1
|
Ungvari Z, Ungvari A, Fekete M, Kiss C, Győrffy B. Senescence-related genes as prognostic indicators in breast cancer survival. GeroScience 2024:10.1007/s11357-024-01384-w. [PMID: 39432147 DOI: 10.1007/s11357-024-01384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Breast cancer is a leading cause of cancer-related mortality among women worldwide, particularly affecting those in their later years. As the incidence of breast cancer increases with age, understanding the biological mechanisms that link aging and cancer becomes crucial. Cellular senescence, a hallmark of aging, plays a dual role in cancer by inhibiting tumorigenesis while also contributing to tumor progression through the senescence-associated secretory phenotype (SASP). This study aims to investigate the prognostic significance of senescence-related genes in breast cancer. We utilized the SenMayo gene list, a comprehensive set of senescence-related genes, to analyze gene expression data from a large cohort of breast cancer samples. The data was sourced from the Kaplan-Meier plotter, an integrated database that compiles gene expression information from multiple independent cohorts. Cox proportional hazards regression and false discovery rate (FDR) corrections were employed to evaluate the correlation between gene expression and survival outcomes, aiming to establish a prognostic signature. Our findings demonstrate that higher expression levels of senescence-related genes are significantly associated with improved survival, while lower expression levels correlate with shorter survival outcomes. These results suggest that senescence-related pathways play a protective role in breast cancer, potentially serving as valuable prognostic indicators. The identification of a prognostic signature based on senescence-related genes underscores the importance of cellular senescence in breast cancer progression and survival. Our study highlights the potential of senescence-related biomarkers in enhancing patient stratification and informing treatment strategies, contributing to the growing body of literature on the intersection of aging and cancer.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Anna Ungvari
- Healthy Aging Program, Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
| | - Monika Fekete
- Healthy Aging Program, Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
| | - Csaba Kiss
- Department of Bioinformatics, Semmelweis University, 1094, Budapest, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1094, Budapest, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, 7624, Pecs, Hungary
| |
Collapse
|
2
|
Ma L, Yu J, Fu Y, He X, Ge S, Jia R, Zhuang A, Yang Z, Fan X. The dual role of cellular senescence in human tumor progression and therapy. MedComm (Beijing) 2024; 5:e695. [PMID: 39161800 PMCID: PMC11331035 DOI: 10.1002/mco2.695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
Cellular senescence, one of the hallmarks of cancer, is characterized by cell cycle arrest and the loss of most normal cellular functions while acquiring a hypersecretory, proinflammatory phenotype. The function of senescent cells in cancer cells varies depending on the cellular conditions. Before the occurrence of cancer, senescent cells act as a barrier to prevent its development. But once cancer has occurred, senescent cells play a procancer role. However, few of the current studies have adequately explained the diversity of cellular senescence across cancers. Herein, we concluded the latest intrinsic mechanisms of cellular senescence in detail and emphasized the senescence-associated secretory phenotype as a key contributor to heterogeneity of senescent cells in tumor. We also discussed five kinds of inducers of cellular senescence and the advancement of senolytics in cancer, which are drugs that tend to clear senescent cells. Finally, we summarized the various effects of senescent cells in different cancers and manifested that their functions may be diametrically opposed under different circumstances. In short, this paper contributes to the understanding of the diversity of cellular senescence in cancers and provides novel insight for tumor therapy.
Collapse
Affiliation(s)
- Liang Ma
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Jie Yu
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Yidian Fu
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xiaoyu He
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Shengfang Ge
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Renbing Jia
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Ai Zhuang
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Zhi Yang
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xianqun Fan
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| |
Collapse
|
3
|
Zhang W, Zhang K, Shi J, Qiu H, Kan C, Ma Y, Hou N, Han F, Sun X. The impact of the senescent microenvironment on tumorigenesis: Insights for cancer therapy. Aging Cell 2024; 23:e14182. [PMID: 38650467 PMCID: PMC11113271 DOI: 10.1111/acel.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
The growing global burden of cancer, especially among people aged 60 years and over, has become a key public health issue. This trend suggests the need for a deeper understanding of the various cancer types in order to develop universally effective treatments. A prospective area of research involves elucidating the interplay between the senescent microenvironment and tumor genesis. Currently, most oncology research focuses on adulthood and tends to ignore the potential role of senescent individuals on tumor progression. Senescent cells produce a senescence-associated secretory phenotype (SASP) that has a dual role in the tumor microenvironment (TME). While SASP components can remodel the TME and thus hinder tumor cell proliferation, they can also promote tumorigenesis and progression via pro-inflammatory and pro-proliferative mechanisms. To address this gap, our review seeks to investigate the influence of senescent microenvironment changes on tumor development and their potential implications for cancer therapies.
