soil moisture, temperature, texture of the soil, and soil pH significantly affects the micronutrient concentration and their availability in the soil. To overcome this, different biofortification approaches are assessed in the review in which microbes mediated, Agronomic approaches, Plant breeding, and transgenic approaches are discussed. Hidden hunger can result in risky health conditions and diseases such as cancer, cardiovascular disease, osteoporosis, neurological disorders, and many more. Microbes-mediated biofortification is a novel and promising solution for the bioavailability of nutrients to plants in order to address these problems. Biofortification is cost effective, feasible, and environmentally sustainable. Bio-fortified crops boost our immunity, which helps us to combat these deadly viruses. The studies we discussed in this review have demonstrated that they can aid in the alleviation of hidden hunger.
Collapse
Affiliation(s)
- G Monika
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, India
| | - S Rhoda Melanie Kim
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - K Veena Gayathri
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, India.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| | - A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
9
|
Puccio G, Ingraffia R, Mercati F, Amato G, Giambalvo D, Martinelli F, Sunseri F, Frenda AS. Transcriptome changes induced by Arbuscular mycorrhizal symbiosis in leaves of durum wheat (Triticum durum Desf.) promote higher salt tolerance. Sci Rep 2023; 13:116. [PMID: 36596823 PMCID: PMC9810663 DOI: 10.1038/s41598-022-26903-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
The salinity of soil is a relevant environmental problem around the world, with climate change raising its relevance, particularly in arid and semiarid areas. Arbuscular Mycorrhizal Fungi (AMF) positively affect plant growth and health by mitigating biotic and abiotic stresses, including salt stress. The mechanisms through which these benefits manifest are, however, still unclear. This work aimed to identify key genes involved in the response to salt stress induced by AMF using RNA-Seq analysis on durum wheat (Triticum turgidum L. subsp. durum Desf. Husn.). Five hundred sixty-three differentially expressed genes (DEGs), many of which involved in pathways related to plant stress responses, were identified. The expression of genes involved in trehalose metabolism, RNA processing, vesicle trafficking, cell wall organization, and signal transduction was significantly enhanced by the AMF symbiosis. A downregulation of genes involved in both enzymatic and non-enzymatic oxidative stress responses as well as amino acids, lipids, and carbohydrates metabolisms was also detected, suggesting a lower oxidative stress condition in the AMF inoculated plants. Interestingly, many transcription factor families, including WRKY, NAC, and MYB, already known for their key role in plant abiotic stress response, were found differentially expressed between treatments. This study provides valuable insights on AMF-induced gene expression modulation and the beneficial effects of plant-AMF interaction in durum wheat under salt stress.
Collapse
Affiliation(s)
- Guglielmo Puccio
- grid.10776.370000 0004 1762 5517Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy ,grid.5326.20000 0001 1940 4177Institute of Biosciences and BioResources (IBBR), National Research Council of Italy, Palermo, Italy
| | - Rosolino Ingraffia
- grid.10776.370000 0004 1762 5517Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy ,grid.14095.390000 0000 9116 4836Plant Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany ,grid.452299.1Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Francesco Mercati
- grid.5326.20000 0001 1940 4177Institute of Biosciences and BioResources (IBBR), National Research Council of Italy, Palermo, Italy
| | - Gaetano Amato
- grid.10776.370000 0004 1762 5517Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Dario Giambalvo
- grid.10776.370000 0004 1762 5517Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Federico Martinelli
- grid.8404.80000 0004 1757 2304Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Francesco Sunseri
- grid.11567.340000000122070761Department of Agraria, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Alfonso S. Frenda
- grid.10776.370000 0004 1762 5517Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
10
|
Oliveira TC, Cabral JSR, Santana LR, Tavares GG, Santos LDS, Paim TP, Müller C, Silva FG, Costa AC, Souchie EL, Mendes GC. The arbuscular mycorrhizal fungus Rhizophagus clarus improves physiological tolerance to drought stress in soybean plants. Sci Rep 2022; 12:9044. [PMID: 35641544 PMCID: PMC9156723 DOI: 10.1038/s41598-022-13059-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/12/2022] [Indexed: 11/15/2022] Open
