1
|
Singh N, Sharma N, Singh P, Pandey M, Ilyas M, Sisodiya L, Choudhury T, Gosain TP, Singh R, Atmakuri K. HupB, a nucleoid-associated protein, is critical for survival of Mycobacterium tuberculosis under host-mediated stresses and for enhanced tolerance to key first-line antibiotics. Front Microbiol 2022; 13:937970. [PMID: 36071978 PMCID: PMC9441915 DOI: 10.3389/fmicb.2022.937970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
To survive and establish its niche, Mycobacterium tuberculosis (Mtb) engages in a steady battle against an array of host defenses and a barrage of antibiotics. Here, we demonstrate that Mtb employs HupB, a nucleoid-associated protein (NAP) as its key player to simultaneously battle and survive in these two stress-inducing fronts. Typically, NAPs are key to bacterial survival under a wide array of environmental or host-mediated stresses. Here, we report that for Mtb to survive under different macrophage-induced assaults including acidic pH, nutrient depletion, oxidative and nitrosative stresses, HupB presence is critical. As expected, the hupB knockout mutant is highly sensitive to these host-mediated stresses. Furthermore, Mtb aptly modulates HupB protein levels to overcome these stresses. We also report that HupB aids Mtb to gain tolerance to high levels of rifampicin (RIF) and isoniazid (INH) exposure. Loss of hupB makes Mtb highly susceptible to even short exposures to reduced amounts of RIF and INH. Overexpressing hupB in Mtb or complementing hupB in the hupB knockout mutant triggers enhanced survival of Mtb under these stresses. We also find that upon loss of hupB, Mtb significantly enhances the permeability of its cell wall by modulating the levels of several surface lipids including phthiocerol dimycocerosates (PDIMs), thus possibly influencing overall susceptibility to host-mediated stresses. Loss of hupB also downregulates efflux pump expression possibly influencing increased susceptibility to INH and RIF. Finally, we find that therapeutic targeting of HupB with SD1, a known small molecule inhibitor, significantly enhances Mtb susceptibility to INH and THP-1 macrophages and significantly reduces MIC to INH. Thus, our data strongly indicate that HupB is a highly promising therapeutic target especially for potential combinatorial shortened therapy with reduced INH and RIF doses.
Collapse
Affiliation(s)
- Niti Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Manipal University, Manipal, Karnataka, India
| | - Nishant Sharma
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Padam Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Manitosh Pandey
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Department of Life Sciences, ITM University, Gwalior, Madhya Pradesh, India
| | - Mohd Ilyas
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Lovely Sisodiya
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tejaswini Choudhury
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Tannu Priya Gosain
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ramandeep Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Krishnamohan Atmakuri
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- *Correspondence: Krishnamohan Atmakuri
| |
Collapse
|
2
|
Comín J, Madacki J, Rabanaque I, Zúñiga-Antón M, Ibarz D, Cebollada A, Viñuelas J, Torres L, Sahagún J, Klopp C, Gonzalo-Asensio J, Brosch R, Iglesias MJ, Samper S. The MtZ Strain: Molecular Characteristics and Outbreak Investigation of the Most Successful Mycobacterium tuberculosis Strain in Aragon Using Whole-Genome Sequencing. Front Cell Infect Microbiol 2022; 12:887134. [PMID: 35685752 PMCID: PMC9173592 DOI: 10.3389/fcimb.2022.887134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Since 2004, a tuberculosis surveillance protocol has been carried out in Aragon, thereby managing to detect all tuberculosis outbreaks that take place in the community. The largest outbreak was caused by a strain named Mycobacterium tuberculosis Zaragoza (MtZ), causing 242 cases as of 2020. The main objective of this work was to analyze this outbreak and the molecular characteristics of this successful strain that could be related to its greater transmission. To do this, we first applied whole-genome sequencing to 57 of the isolates. This revealed two principal transmission clusters and six subclusters arising from them. The MtZ strain belongs to L4.8 and had eight specific single nucleotide polymorphisms (SNPs) in genes considered to be virulence factors [ptpA, mc3D, mc3F, VapB41, pks15 (two SNPs), virS, and VapC50]. Second, a transcriptomic study was carried out to better understand the multiple IS6110 copies present in its genome. This allowed us to observe three effects of IS6110: the disruption of the gene in which the IS6110 is inserted (desA3), the overexpression of a gene (ppe38), and the absence of transcription of genes (cut1:Rv1765c) due to the recombination of two IS6110 copies. Finally, because of the disruption of ppe38 and ppe71 genes by an IS6110, a study of PE_PGRS secretion was carried out, showing that MtZ secretes these factors in higher amounts than the reference strain, thereby differing from the hypervirulent phenotype described for the Beijing strains. In conclusion, MtZ consists of several SNPs in genes related to virulence, pathogenesis, and survival, as well as other genomic polymorphisms, which may be implicated in its success among our population.