Collapse
Affiliation(s)
- Wenqiang Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
- Department of PathologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Yujie Ma
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Fang Han
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
- Department of PathologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| |
Collapse
|
4
|
Niklander SE, Aránguiz P, Faunes F, Martínez-Flores R. Aging and oral squamous cell carcinoma development: the role of cellular senescence. FRONTIERS IN ORAL HEALTH 2023; 4:1285276. [PMID: 37904749 PMCID: PMC10613501 DOI: 10.3389/froh.2023.1285276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023] Open
Abstract
The gradual accumulation and inadequate renewal of senescent cells over time drive organismal aging. Senescent cells undergo altered gene expression and release inflammatory mediators collectively termed the senescence-associated secretory phenotype (SASP), which significantly contributes to a spectrum of age-related disorders, including cancer. In the context of carcinogenesis, the SASP produced by senescent cells has been implicated in the promotion of epithelial cancers, including oral squamous cell carcinoma (OSCC), the most common form of oral cancer. Senescent cells within the tumor microenvironment release factors that amplify the growth and invasiveness of neighboring cancer cells. Senotherapeutics, including senolytics and senomorphics, emerge as promising modalities to target senescent cells and their associated inflammatory factors, thereby opening novel avenues for augmenting the efficacy of cancer treatments. Here, we review the general aspects of cellular senescence, focusing on the relation between senescence-related inflammation with cancer development. We also analyze the available evidence linking cellular senescence with OSCC, highlighting possible clinical applications.
Collapse
Affiliation(s)
- Sven Eric Niklander
- Unit of Oral Pathology and Oral Medicine, Faculty of Dentistry, Universidad Andres Bello, Viña del Mar, Chile
| | - Pablo Aránguiz
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Viña del Mar, Chile
| | - Fernando Faunes
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Viña del Mar, Chile
| | - René Martínez-Flores
- Unit of Oral Pathology and Oral Medicine, Faculty of Dentistry, Universidad Andres Bello, Viña del Mar, Chile
| |
Collapse
|
5
|
Al Shboul S, El-Sadoni M, Alhesa A, Abu Shahin N, Abuquteish D, Abu Al Karsaneh O, Alsharaiah E, Ismail MA, Tyutyunyk-Massey L, Alotaibi MR, Neely V, Harada H, Saleh T. NOXA expression is downregulated in human breast cancer undergoing incomplete pathological response and senescence after neoadjuvant chemotherapy. Sci Rep 2023; 13:15903. [PMID: 37741850 PMCID: PMC10517932 DOI: 10.1038/s41598-023-42994-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023] Open
Abstract
Neoadjuvant chemotherapy (NAC) is a frequently utilized approach to treat locally advanced breast cancer, but, unfortunately, a subset of tumors fails to undergo complete pathological response. Apoptosis and therapy-induced senescence (TIS) are both cell stress mechanisms but their exact role in mediating the pathological response to NAC is not fully elucidated. We investigated the change in expression of PAMIP1, the gene encoding for the pro-apoptotic protein, NOXA, following NAC in two breast cancer gene datasets, and the change in NOXA protein expression in response to NAC in 55 matched patient samples (pre- and post-NAC). PAMIP1 expression significantly declined in post-NAC in the two sets, and in our cohort, 75% of the samples exhibited a downregulation in NOXA post-NAC. Matched samples that showed a decline in NOXA post-NAC were examined for TIS based on a signature of downregulated expression of Lamin-B1 and Ki-67 and increased p16INK4a, and the majority exhibited a decrease in Lamin B1 (66%) and Ki-67 (80%), and increased p16INK4a (49%). Since our cohort consisted of patients that did not develop complete pathological response, such findings have clinical implications on the role of TIS and NOXA downregulation in mediating suboptimal responses to the currently established NAC.
