1
|
Baldasso-Zanon A, Silva AO, Franco N, Picon RV, Lenz G, Lopez PLDC, Filippi-Chiela EC. The rational modulation of autophagy sensitizes colorectal cancer cells to 5-fluouracil and oxaliplatin. J Cell Biochem 2024; 125:e30517. [PMID: 38224178 DOI: 10.1002/jcb.30517] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/25/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
Colorectal cancer (CRC) is the third most common and deadliest cancer globally. Regimens using 5-fluorouracil (5FU) and Oxaliplatin (OXA) are the first-line treatment for CRC, but tumor recurrence is frequent. It is plausible to hypothesize that differential cellular responses are triggered after treatments depending on the genetic background of CRC cells and that the rational modulation of cell tolerance mechanisms like autophagy may reduce the regrowth of CRC cells. This study proposes investigating the cellular mechanisms triggered by CRC cells exposed to 5FU and OXA using a preclinical experimental design mimicking one cycle of the clinical regimen (i.e., 48 h of treatment repeated every 2 weeks). To test this, we treated CRC human cell lines HCT116 and HT29 with the 5FU and OXA, combined or not, for 48 h, followed by analysis for two additional weeks. Compared to single-drug treatments, the co-treatment reduced tumor cell regrowth, clonogenicity and stemness, phenotypes associated with tumor aggressiveness and poor prognosis in clinics. This effect was exerted by the induction of apoptosis and senescence only in the co-treatment. However, a week after treatment, cells that tolerated the treatment had high levels of autophagy features and restored the proliferative phenotype, resembling tumor recurrence. The pharmacologic suppression of early autophagy during its peak of occurrence, but not concomitant with chemotherapeutics, strongly reduced cell regrowth. Overall, our experimental model provides new insights into the cellular mechanisms that underlie the response and tolerance of CRC cells to 5FU and OXA, suggesting optimized, time-specific autophagy inhibition as a new avenue for improving the efficacy of current treatments.
Collapse
Affiliation(s)
- Andréa Baldasso-Zanon
- Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Centro de Pesquisas Experimental, Laboratório de Biologia Celular e Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andrew Oliveira Silva
- Centro de Pesquisas Experimental, Laboratório de Biologia Celular e Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Unidade Centro RS, Faculdade Estácio do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Nayara Franco
- Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Centro de Pesquisas Experimental, Laboratório de Biologia Celular e Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafael V Picon
- Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Medicina Interna, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Guido Lenz
- Departamento de Biofísica, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patrícia Luciana da Costa Lopez
- Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Centro de Pesquisas Experimental, Laboratório de Biologia Celular e Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eduardo C Filippi-Chiela
- Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Centro de Pesquisas Experimental, Laboratório de Biologia Celular e Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Ciências Morfológicas, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Jiang H, Liao J, Wang L, Jin C, Mo J, Xiang S. The multikinase inhibitor axitinib in the treatment of advanced hepatocellular carcinoma: the current clinical applications and the molecular mechanisms. Front Immunol 2023; 14:1163967. [PMID: 37325670 PMCID: PMC10264605 DOI: 10.3389/fimmu.2023.1163967] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Advanced hepatocellular carcinoma (HCC) is a formidable public health problem with limited curable treatment options. Axitinib, an oral tyrosine kinase inhibitor, is a potent and selective second-generation inhibitor of vascular endothelial growth factor receptor (VEGFR) 1, 2, and 3. This anti-angiogenic drug was found to have promising activity in various solid tumors, including advanced HCC. At present, however, there is no relevant review article that summarizes the exact roles of axitinib in advanced HCC. In this review, 24 eligible studies (seven studies in the ClinicalTrials, eight experimental studies, and nine clinical trials) were included for further evaluation. The included randomized or single-arm phase II trials indicated that axitinib could not prolong the overall survival compared to the placebo for the treatment of advanced HCC, but improvements in progression free survival and time to tumor progression were observed. Experimental studies showed that the biochemical effects of axitinib in HCC might be regulated by its associated genes and affected signaling cascades (e.g. VEGFR2/PAK1, CYP1A2, CaMKII/ERK, Akt/mTor, and miR-509-3p/PDGFRA). FDA approved sorafenib combined with nivolumab (an inhibitor of PD-1/PD-L1) as the first line regimen for the treatment of advanced HCC. Since both axitinib and sorafenib are tyrosine kinase inhibitors as well as the VEGFR inhibitors, axitinib combined with anti-PDL-1/PD-1 antibodies may also exhibit tremendous potential in anti-tumoral effects for advanced HCC. The present review highlights the current clinical applications and the molecular mechanisms of axitinib in advanced HCC. To move toward clinical applications by combining axitinib and other treatments in advanced HCC, more studies are still warranted in the near future.