Collapse
Affiliation(s)
- Jessica Comín
- Grupo de Genética de Micobacterias, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Jan Madacki
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, Université de Paris, CNRS UMR 3525, Paris, France
| | - Isabel Rabanaque
- Departamento de Geografía y Ordenación del Territorio, Universidad de Zaragoza, Zaragoza, Spain.,Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, Zaragoza, Spain.,Fundación Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
| | - María Zúñiga-Antón
- Departamento de Geografía y Ordenación del Territorio, Universidad de Zaragoza, Zaragoza, Spain.,Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, Zaragoza, Spain.,Fundación Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
| | - Daniel Ibarz
- Grupo de Genética de Micobacterias, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Alberto Cebollada
- Unidad de Biocomputación, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Jesús Viñuelas
- Hospital Universitario Miguel Servet, Zaragoza, Spain.,Grupo de Estudio de Infecciones por Micobacterias (GEIM), Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica, Madrid, Spain
| | | | - Juan Sahagún
- Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | | | - Jesús Gonzalo-Asensio
- Grupo de Genética de Micobacterias, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Roland Brosch
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, Université de Paris, CNRS UMR 3525, Paris, France
| | - María-José Iglesias
- Fundación Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain.,Grupo de Genética de Micobacterias, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Sofía Samper
- Grupo de Genética de Micobacterias, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain.,Fundación Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
3
|
Junqueira-Kipnis AP, de Castro Souza C, de Oliveira Carvalho AC, de Oliveira FM, Almeida VP, de Paula AR, Celes MR, Kipnis A. Protease-Based Subunit Vaccine in Mice Boosts BCG Protection against Mycobacterium tuberculosis. Vaccines (Basel) 2022; 10:vaccines10020306. [PMID: 35214766 PMCID: PMC8877678 DOI: 10.3390/vaccines10020306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
The significant number of people with latent and active tuberculosis infection requires further efforts to develop new vaccines or improve the Bacillus Calmette-Guérin (BCG), which is the only approved vaccine against this disease. In this study, we developed a recombinant fusion protein (PEPf) containing high-density immunodominant epitope sequences from Rv0125, Rv2467, and Rv2672 Mycobacterium tuberculosis (Mtb) proteases that proved immunogenic and used it to develop a recombinant BCG vaccine expressing the fusion protein. After challenging using Mtb, a specific immune response was recalled, resulting in a reduced lung bacterial load with similar protective capabilities to BCG. Thus BCG PEPf failed to increase the protection conferred by BCG. The PEPf was combined with Advax4 adjuvant and tested as a subunit vaccine using a prime-boost strategy. PEPf + Advax4 significantly improved protection after Mtb challenge, with a reduction in bacterial load in the lungs. Our results confirm that Mtb proteases can be used to develop vaccines against tuberculosis and that the use of the recombinant PEPf subunit protein following a prime-boost regimen is a promising strategy to improve BCG immunity.
