1
|
Kemp DC, Kwon JY. Fish and Shellfish-Derived Anti-Inflammatory Protein Products: Properties and Mechanisms. Molecules 2021; 26:molecules26113225. [PMID: 34072134 PMCID: PMC8198112 DOI: 10.3390/molecules26113225] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
The interest in utilizing food-derived compounds therapeutically has been rising. With the growing prevalence of systematic chronic inflammation (SCI), efforts to find treatments that do not result in the side effects of current anti-inflammatory drugs are underway. Bioactive peptides (BAPs) are a particularly promising class of compounds for the treatment of SCI, and the abundance of high-quality seafood processing byproducts (SPB) makes it a favorable material to derive anti-inflammatory BAPs. Recent research into the structural properties of anti-inflammatory BAPs has found a few key tendencies including they tend to be short and of low molecular weight (LMW), have an overall positive charge, contain hydrophobic amino acids (AAs), and be rich in radical scavenging AAs. SPB-derived anti-inflammatory BAPs have been observed to work via inhibition of the NF-κB and MAPK pathways by disrupting the phosphorylation of IκBα and one or more kinases (ERK, JNK, and p38), respectively. Radical scavenging capacity has also been shown to play a significant role in the efficacy of SPB-derived anti-inflammatory BAPs. To determine if SPB-derived BAPs can serve as an effective treatment for SCI it will be important to understand their properties and mechanisms of action, and this review highlights such findings in recent research.
Collapse
Affiliation(s)
- David C. Kemp
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA;
- Seafood Research and Education Center, Oregon State University, Astoria, OR 97103, USA
| | - Jung Yeon Kwon
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA;
- Seafood Research and Education Center, Oregon State University, Astoria, OR 97103, USA
- Correspondence: ; Tel.: +1-503-325-4531
| |
Collapse
|
2
|
Kim JH, Kim JH, Jang JP, Jang JH, Jin DH, Kim YS, Jin HJ. Identification of Molecules from Coffee Silverskin That Suppresses Myostatin Activity and Improves Muscle Mass and Strength in Mice. Molecules 2021; 26:molecules26092676. [PMID: 34063650 PMCID: PMC8124993 DOI: 10.3390/molecules26092676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/03/2022] Open
Abstract
Coffee has been shown to attenuate sarcopenia, the age-associated muscle atrophy. Myostatin (MSTN), a member of the TGF-β growth/differentiation factor superfamily, is a potent negative regulator of skeletal muscle mass, and MSTN-inhibition increases muscle mass or prevents muscle atrophy. This study, thus, investigated the presence of MSTN-inhibitory capacity in coffee extracts. The ethanol-extract of coffee silverskin (CSE) but not other extracts demonstrated anti-MSTN activity in a pGL3-(CAGA)12-luciferase reporter gene assay. CSE also blocked Smad3 phosphorylation induced by MSTN but not by GDF11 or Activin A in Western blot analysis, demonstrating its capacity to block the binding of MSTN to its receptor. Oral administration of CSE significantly increased forelimb muscle mass and grip strength in mice. Using solvent partitioning, solid-phase chromatography, and reverse-phase HPLC, two peaks having MSTN-inhibitory capacity were purified from CSE. The two peaks were identified as βN-arachinoyl−5-hydroxytryptamide (C20−5HT) and βN-behenoyl−5-hydroxytryptamide (C22−5HT) using mass spectrometry and NMR analysis. In summary, the results show that CSE has the MSTN-inhibitory capacity, and C20−5HT and C22−5HT are active components of CSE-suppressing MSTN activity, suggesting the potential of CSE, C20−5HT, and C22−5HT being developed as agents to combat muscle atrophy and metabolic syndrome.
Collapse
Affiliation(s)
- Jeong Han Kim
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung-si 25457, Korea; (J.H.K.); (J.H.K.); (D.-H.J.)
| | - Jae Hong Kim
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung-si 25457, Korea; (J.H.K.); (J.H.K.); (D.-H.J.)
| | - Jun-Pil Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea;
| | - Jae-Hyuk Jang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea;
| | - Deuk-Hee Jin
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung-si 25457, Korea; (J.H.K.); (J.H.K.); (D.-H.J.)
| | - Yong Soo Kim
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii, 1955 East-West Rd., Honolulu, HI 96822, USA
- Correspondence: (Y.S.K.); (H.-J.J.); Tel.: +1-808-956-8335 (Y.S.K.); +82-33-640-2349 (H.-J.J.)
| | - Hyung-Joo Jin
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii, 1955 East-West Rd., Honolulu, HI 96822, USA
- Correspondence: (Y.S.K.); (H.-J.J.); Tel.: +1-808-956-8335 (Y.S.K.); +82-33-640-2349 (H.-J.J.)