Abstract
Soybean (Glycine max L.) is an economically important crop, and is cultivated worldwide, although increasingly long periods of drought have reduced the productivity of this plant. Research has shown that inoculation with arbuscular mycorrhizal fungi (AMF) provides a potential alternative strategy for the mitigation of drought stress. In the present study, we measured the physiological and morphological performance of two soybean cultivars in symbiosis with Rhizophagus clarus that were subjected to drought stress (DS). The soybean cultivars Anta82 and Desafio were grown in pots inoculated with R. clarus. Drought stress was imposed at the V3 development stage and maintained for 7 days. A control group, with well-irrigated plants and no AMF, was established simultaneously in the greenhouse. The mycorrhizal colonization rate, and the physiological, morphological, and nutritional traits of the plants were recorded at days 3 and 7 after drought stress conditions were implemented. The Anta82 cultivar presented the highest percentage of AMF colonization, and N and K in the leaves, whereas the DS group of the Desafio cultivar had the highest water potential and water use efficiency, and the DS + AMF group had thermal dissipation that permitted higher values of Fv/Fm, A, and plant height. The results of the principal components analysis demonstrated that both cultivars inoculated with AMF performed similarly under DS to the well-watered plants. These findings indicate that AMF permitted the plant to reduce the impairment of growth and physiological traits caused by drought conditions.
Collapse
Affiliation(s)
- Thales Caetano Oliveira
- Laboratory of Plant Tissue and Culture, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Juliana Silva Rodrigues Cabral
- Faculty of Agronomy, Universidade de Rio Verde, Fazenda Fontes do Saber-Campus Universitário, P.O Box 104, Rio Verde, GO, 75901-970, Brazil
| | - Leticia Rezende Santana
- Laboratory of Plant Tissue and Culture, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Germanna Gouveia Tavares
- Laboratory of Plant Tissue and Culture, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Luan Dionísio Silva Santos
- Laboratory of Plant Tissue and Culture, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Tiago Prado Paim
- Laboratory of Education in Agriculture Production, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Caroline Müller
- Ecophysiology and Plant Productivity Laboratory, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Fabiano Guimarães Silva
- Laboratory of Plant Tissue and Culture, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Alan Carlos Costa
- Ecophysiology and Plant Productivity Laboratory, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Edson Luiz Souchie
- Agricultural Microbiology Laboratory, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Giselle Camargo Mendes
- Laboratory of Biotechnology, Instituto Federal de Santa Catarina-Campus Lages, Lages, SC, 88506-400, Brazil.
| |
Collapse
|
11
|
Thangaraj K, Li J, Mei H, Hu S, Han R, Zhao Z, Chen X, Li X, Kamatchi Reddiar D. Mycorrhizal Colonization Enhanced Sorghum bicolor Tolerance under Soil Water Deficit Conditions by Coordination of Proline and Reduced Glutathione (GSH). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4243-4255. [PMID: 35377636 DOI: 10.1021/acs.jafc.1c07184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Drought stress is an important limiting factor in crop production. Arbuscular mycorrhizal fungi (AMF) enhance plant drought tolerance through antioxidant activities. However, the coordination of nonenzymatic antioxidants against drought remains unclear. Here, we investigated the AMF symbiosis in drought tolerance of Sorghum bicolor by increasing proline and reducing glutathione (GSH). Glomus mosseae inoculation increased grain yield, biochemical content, and bioactivities of millets. Under drought conditions, seedlings inoculated with G. mosseae had higher SOD, POD, CAT, PPO, proline, and GSH activities compared to noninoculated controls. Meanwhile, a lower accumulation of MDA and H2O2 was observed in the G. mosseae seedlings. Furthermore, genes attributed to nonenzymatic antioxidants, such as GST29, P5CS2, FD3, GST, and GAD, were significantly up-regulated by G. mosseae under drought conditions. In conclusion, G. mosseae inoculation enhanced the drought tolerance of S. bicolor by improving reactive oxygen species (ROS) scavengers, including proline and GSH, that regulate ROS production and prevent oxidative damage.