Collapse
Affiliation(s)
- Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Mohammed El-Sadoni
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Ahmad Alhesa
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Nisreen Abu Shahin
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Dua Abuquteish
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Ola Abu Al Karsaneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Elham Alsharaiah
- Department of Pathology, King Hussein Medical Center, Royal Medical Service, Amman, 11942, Jordan
| | | | | | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Victoria Neely
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Hisashi Harada
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| |
Collapse
|
6
|
Yang K, Li X, Xie K. Senescence program and its reprogramming in pancreatic premalignancy. Cell Death Dis 2023; 14:528. [PMID: 37591827 PMCID: PMC10435572 DOI: 10.1038/s41419-023-06040-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Tumor is a representative of cell immortalization, while senescence irreversibly arrests cell proliferation. Although tumorigenesis and senescence seem contrary to each other, they have similar mechanisms in many aspects. Pancreatic ductal adenocarcinoma (PDA) is highly lethal disease, which occurs and progresses through a multi-step process. Senescence is prevalent in pancreatic premalignancy, as manifested by decreased cell proliferation and increased clearance of pre-malignant cells by immune system. However, the senescent microenvironment cooperates with multiple factors and significantly contributes to tumorigenesis. Evidently, PDA progression requires to evade the effects of cellular senescence. This review will focus on dual roles that senescence plays in PDA development and progression, the signaling effectors that critically regulate senescence in PDA, the identification and reactivation of molecular targets that control senescence program for the treatment of PDA.
Collapse
Affiliation(s)
- Kailing Yang
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Xiaojia Li
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China.
- The South China University of Technology Comprehensive Cancer Center, Guangdong, China.
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangdong, China.
| |
Collapse
|
7
|
Domen A, Deben C, Verswyvel J, Flieswasser T, Prenen H, Peeters M, Lardon F, Wouters A. Cellular senescence in cancer: clinical detection and prognostic implications. J Exp Clin Cancer Res 2022; 41:360. [PMID: 36575462 PMCID: PMC9793681 DOI: 10.1186/s13046-022-02555-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/30/2022] [Indexed: 12/28/2022] Open
Abstract
Cellular senescence is a state of stable cell-cycle arrest with secretory features in response to cellular stress. Historically, it has been considered as an endogenous evolutionary homeostatic mechanism to eliminate damaged cells, including damaged cells which are at risk of malignant transformation, thereby protecting against cancer. However, accumulation of senescent cells can cause long-term detrimental effects, mainly through the senescence-associated secretory phenotype, and paradoxically contribute to age-related diseases including cancer. Besides its role as tumor suppressor, cellular senescence is increasingly being recognized as an in vivo response in cancer patients to various anticancer therapies. Its role in cancer is ambiguous and even controversial, and senescence has recently been promoted as an emerging hallmark of cancer because of its hallmark-promoting capabilities. In addition, the prognostic implications of cellular senescence have been underappreciated due to the challenging detection and sparse in and ex vivo evidence of cellular senescence in cancer patients, which is only now catching up. In this review, we highlight the approaches and current challenges of in and ex vivo detection of cellular senescence in cancer patients, and we discuss the prognostic implications of cellular senescence based on in and ex vivo evidence in cancer patients.
Collapse
Affiliation(s)
- Andreas Domen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium.
- Department of Oncology, Antwerp University Hospital (UZA), 2650, Edegem (Antwerp), Belgium.
