1
|
Liu X, Shen J, Yan H, Hu J, Liao G, Liu D, Zhou S, Zhang J, Liao J, Guo Z, Li Y, Yang S, Li S, Chen H, Guo Y, Li M, Fan L, Li L, Luo P, Zhao M, Liu Y. Posttransplant complications: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2024; 5:e669. [PMID: 39224537 PMCID: PMC11366828 DOI: 10.1002/mco2.669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Posttransplantation complications pose a major challenge to the long-term survival and quality of life of organ transplant recipients. These complications encompass immune-mediated complications, infectious complications, metabolic complications, and malignancies, with each type influenced by various risk factors and pathological mechanisms. The molecular mechanisms underlying posttransplantation complications involve a complex interplay of immunological, metabolic, and oncogenic processes, including innate and adaptive immune activation, immunosuppressant side effects, and viral reactivation. Here, we provide a comprehensive overview of the clinical features, risk factors, and molecular mechanisms of major posttransplantation complications. We systematically summarize the current understanding of the immunological basis of allograft rejection and graft-versus-host disease, the metabolic dysregulation associated with immunosuppressive agents, and the role of oncogenic viruses in posttransplantation malignancies. Furthermore, we discuss potential prevention and intervention strategies based on these mechanistic insights, highlighting the importance of optimizing immunosuppressive regimens, enhancing infection prophylaxis, and implementing targeted therapies. We also emphasize the need for future research to develop individualized complication control strategies under the guidance of precision medicine, ultimately improving the prognosis and quality of life of transplant recipients.
Collapse
Affiliation(s)
- Xiaoyou Liu
- Department of Organ transplantationThe First Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Junyi Shen
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hongyan Yan
- Department of Organ transplantationThe First Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Jianmin Hu
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Guorong Liao
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ding Liu
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Song Zhou
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jie Zhang
- Department of Organ transplantationThe First Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Jun Liao
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zefeng Guo
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuzhu Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Siqiang Yang
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shichao Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hua Chen
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ying Guo
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Min Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Lipei Fan
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Liuyang Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Peng Luo
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ming Zhao
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yongguang Liu
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
2
|
Bézie S, Sérazin C, Autrusseau E, Vimond N, Giral M, Anegon I, Guillonneau C. Renal graft function in transplanted patients correlates with CD45RC T cell phenotypic signature. PLoS One 2024; 19:e0300032. [PMID: 38512889 PMCID: PMC10956768 DOI: 10.1371/journal.pone.0300032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
Biomarkers that could predict the evolution of the graft in transplanted patients and that could allow to adapt the care of the patients would be an invaluable tool. Additionally, certain biomarkers can be target of treatments and help to stratify patients. Potential effective biomarkers have been identified but still need to be confirmed. CD45RC, one of the splicing variants of the CD45 molecule, a tyrosine phosphatase that is critical in negatively or positively regulating the TCR and the BCR signaling, is one marker already described. The frequency of CD8+ T cells expressing high levels of CD45RC before transplantation is increased in patients with an increased risk of acute rejection. However, single biomarkers have limited predictive reliability and the correlation of the expression levels of CD45RC with other cell markers was not reported. In this study, we performed a fluorescent-based high dimensional immunophenotyping of T cells on a cohort of 69 kidney transplant patients either with stable graft function or having experienced acute transplant rejection during the first year after transplantation or at the time of rejection. We identified combinations of markers and cell subsets associated with activation/inflammation or Tregs/tolerance (HLA-DR, PD-1, IFNγ, CD28) as significant biomarkers associated to transplant outcome, and showed the importance of cell segregation based on the CD45RC marker to identify the signature of a stable graft function. Our study highlights potential reliable biomarkers in transplantation to predict and/or monitor easily graft-directed immune responses and adapt immunosuppression treatments to mitigate adverse effects.