Collapse
|
4
|
Das S, Jain S, Ilyas M, Anand A, Kumar S, Sharma N, Singh K, Mahlawat R, Sharma TK, Atmakuri K. Development of DNA Aptamers to Visualize Release of Mycobacterial Membrane-Derived Extracellular Vesicles in Infected Macrophages. Pharmaceuticals (Basel) 2021; 15:ph15010045. [PMID: 35056102 PMCID: PMC8779091 DOI: 10.3390/ph15010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) have emerged into a novel vaccine platform, a biomarker and a nano-carrier for approved drugs. Their accurate detection and visualization are central to their utility in varied biomedical fields. Owing to the limitations of fluorescent dyes and antibodies, here, we describe DNA aptamer as a promising tool for visualizing mycobacterial EVs in vitro. Employing SELEX from a large DNA aptamer library, we identified a best-performing aptamer that is highly specific and binds at nanomolar affinity to EVs derived from three diverse mycobacterial strains (pathogenic, attenuated and avirulent). Confocal microscopy revealed that this aptamer was not only bound to in vitro-enriched mycobacterial EVs but also detected EVs that were internalized by THP-1 macrophages and released by infecting mycobacteria. To the best of our knowledge, this is the first study that detects EVs released by mycobacteria during infection in host macrophages. Within 4 h, most released mycobacterial EVs spread to other parts of the host cell. We predict that this tool will soon hold huge potential in not only delineating mycobacterial EVs-driven pathogenic functions but also in harboring immense propensity to act as a non-invasive diagnostic tool against tuberculosis in general, and extra-pulmonary tuberculosis in particular.
Collapse
Affiliation(s)
- Soonjyoti Das
- Aptamer Technology and Diagnostics Laboratory (ATDL), Multidisciplinary Clinical and Translational Research Group (MCTR), Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India; (S.D.); (A.A.); (N.S.); (K.S.); (R.M.)
| | - Sapna Jain
- Bacterial Pathogenesis Laboratory, Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India; (S.J.); (M.I.); (S.K.)
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| | - Mohd Ilyas
- Bacterial Pathogenesis Laboratory, Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India; (S.J.); (M.I.); (S.K.)
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| | - Anjali Anand
- Aptamer Technology and Diagnostics Laboratory (ATDL), Multidisciplinary Clinical and Translational Research Group (MCTR), Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India; (S.D.); (A.A.); (N.S.); (K.S.); (R.M.)
| | - Saurabh Kumar
- Bacterial Pathogenesis Laboratory, Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India; (S.J.); (M.I.); (S.K.)
| | - Nishant Sharma
- Aptamer Technology and Diagnostics Laboratory (ATDL), Multidisciplinary Clinical and Translational Research Group (MCTR), Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India; (S.D.); (A.A.); (N.S.); (K.S.); (R.M.)
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Kuljit Singh
- Aptamer Technology and Diagnostics Laboratory (ATDL), Multidisciplinary Clinical and Translational Research Group (MCTR), Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India; (S.D.); (A.A.); (N.S.); (K.S.); (R.M.)
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 18001, Jammu and Kashmir, India
| | - Rahul Mahlawat
- Aptamer Technology and Diagnostics Laboratory (ATDL), Multidisciplinary Clinical and Translational Research Group (MCTR), Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India; (S.D.); (A.A.); (N.S.); (K.S.); (R.M.)
| | - Tarun Kumar Sharma
- Aptamer Technology and Diagnostics Laboratory (ATDL), Multidisciplinary Clinical and Translational Research Group (MCTR), Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India; (S.D.); (A.A.); (N.S.); (K.S.); (R.M.)
- Correspondence: (T.K.S.); (K.A.)
| | - Krishnamohan Atmakuri
- Bacterial Pathogenesis Laboratory, Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India; (S.J.); (M.I.); (S.K.)
- Correspondence: (T.K.S.); (K.A.)
| |
Collapse
|