Collapse
Affiliation(s)
- Kuberan Thangaraj
- Tea Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianjie Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Huiling Mei
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shunkai Hu
- Tea Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Han
- Tea Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Zhao
- Tea Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Chen
- Tea Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinghui Li
- Tea Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | | |
Collapse
|
12
|
Tavoletti S, Merletti A. A Comprehensive Approach to Evaluate Durum Wheat-Faba Bean Mixed Crop Performance. FRONTIERS IN PLANT SCIENCE 2022; 13:733116. [PMID: 35401585 PMCID: PMC8984478 DOI: 10.3389/fpls.2022.733116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/14/2022] [Indexed: 05/13/2023]
Abstract
Plant breeding for intercropping is lagging because most varieties currently available in the market are selected for sole cropping systems. The present study analyzed the response of durum wheat (12 varieties) and faba bean (3 varieties) in pure and mixed cropping. Field trials were conducted in 2019 and 2020. The performance of each variety in mixed and pure cropping was evaluated using both univariate and multivariate analyses of the grain yield and land equivalent ratio (LER). For durum wheat, grain protein content was also evaluated. Durum wheat varieties were characterized by good performance in both years, whereas faba bean varieties were more affected by the growing season, suggesting that much breeding effort is warranted to improve the latter as a pure and mixed crop. Moreover, the relative performance of all varieties was affected by their combination in mixed cropping, as evaluated based on the ratio (LERratio) between LER for wheat (LERw) and LER for faba bean (LERfb). To further evaluate the overall performance of wheat and faba bean in mixed cropping, total yield, LERtotal (LERw + LERfb), and ln(LERratio) were subjected to principal component and cluster analyses. The first principal component combined the total yield and LERtotal in a single index of the overall performance of each mixed crop combination. The second principal component, based on ln(LERratio), highlighted the relative performance of varieties in each mixed crop combination. The proposed multivariate approach can be applied in the breeding programs for intercropping to identify variety combinations based on crop performance and the relative importance of the proportion of cereal and legume grains in the total harvest.
Collapse
|
13
|
Arbuscular mycorrhizal fungi-mediated biologically fixed N transfer from Vachellia seyal to Sporobolus robustus. Symbiosis 2022. [DOI: 10.1007/s13199-022-00833-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
El-Mehy AA, El-Gendy HM, Aioub AA, Mahmoud SF, Abdel-Gawad S, Elesawy AE, Elnahal AS. Response of Faba bean to intercropping, biological and chemical control against broomrape and root rot diseases. Saudi J Biol Sci 2022; 29:3482-3493. [PMID: 35844392 PMCID: PMC9280308 DOI: 10.1016/j.sjbs.2022.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 02/20/2022] [Indexed: 11/18/2022] Open
Abstract
Multispecies cropping systems contribute to sustainable agriculture with multiple ecosystem services. Effects of intercropping of various crops with faba beans on growth and yield parameters and disease severity of root rot, damping off and broomrape were investigated. This study was implemented in the laboratory, greenhouse and field to investigate the effect of the intercropping systems (fenugreek + faba bean, lupine + faba bean, garlic + faba bean and sole faba bean). The intercropping systems were combined with the application of arbuscular mycorrhiza fungi (AMF) and yeast as bio-control agents, compared to chemical application of herbicides (Glyphosate) and fungicides (Rizolex-T50), to control rot root diseases and broomrape weeds, Orobanche spp., of faba bean plants in vivo and under the naturally infested field. In vitro, yeast and Rizolex-T50 significantly inhibited mycelial growth of root pathogenic fungi. Intercropping with garlic and/or application of Rizolex-T, significantly decreased the incidence and disease index of root rot and damping-off diseases, meanwhile increased percentage of survival plants. In vivo, intercropping with fenugreek and/or application of Glyphosate, significantly reduced the number/weight of spikes/plot of broomrapes. Intercropping with fenugreek combined with AMF application promoted crop growth and significantly increased yield components. The AMF enhanced seed yield/ha when applied to the intercropping of faba bean + fenugreek and faba bean + garlic, showing the highest seed yield/ha with 3.722 and 3.568 ton/ha, respectively. Intercropping of faba bean with garlic integrated with AMF revealed the highest values of LER, 2.45, and net return, 2341 US$/ha. Our results suggested that using faba bean–garlic intercrop along with AMF inoculation can reduce root rot disease, damping off and broomrapes, as well as enhance the profitability of Egyptian farmer and sustainable production.