| |
Collapse
|
3
|
Xavier MJ, Engrola S, Conceição LEC, Manchado M, Carballo C, Gonçalves R, Colen R, Figueiredo V, Valente LMP. Dietary Antioxidant Supplementation Promotes Growth in Senegalese Sole Postlarvae. Front Physiol 2020; 11:580600. [PMID: 33281617 PMCID: PMC7688786 DOI: 10.3389/fphys.2020.580600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
Somatic growth is a balance between protein synthesis and degradation, and it is largely influenced by nutritional clues. Antioxidants levels play a key role in protein turnover by reducing the oxidative damage in the skeletal muscle, and hence promoting growth performance in the long-term. In the present study, Senegalese sole postlarvae (45 days after hatching, DAH) were fed with three experimental diets, a control (CTRL) and two supplemented with natural antioxidants: curcumin (CC) and grape seed (GS). Trial spanned for 25 days and growth performance, muscle cellularity and the expression of muscle growth related genes were assessed at the end of the experiment (70 DAH). The diets CC and GS significantly improved growth performance of fish compared to the CTRL diet. This enhanced growth was associated with larger muscle cross sectional area, with fish fed CC being significantly different from those fed the CTRL. Sole fed the CC diet had the highest number of muscle fibers, indicating that this diet promoted muscle hyperplastic growth. Although the mean fiber diameter did not differ significantly amongst treatments, the proportion of large-sized fibers (>25 μm) was also higher in fish fed the CC diet suggesting increased hypertrophic growth. Such differences in the phenotype were associated with a significant up-regulation of the myogenic differentiation 2 (myod2) and the myomaker (mymk) transcripts involved in myocyte differentiation and fusion, respectively, during larval development. The inclusion of grape seed extract (GS diet) resulted in a significant increase in the expression of myostatin1. These results demonstrate that both diets (CC and GS) can positively modulate muscle development and promote growth in sole postlarvae. This effect is more prominent in CC fed fish, where increased hyperplastic and hypertrophic growth of the muscle was associated with an upregulation of myod2 and mymk genes.
Collapse
Affiliation(s)
- Maria J. Xavier
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
- SPAROS Lda., Olhão, Portugal
| | - Sofia Engrola
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | | | - Manuel Manchado
- IFAPA Centro El Toruño, El Puerto de Santa Maria, Cádiz, Spain
| | - Carlos Carballo
- IFAPA Centro El Toruño, El Puerto de Santa Maria, Cádiz, Spain
| | - Renata Gonçalves
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | - Rita Colen
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | - Vera Figueiredo
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Luisa M. P. Valente
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Ren H, Xiao W, Qin X, Cai G, Chen H, Hua Z, Cheng C, Li X, Hua W, Xiao H, Zhang L, Dai J, Zheng X, Zhu Z, Qian C, Yao J, Bi Y. Myostatin regulates fatty acid desaturation and fat deposition through MEF2C/miR222/SCD5 cascade in pigs. Commun Biol 2020; 3:612. [PMID: 33097765 PMCID: PMC7584575 DOI: 10.1038/s42003-020-01348-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Myostatin (MSTN), associated with the “double muscling” phenotype, affects muscle growth and fat deposition in animals, whereas how MSTN affects adipogenesis remains to be discovered. Here we show that MSTN can act through the MEF2C/miR222/SCD5 cascade to regulate fatty acid metabolism. We generated MSTN-knockout (KO) cloned Meishan pigs, which exhibits typical double muscling trait. We then sequenced transcriptome of subcutaneous fat tissues of wild-type (WT) and MSTN-KO pigs, and intersected the differentially expressed mRNAs and miRNAs to predict that stearoyl-CoA desaturase 5 (SCD5) is targeted by miR222. Transcription factor binding prediction showed that myogenic transcription factor 2C (MEF2C) potentially binds to the miR222 promoter. We hypothesized that MSTN-KO upregulates MEF2C and consequently increases the miR222 expression, which in turn targets SCD5 to suppress its translation. Biochemical, molecular and cellular experiments verified the existence of the cascade. This novel molecular pathway sheds light on new targets for genetic improvements in pigs. Ren, Xiao et al. identify a mechanism by which myostatin regulates adipogenesis, using myostatin-knockout pigs. Myostatin deficiency upregulates MEF2C that binds to the promoter of miR222. miR222 in turn downregulates stearoyl-CoA desaturase 5. This study provides potential targets that can be engineered to generate a new pig variety that has high leanness while maintaining its high intramuscular fat content.
Collapse
Affiliation(s)
- Hongyan Ren
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Wei Xiao
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Xingliang Qin
- Wuhan Biojie Biomedical and Technology Co., Ltd., 430000, Wuhan, China
| | - Gangzhi Cai
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Hao Chen
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Zaidong Hua
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Cheng Cheng
- Wuhan Biojie Biomedical and Technology Co., Ltd., 430000, Wuhan, China
| | - Xinglei Li
- Wuhan Bioacme Biotechnology Co., Ltd., 430000, Wuhan, China
| | - Wenjun Hua
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Hongwei Xiao
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Liping Zhang
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Jiali Dai
- Wuhan Biojie Biomedical and Technology Co., Ltd., 430000, Wuhan, China
| | - Xinmin Zheng
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Zhe Zhu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Chong Qian
- Beijing Center for Physical and Chemical Analysis, 100094, Beijing, China
| | - Jie Yao
- Wuhan Biojie Biomedical and Technology Co., Ltd., 430000, Wuhan, China.
| | - Yanzhen Bi
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China.
| |
Collapse
|