| | - Christophe Deben
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium
| | - Jasper Verswyvel
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium
| | - Tal Flieswasser
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium
| | - Hans Prenen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium
- Department of Oncology, Antwerp University Hospital (UZA), 2650, Edegem (Antwerp), Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium
- Department of Oncology, Antwerp University Hospital (UZA), 2650, Edegem (Antwerp), Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium
| |
Collapse
|
8
|
Revisiting Epithelial Carcinogenesis. Int J Mol Sci 2022; 23:ijms23137437. [PMID: 35806442 PMCID: PMC9267463 DOI: 10.3390/ijms23137437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
The origin of cancer remains one of the most important enigmas in modern biology. This paper presents a hypothesis for the origin of carcinomas in which cellular aging and inflammation enable the recovery of cellular plasticity, which may ultimately result in cancer. The hypothesis describes carcinogenesis as the result of the dedifferentiation undergone by epithelial cells in hyperplasia due to replicative senescence towards a mesenchymal cell state with potentially cancerous behavior. In support of this hypothesis, the molecular, cellular, and histopathological evidence was critically reviewed and reinterpreted when necessary to postulate a plausible generic series of mechanisms for the origin and progression of carcinomas. In addition, the implications of this theoretical framework for the current strategies of cancer treatment are discussed considering recent evidence of the molecular events underlying the epigenetic switches involved in the resistance of breast carcinomas. The hypothesis also proposes an epigenetic landscape for their progression and a potential mechanism for restraining the degree of dedifferentiation and malignant behavior. In addition, the manuscript revisits the gradual degeneration of the nonalcoholic fatty liver disease to propose an integrative generalized mechanistic explanation for the involution and carcinogenesis of tissues associated with aging. The presented hypothesis might serve to understand and structure new findings into a more encompassing view of the genesis of degenerative diseases and may inspire novel approaches for their study and therapy.
Collapse
|
9
|
Saleh T, Carpenter VJ. Potential Use of Senolytics for Pharmacological Targeting of Precancerous Lesions. Mol Pharmacol 2021; 100:580-587. [PMID: 34544896 DOI: 10.1124/molpharm.121.000361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/10/2021] [Indexed: 01/10/2023] Open
Abstract
Senescence is a cell state that contributes to several homeostatic and pathologic processes. In addition to being induced in somatic cells in response to replicative exhaustion (replicative senescence) as part of organismal aging, senescence can also be triggered prematurely by oncogene hyperactivation or tumor suppressor dysfunction [oncogene-induced senescence (OIS)]. Consequently, senescent cells comprise a major component of precancerous lesions of skin, oral mucosa, nasopharynx, prostate, gut, and lung. Unfortunately, invasive (or minimally invasive) interventions are currently the only available approach employed to eradicate premalignant lesions that carry the potential for cancer progression. Senolytics are a newly emerging drug class capable of selectively eliminating senescent cells. Although senolytics have been successfully demonstrated to mitigate a myriad of aging-related pathologies and to cull senescent cancer cells, there is a paucity of evidence for the potential use of senolytics as a novel approach to eliminate oncogene-induced senescent cells. This Emerging Concepts commentary will 1) summarize evidence in established models of OIS including B-Raf-induced nevi, transgenic lung cancer, and pancreatic adenocarcinoma models, as well as evidence from clinical precancerous lesions; 2) suggest that OIS is targetable; and 3) propose the utilization of senolytic agents as a revolutionary means to interfere with the ability of senescent premalignant cells to progress to cancer in vitro and in vivo If proven to be effective, senolytics will represent an emerging tool to pharmacologically treat precancerous lesions. SIGNIFICANCE STATEMENT: The treatment of premalignant lesions is largely based on the utilization of invasive (or minimally invasive) measures. Oncogene-induced senescence (OIS) is one form of senescence that occurs in response to oncogene overexpression in somatic cells and is present in precancerous lesions. Although the contribution of OIS to disease progression is undetermined, recent evidence suggests that senescent cells are permissive for malignant transformation. Accordingly, the pharmacological targeting of oncogene-induced senescent cells could potentially provide a novel, less invasive, means for the treatment of premalignant disease.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan (T.S.); Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (V.J.C.)
| | - Valerie J Carpenter
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan (T.S.); Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (V.J.C.)