Collapse
Affiliation(s)
- Amira A. El-Mehy
- Crop Intensification Res. Dep., Field Crops Res. Inst., Agricultural Research Center, Egypt
| | - Hala M. El-Gendy
- plant Pathology Research Institute, Agricultural Research Center, Egypt
| | - Ahmed A.A. Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Corresponding author.
| | - Samy F. Mahmoud
- Department of Biotechnology, College of Science,Taif University. P.O.Box 11099, Taif 21944. Saudi Arabia
| | - Shebl Abdel-Gawad
- Agriculture Microbiology Department Soil, Water and Environment institute Agriculture Research center, Giza, Egypt
| | - Ahmed E. Elesawy
- Department of Project Management and Sustainable Development - Arid Land Agriculture Research Institute - City of Scientific Research and Technological Applications, New Borg El-Arab, 21934 Alexandaria, Egypt
| | - Ahmed S.M. Elnahal
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
15
|
Xu Z, Lv Y, Fang M, Liu J, Zeng H, Ban Y. Diverse and abundant arbuscular mycorrhizal fungi in ecological floating beds used to treat eutrophic water. Appl Microbiol Biotechnol 2021; 105:6959-6975. [PMID: 34432133 DOI: 10.1007/s00253-021-11470-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
An increasing number of investigations have shown the universal existence of arbuscular mycorrhizal fungi (AMF) in aquatic ecosystems. However, little is known about the accurate distribution and function of AMF inhabiting aquatic ecosystems, especially ecological floating beds (EFBs), which are constructed for the remediation of polluted water bodies. In this study, we collected root samples of Canna generalis, Cyperus alternifolius, and Eichhornia crassipes from three EFBs on two eutrophic lakes in Wuhan, China. We aimed to investigate the resources and distribution of AMF in EFBs using Illumina Mi-seq technology. A total of 229 operational taxonomic units (OTUs) and 21 taxa from 348,799 Glomeromycota sequences were detected. Glomus and Acaulospora were the most dominant and second most dominant genera of AMF in the three EFBs, respectively. Different aquatic plant species showed varying degrees of AMF colonization (3.83-71%), diversity (6-103 OTUs, 3-15 virtual taxa), and abundance (14-57,551 sequences). Low AMF abundance, but relatively high AMF diversity, was found in C. alternifolius, which is usually considered non-mycorrhizal. This finding indicated the high accuracy of Illumina sequencing. Our results also revealed a lognormal species abundance distribution that was observed across AMF taxa in the three plant species. The AMF community composition was closely related to nitrogen and phosphorus contents. Overall, our data show that EFBs harbor diverse and abundant AMF communities. Additionally, the AMF community composition is closely related to the water quality of eutrophic lakes treated by the EFBs, indicating the potential application of AMF in plant-based bioremediation of wastewater. KEYPOINTS: • Aquatic plants in EFBs harbor diverse (229 OTUs) and abundant (348,799 sequences) AMF. • Different plant species host different taxa of AMF. Cyperaceae, originally considered non-mycorrhizal, may in fact be a variable mycorrhizal plant family. • The AMF community composition in EFBs is closely related to nutrient concentrations (nitrogen and phosphorus).
Collapse
Affiliation(s)
- Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yichao Lv
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Mingjing Fang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Jianjun Liu
- POWERCHINA Huadong Engineering Corporation Limited, Hangzhou, 311122, Zhejiang, China
| | - Haibo Zeng
- POWERCHINA Sinohydro Bureau 5 Corporation Limited, Chengdu, 610066, Sichuan, China
| | - Yihui Ban
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China.