Collapse
Affiliation(s)
- Séverine Bézie
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, F-44000, Nantes, France
| | - Céline Sérazin
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, F-44000, Nantes, France
| | - Elodie Autrusseau
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, F-44000, Nantes, France
| | - Nadège Vimond
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, F-44000, Nantes, France
| | - Magali Giral
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, F-44000, Nantes, France
- Department of Nephrology, CHU Nantes, Nantes Université, ITUN, Nantes, France
| | - Ignacio Anegon
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, F-44000, Nantes, France
| | - Carole Guillonneau
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, F-44000, Nantes, France
| |
Collapse
|
3
|
Niederlova V, Tsyklauri O, Chadimova T, Stepanek O. CD8 + Tregs revisited: A heterogeneous population with different phenotypes and properties. Eur J Immunol 2021; 51:512-530. [PMID: 33501647 DOI: 10.1002/eji.202048614] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/31/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Regulatory T cells (Tregs) play a key role in the peripheral self-tolerance and preventing autoimmunity. While classical CD4+ Foxp3+ Tregs are well established, their CD8+ counterparts are still controversial in many aspects including their phenotypic identity and their mechanisms of suppression. Because of these controversies and because of only a limited number of studies documenting the immunoregulatory function of CD8+ Tregs in vivo, the concept of CD8+ Tregs is still not unanimously accepted. We propose that any T-cell subset considered as true regulatory must be distinguishable from other cell types and must suppress in vivo immune responses via a known mechanism. In this article, we revisit the concept of CD8+ Tregs by focusing on the characterization of individual CD8+ T-cell subsets with proposed regulatory capacity separately. Therefore, we review the phenotype and function of CD8+ FOXP3+ T cells, CD8+ CD122+ T cells, CD8+ CD28low/- T cells, CD8+ CD45RClow T cells, T cells expressing CD8αα homodimer and Qa-1-restricted CD8+ T cells to show whether there is sufficient evidence to establish these subsets as bona fide Tregs. Based on the intrinsic ability of CD8+ Treg subsets to promote immune tolerance in animal models, we elaborate on their potential use in clinics.
Collapse
Affiliation(s)
- Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Oksana Tsyklauri
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Chadimova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Experimental Neuroimmunology, Technical University of Munich, Munich, Germany
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Swanson KJ, Aziz F, Garg N, Mohamed M, Mandelbrot D, Djamali A, Parajuli S. Role of novel biomarkers in kidney transplantation. World J Transplant 2020; 10:230-255. [PMID: 32995319 PMCID: PMC7504189 DOI: 10.5500/wjt.v10.i9.230] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/21/2020] [Accepted: 08/25/2020] [Indexed: 02/05/2023] Open
Abstract
Clinical application of biomarkers is an integral component of transplant care. Clinicians and scientists alike are in search of better biomarkers than the current serologic (serum creatinine, donor-specific antibodies), urine-derived (urinalysis, urine protein), and histologic ones we now use. The science behind recent biomarker discovery spans across multiple molecular biologic disciplines, including transcriptomics, proteomics, and metabolomics. Innovative methodology and integration of basic and clinical approaches have allowed researchers to unearth molecular phenomena preceding clinical disease. Biomarkers can be classified in several ways. In this review, we have classified them via their origin and outcome: Primarily immunologic, i.e., representative of immune regulation and dysfunction and non-immunologic, pertaining to delayed graft function, cardiovascular events/mortality, infection, malignancy, post-transplant diabetes, graft, and patient survival. Novel biomarker uses to guide the diagnosis and management of transplant-related outcomes is a promising area of research. However, the use of biomarkers to predict outcomes after kidney transplantation is not well studied. In this review, we summarize the recent studies illustrating biomarker use and transplant outcomes.