| |
Collapse
|
10
|
Prasanna PG, Citrin DE, Hildesheim J, Ahmed MM, Venkatachalam S, Riscuta G, Xi D, Zheng G, van Deursen J, Goronzy J, Kron SJ, Anscher MS, Sharpless NE, Campisi J, Brown SL, Niedernhofer LJ, O’Loghlen A, Georgakilas AG, Paris F, Gius D, Gewirtz DA, Schmitt CA, Abazeed ME, Kirkland JL, Richmond A, Romesser PB, Lowe SW, Gil J, Mendonca MS, Burma S, Zhou D, Coleman CN. Therapy-Induced Senescence: Opportunities to Improve Anticancer Therapy. J Natl Cancer Inst 2021; 113:1285-1298. [PMID: 33792717 PMCID: PMC8486333 DOI: 10.1093/jnci/djab064] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/08/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
Cellular senescence is an essential tumor suppressive mechanism that prevents the propagation of oncogenically activated, genetically unstable, and/or damaged cells. Induction of tumor cell senescence is also one of the underlying mechanisms by which cancer therapies exert antitumor activity. However, an increasing body of evidence from preclinical studies demonstrates that radiation and chemotherapy cause accumulation of senescent cells (SnCs) both in tumor and normal tissue. SnCs in tumors can, paradoxically, promote tumor relapse, metastasis, and resistance to therapy, in part, through expression of the senescence-associated secretory phenotype. In addition, SnCs in normal tissue can contribute to certain radiation- and chemotherapy-induced side effects. Because of its multiple roles, cellular senescence could serve as an important target in the fight against cancer. This commentary provides a summary of the discussion at the National Cancer Institute Workshop on Radiation, Senescence, and Cancer (August 10-11, 2020, National Cancer Institute, Bethesda, MD) regarding the current status of senescence research, heterogeneity of therapy-induced senescence, current status of senotherapeutics and molecular biomarkers, a concept of "one-two punch" cancer therapy (consisting of therapeutics to induce tumor cell senescence followed by selective clearance of SnCs), and its integration with personalized adaptive tumor therapy. It also identifies key knowledge gaps and outlines future directions in this emerging field to improve treatment outcomes for cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dan Xi
- National Cancer Institute, NIH, Bethesda, MD, USA
| | - Guangrong Zheng
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | | | - Jorg Goronzy
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | | | | | | | | | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ana O’Loghlen
- Epigenetics & Cellular Senescence Group; Blizard Institute; Barts and The London School of Medicine and Dentistry; Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780, Athens, Greece
| | - Francois Paris
- Universite de Nantes, INSERM, CNRS, CRCINA, Nantes, France
| | - David Gius
- University of Texas Health Sciences Center, San Antonio, San Antonio, TX, USA
| | | | | | - Mohamed E Abazeed
- Johannes Kepler University, 4020, Linz, Austria
- Department of Radiation Oncology, Northwestern, Chicago, IL, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Ann Richmond
- Department of Pharmacology and Department of Veterans Affairs, Vanderbilt University, Nashville, TN, USA
| | - Paul B Romesser
- Translational Research Division, Department of Radiation Oncology and Early Drug Development Service, Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, and Howard Hughes Medical Institute, New York, NY, USA
| | - Jesus Gil
- MRC London Institute of Medical Sciences (LMS), and Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 ONN, UK
| | - Marc S Mendonca
- Departments of Radiation Oncology & Medical and Molecular Genetics, Indiana University School of Medicine, IUPUI, Indianapolis, IN 46202, USA
| | - Sandeep Burma
- Departments of Neurosurgery and Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Daohong Zhou
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
11
|
Jovanovic DV, Mitrovic SL, Milosavljevic MZ, Ilic MB, Stankovic VD, Vuletic MS, Dimitrijevic Stojanovic MN, Milosev DB, Azanjac GL, Nedeljkovic VM, Radovanovic D. Breast Cancer and p16: Role in Proliferation, Malignant Transformation and Progression. Healthcare (Basel) 2021; 9:healthcare9091240. [PMID: 34575014 PMCID: PMC8468846 DOI: 10.3390/healthcare9091240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
The definition of new molecular biomarkers could provide a more reliable approach in predicting the prognosis of invasive breast cancers (IBC). The aim of this study is to analyze the expression of p16 protein in IBC, as well as its participation in malignant transformation. The study included 147 patients diagnosed with IBC. The presence of non-invasive lesions (NIL) was noted in each IBC and surrounding tissue. p16 expression was determined by reading the percentage of nuclear and/or cytoplasmic expression in epithelial cells of IBC and NIL, but also in stromal fibroblasts. Results showed that expression of p16 increases with the progression of cytological changes in the epithelium; it is significantly higher in IBC compared to NIL (p < 0.0005). Cytoplasmic p16 expression is more prevalent in IBC (76.6%), as opposed to nuclear staining, which is characteristic of most NIL (21.1%). There is a difference in p16 expression between different molecular subtypes of IBC (p = 0.025). In the group of p16 positive tumors, pronounced mononuclear infiltrates (p = 0.047) and increased expression of p16 in stromal fibroblasts (p = 0.044) were noted. In conclusion, p16 protein plays an important role in proliferation, malignant transformation, as well as in progression from NIL to IBC.