Collapse
Affiliation(s)
- Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Liezhi Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Sheng Xiang
- Department of General Surgery, Tiantai People’s Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
3
|
Mass spectrometry-based metabolomics approach and in vitro assays revealed promising role of 2,3-dihydroquinazolin-4(1H)-one derivatives against colorectal cancer cell lines. Eur J Pharm Sci 2023; 182:106378. [PMID: 36638899 DOI: 10.1016/j.ejps.2023.106378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/24/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Colorectal cancer (CRC) is the most frequent form of gastrointestinal cancer and one of the major causes of human mortality worldwide. Many of the current CRC therapies have limitations due to multidrug resistance and/or severe side effects. Quinazoline derivatives are promising lead compounds with a wide range of pharmacological actions. In this study, the effect of seven synthesized 2,3-dihydroquinazolin-4(1H)-one analogues as potential anticancer agents against two CRC cell lines (HCT116 and SW480) was investigated using cell viability proliferation, migration, adhesion and invasion assays. A liquid chromatography-mass spectrometry (LC-MS/MS) metabolomics approach was used to identify the underlying biochemical pathways disturbed in treated-HCT116 cells. Cell viability proliferation assay revealed that four compounds (C2, C3, C5, and C7) had IC50 < 10 µM with C5 displaying the most potent cytotoxic effect (IC50 1.4 and 0.3 µM against HCT116 and SW480, respectively). Additionally, the compounds showed suppression of wound closure after 72 h, and both C2 and C5 significantly decreased the number of adherent cells and suppressed HCT116 cells invasion. Metabolomics study revealed that C5 induced significant perturbations in the level of several metabolites including spermine, polyamines, glutamine, creatine and carnitine, and altered biochemical processes essential for cell proliferation and progression such as amino acids biosynthesis and metabolism, redox homeostasis, energy related processes (e.g., fatty acid oxidation, second Warburg like effect) and one-carbon metabolism. Our findings indicate that 2,3-dihydroquinazolin-4(1H)-one analogues, particularly C5, have promising anticancer properties, and shed light on the role of metabolomics in identifying new therapeutic targets and providing better understanding of the pathways altered in treated cancer cells.