| |
Collapse
|
16
|
Hupe A, Naether F, Haase T, Bruns C, Heß J, Dyckmans J, Joergensen RG, Wichern F. Evidence of considerable C and N transfer from peas to cereals via direct root contact but not via mycorrhiza. Sci Rep 2021; 11:11424. [PMID: 34075075 PMCID: PMC8169652 DOI: 10.1038/s41598-021-90436-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Intercropping of legumes and cereals is an important management method for improving yield stability, especially in organic farming systems. However, knowledge is restricted on the relevance of different nutrient transfer pathways. The objective of the study was to quantify nitrogen (N) and carbon (C) transfer from peas to triticale by (1) direct root contact (= R), (2) arbuscular mycorrhizal fungi (AMF; = A), and (3) diffusion (= D). Pea (Pisum sativum cv. Frisson and P2) and triticale (Triticum × Secale cv. Benetto) plants as intercrop were grown for 105 days. Treatment ADR enabled all transfer paths between the two crops. Treatment AD with root exclusion enabled AMF and diffusion transfer between peas and triticale. Treatment A with a diffusion gap barrier only allowed AMF transfer. Pea plants were labelled every 14 days with a 13C glucose and 15N urea solution, using the cotton wick technique. Direct root contact resulted in the highest pea rhizodeposition and thus the largest absolute amounts of N and C transfer to triticale. Root exclusion generally changed composition of rhizodeposits from fine root residues towards root exudates. Pea plant-N consisted of 17% N derived from rhizodeposition (NdfR) in treatment ADR but only 8% in the treatments AD and A, independently of pea variety, whereas pea plant-C consisted of 13% C derived from rhizodeposition (CdfR), without pea variety and transfer path treatment effects. Averaging all transfer path treatments, 6.7% of NdfR and 2.7% of CdfR was transferred from Frisson and P2 to triticale plants. Approximately 90% of this NdfR was transferred by direct root contact from Frisson to triticale and only 10% by AMF, whereas only 55% of CdfR was transferred to triticale by direct root contact, 40% by AMF and 5% by diffusion. Similar percentages were transferred from mutant P2 to triticale. Root exclusion generally changed RD composition from fine root residues towards root exudates.
Collapse
Affiliation(s)
- Anke Hupe
- grid.5155.40000 0001 1089 1036Soil Biology and Plant Nutrition, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany ,grid.5155.40000 0001 1089 1036Organic Farming and Cropping, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Franziska Naether
- grid.5155.40000 0001 1089 1036Organic Farming and Cropping, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Thorsten Haase
- grid.5155.40000 0001 1089 1036Organic Farming and Cropping, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany ,grid.506460.10000 0004 4679 6788Present Address: Landesbetrieb Landwirtschaft Hessen, Kassel, Germany
| | - Christian Bruns
- grid.5155.40000 0001 1089 1036Organic Farming and Cropping, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Jürgen Heß
- grid.5155.40000 0001 1089 1036Organic Farming and Cropping, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Jens Dyckmans
- grid.7450.60000 0001 2364 4210Centre for Stable Isotope Research Analysis, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Rainer Georg Joergensen
- grid.5155.40000 0001 1089 1036Organic Farming and Cropping, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Florian Wichern
- grid.449481.40000 0004 0427 2011Soil Science and Plant Nutrition, Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| |
Collapse
|
17
|
Zero Tillage Systems Conserve Arbuscular Mycorrhizal Fungi, Enhancing Soil Glomalin and Water Stable Aggregates with Implications for Soil Stability. SOIL SYSTEMS 2021. [DOI: 10.3390/soilsystems5010004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Arbuscular Mycorrhizal (AM) fungi form mutualistic symbiotic relationships with approximately 80% of terrestrial plant species, while producing the glycoprotein glomalin as a structural support molecule along their mycelial network. Glomalin confers two benefits for soils: (1) acting as a carbon and nitrogen storage molecule; (2) the binding of soil microaggregates (<250 µm) to form larger, more stable structures. The present study aimed to test the hypothesis that a correlation between glomalin and soil aggregation exists and that this is influenced by the method of seedbed preparation. The soils from two crops of winter wheat in Hertfordshire, UK, practising either conventional (20 cm soil inversion) or zero tillage exclusively, were sampled in a 50 m grid arrangement over a 12 month period. Glomalin and water stable aggregates (WSA) were quantified for each soil sample and found to be significantly greater in zero tillage soils compared to those of conventional tillage. A stronger correlation between WSA and glomalin was observed in zero tillage (Pearson’s coeffect 0.85) throughout the cropping year compared to conventional tillage (Pearson’s coeffect 0.07). The present study was able to conclude that zero tillage systems are beneficial for AM fungi, the enhancement of soil glomalin and soil erosion mitigation.