Collapse
Affiliation(s)
- Dalibor V. Jovanovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.V.J.); (M.B.I.); (V.D.S.); (M.S.V.); (M.N.D.S.)
| | - Slobodanka L. Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.V.J.); (M.B.I.); (V.D.S.); (M.S.V.); (M.N.D.S.)
- Correspondence: ; Tel.: +381-658080877
| | - Milos Z. Milosavljevic
- Department of Pathology, University Medical Centre Kragujevac, 34000 Kragujevac, Serbia; (M.Z.M.); (D.B.M.)
| | - Milena B. Ilic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.V.J.); (M.B.I.); (V.D.S.); (M.S.V.); (M.N.D.S.)
| | - Vesna D. Stankovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.V.J.); (M.B.I.); (V.D.S.); (M.S.V.); (M.N.D.S.)
| | - Milena S. Vuletic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.V.J.); (M.B.I.); (V.D.S.); (M.S.V.); (M.N.D.S.)
| | - Milica N. Dimitrijevic Stojanovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.V.J.); (M.B.I.); (V.D.S.); (M.S.V.); (M.N.D.S.)
| | - Danijela B. Milosev
- Department of Pathology, University Medical Centre Kragujevac, 34000 Kragujevac, Serbia; (M.Z.M.); (D.B.M.)
| | - Goran L. Azanjac
- Department of Plastic Surgery, University Medical Centre Kragujevac, 34000 Kragujevac, Serbia;
| | - Vladica M. Nedeljkovic
- Institute of Pathology, Faculty of Medicine, University in Pristina—Kosovska Mitrovica,38220 Kosovska Mitrovica, Serbia;
| | - Dragce Radovanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| |
Collapse
|
12
|
Park MH, Choi JE, Kim JR, Bae YK. Immunohistochemical Expressions of Senescence-Associated Secretory Phenotype and Its Association With Immune Microenvironments and Clinicopathological Factors in Invasive Breast Cancer. Pathol Oncol Res 2021; 27:1609795. [PMID: 34267603 PMCID: PMC8276694 DOI: 10.3389/pore.2021.1609795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/16/2021] [Indexed: 01/05/2023]
Abstract
This study was undertaken to investigate immunohistochemical expression of the senescence-associated secretory phenotype (SASP) in invasive breast cancer (IBC) tissues and to determine relationships between SASP positivity and tumor microenvironments and the clinicopathological characteristics of IBC. Immunohistochemistry for senescence markers, that is, high mobility group box-1 (HMGB1), p16, p15, and decoy receptor 2 (DCR2), was performed in tissue microarrays of 1140 IBC samples. Cases positive for at least one of these four markers were considered SASP-positive. Relations between SASP and tumor characteristics, including immune microenvironments (stromal tumor-infiltrating lymphocytes [sTILs] density and numbers of intraepithelial CD103-positive [iCD103 + ] lymphocytes) and clinical outcomes were retrospectively evaluated. HMGB1, p16, p15, or DCR2 was positive in 6.7%, 26.6%, 21.1%, and 26.5%, respectively, of the 1,140 cases. Six hundred and five (53.1%) cases were SASP positive, and SASP positivity was significantly associated with histologic grade 3, high-sTIL and iCD103 + lymphocyte counts, absence of ER or PR, and a high Ki-67 index. Although SASP did not predict breast cancer-specific survival (BCSS) or disease-free survival (DFS) in the entire cohort, SASP positivity in luminal A IBC was associated with poor BCSS and DFS. However, patients with SASP-positive TNBC showed better survival than those with SASP-negative TNBC. In multivariate analysis, SASP positivity was an independent prognostic factor in both luminal A IBC and TNBC, although the effect on prognosis was the opposite. In conclusion, SASP would be involved in the modulation of immune microenvironments and tumor progression in IBC, and its prognostic significance depends on molecular subtype.