Collapse
|
4
|
Amaro F, Pisoeiro C, Valente MJ, Bastos MDL, Guedes de Pinho P, Carvalho M, Pinto J. Sunitinib versus Pazopanib Dilemma in Renal Cell Carcinoma: New Insights into the In Vitro Metabolic Impact, Efficacy, and Safety. Int J Mol Sci 2022; 23:9898. [PMID: 36077297 PMCID: PMC9456255 DOI: 10.3390/ijms23179898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
Sunitinib and pazopanib are tyrosine kinase inhibitors (TKIs) used as first-line therapy for metastatic renal cell carcinoma (RCC). Although these TKIs are associated with similar survival outcomes, some differences have been reported in their safety profiles. In this work, traditional toxicological endpoints (cell viability and growth, oxidative stress, and nuclear morphology) and 1H NMR spectroscopy-based metabolomics analysis were used to provide new insights into the cytotoxicity and metabolic mechanisms underlying sunitinib and pazopanib treatments. Tumoral (Caki-1) and non-tumoral (HK-2) human renal cells were exposed to clinically relevant concentrations of sunitinib (2 µM) or pazopanib (50 µM). Sunitinib showed selectivity for cancer cells, inhibiting proliferation, and inducing apoptotic death of Caki-1 cells, whereas pazopanib had a similar cytotoxic effect in both tumoral and non-tumoral cells. 1H-NMR metabolomics unveiled a higher impact of sunitinib on the levels of intracellular metabolites of Caki-1 cells (seven dysregulated metabolites), suggesting dysregulations on amino acid, glutathione and glycerophospholipid metabolisms. In contrast, pazopanib had a higher impact on the levels of extracellular metabolites of Caki-1 cells (seven dysregulated metabolites in culture medium), unveiling alterations on amino acid and energetic metabolisms. In HK-2 cells, sunitinib caused only a minor increase in intracellular isoleucine levels, whereas pazopanib induced several alterations on the intracellular (three dysregulated metabolites) and extracellular (three dysregulated metabolites) compartments suggesting changes on amino acid, glycerophospholipid, and energy metabolisms. Our results demonstrate that these TKIs elicit distinct cellular and metabolic responses, with sunitinib showing better in vitro efficacy against target RCC cells and lesser nephrotoxic potential than pazopanib.
Collapse
Affiliation(s)
- Filipa Amaro
- Associate Laboratory i4HB, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Carolina Pisoeiro
- Associate Laboratory i4HB, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria João Valente
- National Food Institute, Technical University of Denmark, Kongens Lyngby, 2800 Copenhagen, Denmark
| | - Maria de Lourdes Bastos
- Associate Laboratory i4HB, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Márcia Carvalho
- Associate Laboratory i4HB, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP-I3ID, FP-BHS, University Fernando Pessoa, 4200-150 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
5
|
Bai J, Withycombe J, Eldridge RC. Metabolic Pathways Associated With Psychoneurological Symptoms in Children With Cancer Receiving Chemotherapy. Biol Res Nurs 2022; 24:281-293. [PMID: 35285272 PMCID: PMC9343884 DOI: 10.1177/10998004211069619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
CONTEXT Children with cancer undergoing chemotherapy experience a cluster of psychoneurological symptoms (PNS), including pain, fatigue, anxiety, and depressive symptoms. Metabolomics is promising to differentiate metabolic pathways associated with the PNS cluster. OBJECTIVES Identify metabolic pathways associated with the PNS cluster in children with cancer before and after chemotherapy. METHODS Pain, fatigue, anxiety, and depressive symptoms were assessed using the Pediatric PROMIS scales. T-scores were computed and divided dichotomously by a cutoff point of 50; the PNS cluster was a sum of the four symptoms ranging from 0 (all T-scores <50) to 4 (all T-scores ≥50). Serum metabolites were processed using liquid chromatography mass-spectrometry untargeted metabolomics approach. Linear regression models examined metabolites associated with the PNS cluster. Metabolic pathway enrichment analysis was performed. RESULTS Participant demographics (n = 40) were 55% female, 60% white, 62.5% aged 13-19 years, and 62.5% diagnoses of Hodgkin's lymphoma and B-cell acute lymphocytic leukemia. Among 9276 unique metabolic features, 454 were associated with pain, 281 with fatigue, 596 with anxiety, 551 with depressive symptoms, and 300 with the PNS cluster across one chemotherapy cycle. Fatty acids pathways were associated with pain: de novo fatty acid biosynthesis (p < .001), fatty acid metabolism (p = .001), fatty acid activation (p = .004), and omega-3 fatty acid metabolism (p = .009). Tryptophan amino acid pathway was associated with fatigue (p < .001), anxiety (p = .015), and the PNS cluster (p = .037). Carnitine shuttle was associated with the PNS cluster (p = .015). CONCLUSION Fatty acids and amino acids pathways were associated with PNS in children undergoing chemotherapy. These findings require further investigation in a larger sample.