Collapse
Affiliation(s)
- Kurtis J Swanson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, United States
| | - Fahad Aziz
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, United States
| | - Neetika Garg
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, United States
| | - Maha Mohamed
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, United States
| | - Didier Mandelbrot
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, United States
| | - Arjang Djamali
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, United States
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, United States
| | - Sandesh Parajuli
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, United States
| |
Collapse
|
5
|
Courivaud C, Bamoulid J, Crepin T, Gaiffe E, Laheurte C, Saas P, Ducloux D. Pre-transplant Thymic Function Predicts Is Associated With Patient Death After Kidney Transplantation. Front Immunol 2020; 11:1653. [PMID: 32903778 PMCID: PMC7438875 DOI: 10.3389/fimmu.2020.01653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Accelerated thymic involution is a main feature of end-stage renal disease (ESRD)-associated immune senescence. Recent evidences suggest that ESRD-associated immune senescence is associated with adverse outcomes in dialysis patients. However, no study focused on the association between pre-transplant thymic function and patient survival after transplantation. We conducted a prospective, multicenter study to assess whether pre-transplant thymic function measured by recent thymic emigrants (RTE) may predict death after first kidney transplantation. Results were tested in a validation cohort. Nine hundred and sixty-seven incident kidney transplant recipients were included in the prospective study. Mean follow up was 5.1 + 2.9 years. Eighty two patients (8.5%) died during follow up. Lower RTE levels were associated with a higher risk of death (2.53; 95%CI, 1.54–4.39 for each decrease of 1 log in RTE; p < 0.001). Cancer-related death was particularly increased in patients with low RTE levels (4.23; 95%CI, 1.43–12.13; p = 0.007). One hundred and thirty-six patients having received a first kidney transplantation were included in the validation cohort. Lower TREC levels were associated with higher risk of death (1.90; 95%CI, 1.11–3.51 for each decrease of 1 log in RTE; p = 0.025). RTE were not associated with death-censored graft loss. Pre-transplant thymic function is strongly associated with death after transplantation. Attempt to reverse ESRD-related thymic loss may prevent premature death.
Collapse
Affiliation(s)
- Cécile Courivaud
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,Univ. Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Jamal Bamoulid
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,Univ. Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Thomas Crepin
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,Univ. Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Emilie Gaiffe
- CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France.,CHU Besançon, CIC Biothérapie, INSERM CIC1431, Besançon, France
| | - Caroline Laheurte
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, CIC 1431/UMR1098, Besançon, France
| | - Philippe Saas
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,Univ. Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, CIC Biothérapie, INSERM CIC1431, Besançon, France.,EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, CIC 1431/UMR1098, Besançon, France
| | - Didier Ducloux
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,Univ. Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France.,CHU Besançon, CIC Biothérapie, INSERM CIC1431, Besançon, France
| |
Collapse
|
6
|
Boucault L, Lopez Robles MD, Thiolat A, Bézie S, Schmueck-Henneresse M, Braudeau C, Vimond N, Freuchet A, Autrusseau E, Charlotte F, Redjoul R, Beckerich F, Leclerc M, Piaggio E, Josien R, Volk HD, Maury S, Cohen JL, Anegon I, Guillonneau C. Transient antibody targeting of CD45RC inhibits the development of graft-versus-host disease. Blood Adv 2020; 4:2501-2515. [PMID: 32511714 PMCID: PMC7284095 DOI: 10.1182/bloodadvances.2020001688] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Allogeneic bone marrow transplantation (BMT) is a widely spread treatment of many hematological diseases, but its most important side effect is graft-versus-host disease (GVHD). Despite the development of new therapies, acute GVHD (aGVHD) occurs in 30% to 50% of allogeneic BMT and is characterized by the generation of effector T (Teff) cells with production of inflammatory cytokines. We previously demonstrated that a short anti-CD45RC monoclonal antibody (mAb) treatment in a heart allograft rat model transiently decreased CD45RChigh Teff cells and increased regulatory T cell (Treg) number and function allowing long-term donor-specific tolerance. Here, we demonstrated in rat and mouse allogeneic GVHD, as well as in xenogeneic GVHD mediated by human T cells in NSG mice, that both ex vivo depletion of CD45RChigh T cells and in vivo treatment with short-course anti-CD45RC mAbs inhibited aGVHD. In the rat model, we demonstrated that long surviving animals treated with anti-CD45RC mAbs were fully engrafted with donor cells and developed a donor-specific tolerance. Finally, we validated the rejection of a human tumor in NSG mice infused with human cells and treated with anti-CD45RC mAbs. The anti-human CD45RC mAbs showed a favorable safety profile because it did not abolish human memory antiviral immune responses, nor trigger cytokine release in in vitro assays. Altogether, our results show the potential of a prophylactic treatment with anti-human CD45RC mAbs in combination with rapamycin as a new therapy to treat aGVHD without abolishing the antitumor effect.