Collapse
Affiliation(s)
- Min Hui Park
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jung Eun Choi
- Department of Surgery, Division of Breast Surgery, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Young Kyung Bae
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea
| |
Collapse
|
13
|
Chen H, Liu O, Chen S, Zhou Y. Aging and Mesenchymal Stem Cells: Therapeutic Opportunities and Challenges in the Older Group. Gerontology 2021; 68:339-352. [PMID: 34161948 DOI: 10.1159/000516668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/07/2021] [Indexed: 11/19/2022] Open
Abstract
With aging, a portion of cells, including mesenchymal stem cells (MSCs), become senescent, and these senescent cells accumulate and promote various age-related diseases. Therefore, the older age group has become a major population for MSC therapy, which is aimed at improving tissue regeneration and function of the aged body. However, the application of MSC therapy is often unsatisfying in the aged group. One reasonable conjecture for this correlation is that aging microenvironment reduces the number and function of MSCs. Cellular senescence also plays an important role in MSC function impairment. Thus, it is necessary to explore the relationship between senescence and MSCs for improving the application of MSCs in the elderly. Here, we present the influence of aging on MSCs and the characteristics and functional changes of senescent MSCs. Furthermore, current therapeutic strategies for improving MSC therapy in the elderly group are also discussed.
Collapse
Affiliation(s)
- Huan Chen
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, and Xiangya School of Stomatology, Central South University, Changsha, China
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, and Xiangya School of Stomatology, Central South University, Changsha, China
| | - Sijia Chen
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, and Xiangya School of Stomatology, Central South University, Changsha, China
| | - Yueying Zhou
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, and Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
14
|
Patel NH, Sohal SS, Manjili MH, Harrell JC, Gewirtz DA. The Roles of Autophagy and Senescence in the Tumor Cell Response to Radiation. Radiat Res 2020; 194:103-115. [PMID: 32845995 PMCID: PMC7482104 DOI: 10.1667/rade-20-00009] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/15/2020] [Indexed: 01/10/2023]
Abstract
Radiation is a critical pillar in cancer therapeutics, exerting its anti-tumor DNA-damaging effects through various direct and indirect mechanisms. Radiation has served as an effective mode of treatment for a number of cancer types, providing both curative and palliative treatment; however, resistance to therapy persists as a fundamental limitation. While cancer cell death is the ideal outcome of any anti-tumor treatment, radiation induces several responses, including apoptotic cell death, mitotic catastrophe, autophagy and senescence, where autophagy and senescence may promote cell survival. In most cases, autophagy, a conventionally cytoprotective mechanism, is a "first" responder to damage incurred from chemotherapy and radiation treatment. The paradigm developed on the premise that autophagy is cytoprotective in nature has provided the rationale for current clinical trials designed with the goal of radiosensitizing cancer cells through the use of autophagy inhibitors; however, these have failed to produce consistent results. Delving further into pre-clinical studies, autophagy has actually been shown to take diverse, sometimes opposing, forms, such as acting in a cytotoxic or nonprotective fashion, which may be partially responsible for the inconsistency of clinical outcomes. Furthermore, autophagy can have both pro- and anti-tumorigenic effects, while also having an important immune modulatory function. Senescence often occurs in tandem with autophagy, which is also the case with radiation. Radiation-induced senescence is frequently followed by a phase of proliferative recovery in a subset of cells and has been proposed as a tumor dormancy model, which can contribute to resistance to therapy and possibly also disease recurrence. Senescence induction is often accompanied by a unique secretory phenotype that can either promote or suppress immune functions, depending on the expression profile of cytokines and chemokines. Novel therapeutics selectively cytotoxic to senescent cells (senolytics) may prove to prolong remission by delaying disease recurrence in patients. Accurate assessment of primary responses to radiation may provide potential targets that can be manipulated for therapeutic benefit to sensitize cancer cells to radiotherapy, while sparing normal tissue.