Collapse
|
18
|
Lurthy T, Pivato B, Lemanceau P, Mazurier S. Importance of the Rhizosphere Microbiota in Iron Biofortification of Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:744445. [PMID: 34925398 PMCID: PMC8679237 DOI: 10.3389/fpls.2021.744445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/29/2021] [Indexed: 05/13/2023]
Abstract
Increasing the iron content of plant products and iron assimilability represents a major issue for human nutrition and health. This is also a major challenge because iron is not readily available for plants in most cultivated soils despite its abundance in the Earth's crust. Iron biofortification is defined as the enhancement of the iron content in edible parts of plants. This biofortification aims to reach the objectives defined by world organizations for human nutrition and health while being environment friendly. A series of options has been proposed to enhance plant iron uptake and fight against hidden hunger, but they all show limitations. The present review addresses the potential of soil microorganisms to promote plant iron nutrition. Increasing knowledge on the plant microbiota and plant-microbe interactions related to the iron dynamics has highlighted a considerable contribution of microorganisms to plant iron uptake and homeostasis. The present overview of the state of the art sheds light on plant iron uptake and homeostasis, and on the contribution of plant-microorganism (plant-microbe and plant-plant-microbe) interactions to plant nutritition. It highlights the effects of microorganisms on the plant iron status and on the co-occurring mechanisms, and shows how this knowledge may be valued through genetic and agronomic approaches. We propose a change of paradigm based on a more holistic approach gathering plant and microbial traits mediating iron uptake. Then, we present the possible applications in plant breeding, based on plant traits mediating plant-microbe interactions involved in plant iron uptake and physiology.
Collapse
|
19
|
Wiriya J, Rangjaroen C, Teaumroong N, Sungthong R, Lumyong S. Rhizobacteria and Arbuscular Mycorrhizal Fungi of Oil Crops (Physic Nut and Sacha Inchi): A Cultivable-Based Assessment for Abundance, Diversity, and Plant Growth-Promoting Potentials. PLANTS 2020; 9:plants9121773. [PMID: 33327574 PMCID: PMC7765041 DOI: 10.3390/plants9121773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023]
Abstract
Nowadays, oil crops are very attractive both for human consumption and biodiesel production; however, little is known about their commensal rhizosphere microbes. In this study, rhizosphere samples were collected from physic nut and sacha inchi plants grown in several areas of Thailand. Rhizobacteria, cultivable in nitrogen-free media, and arbuscular mycorrhizal (AM) fungi were isolated and examined for abundance, diversity, and plant growth-promoting activities (indole-3-acetic acid (IAA) and siderophore production, nitrogen fixation, and phosphate solubilization). Results showed that only the AM spore amount was affected by plant species and soil features. Considering rhizobacterial diversity, two classes—Alphaproteobacteria (Ensifer sp. and Agrobacterium sp.) and Gammaproteobacteria (Raoultella sp. and Pseudomonas spp.)—were identified in physic nut rhizosphere, and three classes; Actinobacteria (Microbacterium sp.), Betaproteobacteria (Burkholderia sp.) and Gammaproteobacteria (Pantoea sp.) were identified in the sacha inchi rhizosphere. Considering AM fungal diversity, four genera were identified (Acaulospora, Claroideoglomus, Glomus, and Funneliformis) in sacha inchi rhizospheres and two genera (Acaulospora and Glomus) in physic nut rhizospheres. The rhizobacteria with the highest IAA production and AM spores with the highest root-colonizing ability were identified, and the best ones (Ensifer sp. CM1-RB003 and Acaulospora sp. CM2-AMA3 for physic nut, and Pantoea sp. CR1-RB056 and Funneliformis sp. CR2-AMF1 for sacha inchi) were evaluated in pot experiments alone and in a consortium in comparison with a non-inoculated control. The microbial treatments increased the length and the diameter of stems and the chlorophyll content in both the crops. CM1-RB003 and CR1-RB056 also increased the number of leaves in sacha inchi. Interestingly, in physic nut, the consortium increased AM fungal root colonization and the numbers of offspring AM spores in comparison with those observed in sacha inchi. Our findings proved that AM fungal abundance and diversity likely rely on plant species and soil features. In addition, pot experiments showed that rhizosphere microorganisms were the key players in the development and growth of physic nut and sacha inchi.