Collapse
Affiliation(s)
- Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | | | - Ronald C. Eldridge
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| |
Collapse
|
6
|
Alarcon-Barrera JC, Kostidis S, Ondo-Mendez A, Giera M. Recent advances in metabolomics analysis for early drug development. Drug Discov Today 2022; 27:1763-1773. [PMID: 35218927 DOI: 10.1016/j.drudis.2022.02.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/25/2022]
Abstract
The pharmaceutical industry adapted proteomics and other 'omics technologies for drug research early following their initial introduction. Although metabolomics lacked behind in this development, it has now become an accepted and widely applied approach in early drug development. Over the past few decades, metabolomics has evolved from a pure exploratory tool to a more mature and quantitative biochemical technology. Several metabolomics-based platforms are now applied during the early phases of drug discovery. Metabolomics analysis assists in the definition of the physiological response and target engagement (TE) markers as well as elucidation of the mode of action (MoA) of drug candidates under investigation. In this review, we highlight recent examples and novel developments of metabolomics analyses applied during early drug development.
Collapse
Affiliation(s)
- Juan Carlos Alarcon-Barrera
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Clinical Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Alejandro Ondo-Mendez
- Clinical Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
7
|
Rattner JI, Kopciuk KA, Vogel HJ, Tang PA, Shapiro JD, Tu D, Jonker DJ, Siu LL, O'Callaghan CJ, Bathe OF. Early detection of treatment futility in patients with metastatic colorectal cancer. Oncotarget 2022; 13:61-72. [PMID: 35028011 PMCID: PMC8746015 DOI: 10.18632/oncotarget.28165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/10/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Chemotherapy options for treating CRC have rapidly expanded in recent years, and few have predictive biomarkers. Oncologists are challenged with evidence-based selection of treatments, and response is evaluated retrospectively based on serial imaging beginning after 2-3 months. As a result, cumulative toxicities may appear in patients who will not benefit. Early recognition of non-benefit would reduce cumulative toxicities. Our objective was to determine treatment-related changes in the circulating metabolome corresponding to treatment futility. METHODS Metabolomic studies were performed on serial plasma samples from patients with CRC in a randomized controlled trial of cetuximab vs. cetuximab + brivanib (N = 188). GC-MS quantified named 94 metabolites and concentrations were evaluated at baseline, Weeks 1, 4 and 12 after treatment initiation. In a discovery cohort (N = 68), a model distinguishing changes in metabolites associated with radiographic disease progression and response was generated using OPLS-DA. A cohort of 120 patients was used for validation of the model. RESULTS By one week after treatment, a stable model of 21 metabolites could distinguish between progression and partial response (R2Y = 0.859; Q2Y = 0.605; P = 5e-4). In the validation cohort, patients with the biomarker had a significantly shorter OS (P < 0.0001). In a separate cohort of patients with HCC on axitinib, appearance of the biomarker also signified a shorter PFS (1.7 months vs. 9.2 months, P = 0.001). CONCLUSION We have identified changes in the metabolome that appear within 1 week of starting treatment associated with treatment futility. The novel approach described is applicable to future efforts in developing a biomarker for early assessment of treatment efficacy.