Collapse
Affiliation(s)
- Nipa H. Patel
- Departments of Pharmacology and Toxicology, Richmond, Virginia 23298
| | - Sahib S. Sohal
- Departments of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Masoud H Manjili
- Departments of Microbiology and Immunology, Massey Cancer Center, Richmond, Virginia 23298
| | - J. Chuck Harrell
- Departments of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - David A. Gewirtz
- Departments of Pharmacology and Toxicology, Richmond, Virginia 23298
| |
Collapse
|
15
|
Wyld L, Bellantuono I, Tchkonia T, Morgan J, Turner O, Foss F, George J, Danson S, Kirkland JL. Senescence and Cancer: A Review of Clinical Implications of Senescence and Senotherapies. Cancers (Basel) 2020; 12:cancers12082134. [PMID: 32752135 PMCID: PMC7464619 DOI: 10.3390/cancers12082134] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Cellular senescence is a key component of human aging that can be induced by a range of stimuli, including DNA damage, cellular stress, telomere shortening, and the activation of oncogenes. Senescence is generally regarded as a tumour suppressive process, both by preventing cancer cell proliferation and suppressing malignant progression from pre-malignant to malignant disease. It may also be a key effector mechanism of many types of anticancer therapies, such as chemotherapy, radiotherapy, and endocrine therapies, both directly and via bioactive molecules released by senescent cells that may stimulate an immune response. However, senescence may contribute to reduced patient resilience to cancer therapies and may provide a pathway for disease recurrence after cancer therapy. A new group of drugs, senotherapies, (drugs which interact with senescent cells to interfere with their pro-aging impacts by either selectively destroying senescent cells (senolytic drugs) or inhibiting their function (senostatic drugs)) are under active investigation to determine whether they can enhance the efficacy of cancer therapies and improve resilience to cancer treatments. Senolytic drugs include quercetin, navitoclax, and fisetin and preclinical and early phase clinical data are emerging of their potential role in cancer treatments, although none are yet in routine use clinically. This article provides a review of these issues.
Collapse
Affiliation(s)
- Lynda Wyld
- The Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (I.B.); (J.M.); (O.T.); (J.G.); (S.D.)
- Correspondence:
| | - Ilaria Bellantuono
- The Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (I.B.); (J.M.); (O.T.); (J.G.); (S.D.)
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jenna Morgan
- The Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (I.B.); (J.M.); (O.T.); (J.G.); (S.D.)
| | - Olivia Turner
- The Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (I.B.); (J.M.); (O.T.); (J.G.); (S.D.)
| | - Fiona Foss
- Department of Pathology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK;
| | - Jayan George
- The Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (I.B.); (J.M.); (O.T.); (J.G.); (S.D.)
| | - Sarah Danson
- The Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (I.B.); (J.M.); (O.T.); (J.G.); (S.D.)
| | - James L. Kirkland
- Departments of Internal Medicine, Geriatric Medicine and Gerontology, The Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
16
|
Kiss Z, Mudryj M, Ghosh PM. Non-circadian aspects of BHLHE40 cellular function in cancer. Genes Cancer 2020; 11:1-19. [PMID: 32577154 PMCID: PMC7289903 DOI: 10.18632/genesandcancer.201] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
While many genes specifically act as oncogenes or tumor suppressors, others are tumor promoters or suppressors in a context-dependent manner. Here we will review the basic-helix-loop-helix (BHLH) protein BHLHE40, (also known as BHLHB2, STRA13, DEC1, or SHARP2) which is overexpressed in gastric, breast, and brain tumors; and downregulated in colorectal, esophageal, pancreatic and lung cancer. As a transcription factor, BHLHE40 is expressed in the nucleus, where it binds to target gene promoters containing the E-box hexanucleotide sequence, but can also be expressed in the cytoplasm, where it stabilizes cyclin E, preventing cyclin E-mediated DNA replication and cell cycle progression. In different organs BHLHE40 regulates different targets; hence may have different impacts on tumorigenesis. BHLHE40 promotes PI3K/Akt/mTOR activation in breast cancer, activating tumor progression, but suppresses STAT1 expression in clear cell carcinoma, triggering tumor suppression. Target specificity likely depends on cooperation with other transcription factors. BHLHE40 is activated in lung and esophageal carcinoma by the tumor suppressor p53 inducing senescence and suppressing tumor growth, but is also activated under hypoxic conditions by HIF-1α in gastric cancer and hepatocellular carcinomas, stimulating tumor progression. Thus, BHLHE40 is a multi-functional protein that mediates the promotion or suppression of cancer in a context dependent manner.
Collapse
Affiliation(s)
- Zsofia Kiss
- VA Northern California Health Care System, Sacramento, CA, USA
- Department of Urology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Maria Mudryj
- VA Northern California Health Care System, Sacramento, CA, USA
- Department of Microbiology and Immunology, University of California, Davis, CA, USA
| | - Paramita M. Ghosh
- VA Northern California Health Care System, Sacramento, CA, USA
- Department of Urology, University of California Davis School of Medicine, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|