Collapse
Affiliation(s)
- Janjira Wiriya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chakrapong Rangjaroen
- Department of Agricultural Management Technology, Faculty of Science and Technology, Phranakhon Rajabhat University, Bangkok 10220, Thailand;
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Rungroch Sungthong
- Laboratory of Hydrology and Geochemistry of Strasbourg, University of Strasbourg, UMR 7517 CNRS/EOST, Strasbourg CEDEX 67084, France
- Correspondence: (R.S.); (S.L.)
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Correspondence: (R.S.); (S.L.)
| |
Collapse
|
20
|
Roles of Arbuscular Mycorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12100370] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) establish symbiotic associations with most terrestrial plants. These soil microorganisms enhance the plant’s nutrient uptake by extending the root absorbing area. In return, the symbiont receives plant carbohydrates for the completion of its life cycle. AMF also helps plants to cope with biotic and abiotic stresses such as salinity, drought, extreme temperature, heavy metal, diseases, and pathogens. For abiotic stresses, the mechanisms of adaptation of AMF to these stresses are generally linked to increased hydromineral nutrition, ion selectivity, gene regulation, production of osmolytes, and the synthesis of phytohormones and antioxidants. Regarding the biotic stresses, AMF are involved in pathogen resistance including competition for colonization sites and improvement of the plant’s defense system. Furthermore, AMF have a positive impact on ecosystems. They improve the quality of soil aggregation, drive the structure of plant and bacteria communities, and enhance ecosystem stability. Thus, a plant colonized by AMF will use more of these adaptation mechanisms compared to a plant without mycorrhizae. In this review, we present the contribution of AMF on plant growth and performance in stressed environments.
Collapse
|
21
|
Hu S, Chen Z, Vosátka M, Vymazal J. Arbuscular mycorrhizal fungi colonization and physiological functions toward wetland plants under different water regimes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137040. [PMID: 32044486 DOI: 10.1016/j.scitotenv.2020.137040] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/21/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) have been widely reported to occur in the association with wetland plants. However, the factors that affect AMF colonization in wetland plants and physiological functions in AMF inoculated wetland plants are poorly studied. This study investigated the effects of four water regimes (below the surface of sands: water levels of 5 cm, 9 cm, 11 cm, and fluctuating water depth (9-11 cm)) on AMF root colonization in two wetland plants (Phalaris arundinacea and Scirpus sylvaticus) which are commonly used in constructed wetland. Results showed that two lower water regimes were the most suitable for the formation of root colonization by AMF. Plant species did not show any significant difference in AMF colonization. The AMF colonization of 15.6-23.3% in the roots of both wetland plants were determined under the water regimes of 11 cm and 9-11 cm. In comparison to the non-inoculated plants, root length, shoot height, biomass, shoot total phosphorus and chlorophyll contents of both wetland plants under the fluctuating water regimes (9-11 cm) were increased by 35.4-46.2%, 13.1-26.6%, 33.3-114.3%, 25.7-80% and 14.3-24%, respectively. Although malondialdehyde (MDA) contents in both AMF inoculated wetland plants were decreased under the lower water levels, the MDA contents under the water regime of 11 cm were still high. Therefore, these results indicated that the physiological functions in wetland plants with high AMF colonization might be improved under a specific water regime condition (e.g. depth of fluctuating water regime).
Collapse
Affiliation(s)
- Shanshan Hu
- Czech University of Life Sciences Prague, Department of Applied Ecology, Faculty of Environmental Sciences, Kamýcká 129, 16521 Prague, Czech Republic
| | - Zhongbing Chen
- Czech University of Life Sciences Prague, Department of Applied Ecology, Faculty of Environmental Sciences, Kamýcká 129, 16521 Prague, Czech Republic.
| | - Miroslav Vosátka
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 25243 Průhonice, Czech Republic
| | - Jan Vymazal
- Czech University of Life Sciences Prague, Department of Applied Ecology, Faculty of Environmental Sciences, Kamýcká 129, 16521 Prague, Czech Republic
| |
Collapse
|