Collapse
Affiliation(s)
- Laetitia Boucault
- Centre de Recherche en Transplantation et Immunologie, Institut de Transplantation Urologie-Néphrologie (ITUN), Unité Mixte de Recherche (UMR) 1064, INSERM/Université de Nantes, Nantes, France
- Immunotherapy, Graft, Oncology (IGO), LabEx, Nantes, France
| | - Maria-Dolores Lopez Robles
- Centre de Recherche en Transplantation et Immunologie, Institut de Transplantation Urologie-Néphrologie (ITUN), Unité Mixte de Recherche (UMR) 1064, INSERM/Université de Nantes, Nantes, France
- Immunotherapy, Graft, Oncology (IGO), LabEx, Nantes, France
| | - Allan Thiolat
- Université Paris-Est Créteil, INSERM, Institut Mondor de Recherche Biomédicale (IMRB), Creteil, France
| | - Séverine Bézie
- Centre de Recherche en Transplantation et Immunologie, Institut de Transplantation Urologie-Néphrologie (ITUN), Unité Mixte de Recherche (UMR) 1064, INSERM/Université de Nantes, Nantes, France
- Immunotherapy, Graft, Oncology (IGO), LabEx, Nantes, France
| | - Michael Schmueck-Henneresse
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin/Berlin Institute of Health (BIH), Berlin, Germany
| | - Cécile Braudeau
- Centre de Recherche en Transplantation et Immunologie, Institut de Transplantation Urologie-Néphrologie (ITUN), Unité Mixte de Recherche (UMR) 1064, INSERM/Université de Nantes, Nantes, France
- Immunotherapy, Graft, Oncology (IGO), LabEx, Nantes, France
- Laboratoire d'Immunologie, Centre d'Immunomonitorage Nantes Atlantique (CIMNA), Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - Nadège Vimond
- Centre de Recherche en Transplantation et Immunologie, Institut de Transplantation Urologie-Néphrologie (ITUN), Unité Mixte de Recherche (UMR) 1064, INSERM/Université de Nantes, Nantes, France
- Immunotherapy, Graft, Oncology (IGO), LabEx, Nantes, France
| | - Antoine Freuchet
- Centre de Recherche en Transplantation et Immunologie, Institut de Transplantation Urologie-Néphrologie (ITUN), Unité Mixte de Recherche (UMR) 1064, INSERM/Université de Nantes, Nantes, France
- Immunotherapy, Graft, Oncology (IGO), LabEx, Nantes, France
| | - Elodie Autrusseau
- Centre de Recherche en Transplantation et Immunologie, Institut de Transplantation Urologie-Néphrologie (ITUN), Unité Mixte de Recherche (UMR) 1064, INSERM/Université de Nantes, Nantes, France
- Immunotherapy, Graft, Oncology (IGO), LabEx, Nantes, France
| | - Frédéric Charlotte
- Service d'Anatomo-Pathologie, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Rabah Redjoul
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Service d'Hematologie Clinique, Creteil, France
| | - Florence Beckerich
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Service d'Hematologie Clinique, Creteil, France
| | - Mathieu Leclerc
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Service d'Hematologie Clinique, Creteil, France
- Université Paris-Est Créteil, INSERM, IMRB, AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Service d'Hematologie Clinique, Creteil, France
| | - Eliane Piaggio
- Translational Research Department, Institut Curie Research Center, Paris Sciences & Lettres (PSL) Research University, U932, INSERM, Paris, France; and
| | - Regis Josien
- Centre de Recherche en Transplantation et Immunologie, Institut de Transplantation Urologie-Néphrologie (ITUN), Unité Mixte de Recherche (UMR) 1064, INSERM/Université de Nantes, Nantes, France
- Immunotherapy, Graft, Oncology (IGO), LabEx, Nantes, France
- Laboratoire d'Immunologie, Centre d'Immunomonitorage Nantes Atlantique (CIMNA), Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - Hans-Dieter Volk
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin/Berlin Institute of Health (BIH), Berlin, Germany
| | - Sébastien Maury
- Université Paris-Est Créteil, INSERM, IMRB, AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Service d'Hematologie Clinique, Creteil, France
| | - José L Cohen