Collapse
Affiliation(s)
- Jodi I Rattner
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Karen A Kopciuk
- Department of Mathematics and Statistics, Faculty of Science, University of Calgary, Calgary, Canada
| | - Hans J Vogel
- Department Biological Sciences, Faculty of Science, University of Calgary, Calgary, Canada
| | - Patricia A Tang
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Surgery and Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Jeremy D Shapiro
- Department of Medical Oncology, Monash University, Melbourne, Victoria, Australia
| | - Dongsheng Tu
- Department of Community Health and Epidemiology, Queens University, Kingston, Canada
| | - Derek J Jonker
- Division of Medical Oncology, Ottawa Hospital Cancer Centre, Ottawa, Canada
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Chris J O'Callaghan
- Department of Community Health and Epidemiology, Queens University, Kingston, Canada
| | - Oliver F Bathe
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Surgery and Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
8
|
Corral-Jara KF, Rosas da Silva G, Fierro NA, Soumelis V. Modeling the Th17 and Tregs Paradigm: Implications for Cancer Immunotherapy. Front Cell Dev Biol 2021; 9:675099. [PMID: 34026764 PMCID: PMC8137995 DOI: 10.3389/fcell.2021.675099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
CD4 + T cell differentiation is governed by gene regulatory and metabolic networks, with both networks being highly interconnected and able to adapt to external stimuli. Th17 and Tregs differentiation networks play a critical role in cancer, and their balance is affected by the tumor microenvironment (TME). Factors from the TME mediate recruitment and expansion of Th17 cells, but these cells can act with pro or anti-tumor immunity. Tregs cells are also involved in tumor development and progression by inhibiting antitumor immunity and promoting immunoevasion. Due to the complexity of the underlying molecular pathways, the modeling of biological systems has emerged as a promising solution for better understanding both CD4 + T cell differentiation and cancer cell behavior. In this review, we present a context-dependent vision of CD4 + T cell transcriptomic and metabolic network adaptability. We then discuss CD4 + T cell knowledge-based models to extract the regulatory elements of Th17 and Tregs differentiation in multiple CD4 + T cell levels. We highlight the importance of complementing these models with data from omics technologies such as transcriptomics and metabolomics, in order to better delineate existing Th17 and Tregs bifurcation mechanisms. We were able to recompilate promising regulatory components and mechanisms of Th17 and Tregs differentiation under normal conditions, which we then connected with biological evidence in the context of the TME to better understand CD4 + T cell behavior in cancer. From the integration of mechanistic models with omics data, the transcriptomic and metabolomic reprograming of Th17 and Tregs cells can be predicted in new models with potential clinical applications, with special relevance to cancer immunotherapy.
Collapse
Affiliation(s)
- Karla F. Corral-Jara
- Computational Systems Biology Team, Institut de Biologie de l’Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, Ecole Normale Supérieure, PSL Research University, Paris, France
| | | | - Nora A. Fierro
- Department of Immunology, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| | - Vassili Soumelis
- Université de Paris, INSERM U976, France and AP-HP, Hôpital Saint-Louis, Immunology-Histocompatibility Department, Paris, France
| |
Collapse
|
9
|
Krstic J, Pieber TR, Prokesch A. Stratifying nutritional restriction in cancer therapy: Next stop, personalized medicine. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:231-259. [PMID: 32475475 DOI: 10.1016/bs.ircmb.2020.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dietary interventions combined with cancer drugs represent a clinically valid polytherapy. In particular nutrient restriction (NR) in the form of varied fasting or caloric restriction regimens holds great clinical promise, conceptually due to the voracious anabolic appetite of cancer cells. This metabolic dependency is driven by a strong selective pressure to increasingly acquire biomass of a proliferating tumor and can be therapeutically exploited as vulnerability. A host of preclinical data suggest that NR can potentiate the efficacy of, or alleviate resistance to, cancer drugs. However, complicating clinical implementation are the many variables involved, such as host biology, cancer stage and type, oncogenic mutation landscape, tumor heterogeneity, variations in treatment modalities, and patient compliance to NR protocols. This calls for systematic preclinical screens and co-clinical studies to predict effective combinations of NR with cancer drugs and to allow for patient stratification regarding responsiveness to polytherapy. Such screen-and-stratify pipelines should consider tumor heterogeneity as well as the role of immune effectors in the tumor microenvironment and may lead to biomarker discovery advancing the oncology field toward personalized options with improved translatability to clinical settings. This opinion-based review provides a critical overview of recent literature investigating NR for cancer treatment, pinpoints limitations of current studies, and suggests standardizations and refinements for future studies and trials. The proposed measures aim to increase the translational value of preclinical data and effectively harness the vast potential of NR as adjuvant for cancer therapy.
Collapse
Affiliation(s)
- Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Thomas R Pieber
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria; Health Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|