- Université Paris-Est Créteil, INSERM, IMRB, AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d'Investigation Clinique Biotherapie, Creteil, France
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie, Institut de Transplantation Urologie-Néphrologie (ITUN), Unité Mixte de Recherche (UMR) 1064, INSERM/Université de Nantes, Nantes, France
- Immunotherapy, Graft, Oncology (IGO), LabEx, Nantes, France
| | - Carole Guillonneau
- Centre de Recherche en Transplantation et Immunologie, Institut de Transplantation Urologie-Néphrologie (ITUN), Unité Mixte de Recherche (UMR) 1064, INSERM/Université de Nantes, Nantes, France
- Immunotherapy, Graft, Oncology (IGO), LabEx, Nantes, France
| |
Collapse
|
7
|
Lemerle M, Garnier AS, Planchais M, Brilland B, Subra JF, Blanchet O, Blanchard S, Croue A, Duveau A, Augusto JF. CD45RC Expression of Circulating CD8 + T Cells Predicts Acute Allograft Rejection: A Cohort Study of 128 Kidney Transplant Patients. J Clin Med 2019; 8:jcm8081147. [PMID: 31374966 PMCID: PMC6723395 DOI: 10.3390/jcm8081147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Predictive biomarkers of acute rejection (AR) are lacking. Pre-transplant expression of CD45RC on blood CD8+ T cells has been shown to predict AR in kidney transplant (KT) patients. The objective of the present study was to study CD45RC expression in a large cohort of KT recipients exposed to modern immunosuppressive regimens. CD45RC expression on T cells was analyzed in 128 KT patients, where 31 patients developed AR, of which 24 were found to be T-cell mediated (TCMR). Pre-transplant CD4+ and CD8+ CR45RChigh T cell proportions were significantly higher in patients with AR. The frequency of CD45RChigh T cells was significantly associated with age at transplantation but was not significantly different according to gender, history of transplantation, pre-transplant immunization, and de novo donor specific anti-Human Leucocyte Antigen (HLA) antibody. Survival-free AR was significantly better in patients with CD8+ CD45RChigh T cells below 58.4% (p = 0.0005), but not different according to CD4+ T cells (p = 0.073). According to multivariate analysis, CD8+ CD45RChigh T cells above 58.4% increased the risk of AR 4-fold (HR 3.96, p = 0.003). Thus, pre-transplant CD45RC expression on CD8+ T cells predicted AR, mainly TCMR, in KT patients under modern immunosuppressive therapies. We suggest that CD45RC expression should be evaluated in a prospective study to validate its usefulness to quantify the pre-transplant risk of AR.
Collapse
Affiliation(s)
- Marie Lemerle
- Service de Néphrologie-Dialyse-Transplantation, CHU Angers, 49000 Angers, France
| | - Anne-Sophie Garnier
- Service de Néphrologie-Dialyse-Transplantation, CHU Angers, 49000 Angers, France
| | - Martin Planchais
- Service de Néphrologie-Dialyse-Transplantation, CHU Angers, 49000 Angers, France
| | - Benoit Brilland
- Service de Néphrologie-Dialyse-Transplantation, CHU Angers, 49000 Angers, France
- Service d'Immunologie et d'Allergologie, CHU Angers, 49000 Angers, France
| | - Jean-François Subra
- Service de Néphrologie-Dialyse-Transplantation, CHU Angers, 49000 Angers, France
- CRCINA, INSERM, Université de Nantes, Université d'Angers, 49100 Angers, France
| | - Odile Blanchet
- Centre de ressources biologiques, BB-0033-00038, Université d'Angers, CHU d'Angers, 49000 Angers, France
| | - Simon Blanchard
- CRCINA, INSERM, Université de Nantes, Université d'Angers, 49100 Angers, France
| | - Anne Croue
- Département de Pathologie Cellulaire et Tissulaire, CHU d'Angers, 49000 Angers, France
| | - Agnès Duveau
- Service de Néphrologie-Dialyse-Transplantation, CHU Angers, 49000 Angers, France
| | - Jean-François Augusto
- Service de Néphrologie-Dialyse-Transplantation, CHU Angers, 49000 Angers, France.
- CRCINA, INSERM, Université de Nantes, Université d'Angers, 49100 Angers, France.
| |
Collapse
|