1
|
Ghaznavi G, Vosough P, Ghasemian A, Tabar MMM, Tayebi L, Taghizadeh S, Savardashtaki A. Engineering bacteriophages for targeted superbug eradication. Mol Biol Rep 2025; 52:221. [PMID: 39934535 DOI: 10.1007/s11033-025-10332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
The rise of antibiotic-resistant bacteria, termed "superbugs," presents a formidable challenge to global health. These pathogens, often responsible for persistent nosocomial infections, threaten the effectiveness of conventional antibiotic therapies. This review delves into the potential of bacteriophages, viruses specifically targeting bacteria, as a powerful tool to combat superbugs. We examined the latest developments in genetic engineering that improve the efficacy of bacteriophages, focusing on modifications in host range, lysis mechanisms, and their ability to overcome bacterial defense systems. This review article highlights the CRISPR-Cas system as a promising method for precisely manipulating phage genomes, enabling the development of novel phage therapies with enhanced efficacy and specificity. Furthermore, we discussed developing novel phage-based strategies, such as phage cocktails and phage-antibiotic combinations. We also analyzed the challenges and ethical considerations associated with phage engineering, emphasizing the need for responsible and rigorous research to ensure this technology's safe and effective deployment to combat the growing threat of antibiotic resistance.
Collapse
Affiliation(s)
- Ghazal Ghaznavi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Yu Y, Wang M, Ju L, Li M, Zhao M, Deng H, Rensing C, Yang QE, Zhou S. Phage-mediated virulence loss and antimicrobial susceptibility in carbapenem-resistant Klebsiella pneumoniae. mBio 2025; 16:e0295724. [PMID: 39714187 PMCID: PMC11796411 DOI: 10.1128/mbio.02957-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Bacteriophages, known for their ability to kill bacteria, are hampered in their effectiveness because bacteria are able to rapidly develop resistance, thereby posing a significant challenge for the efficacy of phage therapy. The impact of evolutionary trajectories on the long-term success of phage therapy remains largely unclear. Herein, we conducted evolutionary experiments, genomic analysis, and CRISPR-mediated gene editing, to illustrate the evolutionary trajectory occurring between phages and their hosts. Our results illustrate the ongoing "arms race" between a lytic phage and its host, a carbapenem-resistant Klebsiella pneumoniae clinical strain Kp2092, suggesting their respective evolutionary adaptations that shape the efficacy of phage therapy. Specifically, Kp2092 rapidly developed resistance to phages through mutations in a key phage receptor (galU) and bacterial membrane defenses such as LPS synthesis, however, this evolution coincides with unexpected benefits. Evolved bacterial clones not only exhibited increased sensitivity to clinically important antibiotics but also displayed a loss of virulence in an in-vivo model. In contrast, phages evolved under the selection pressure against Kp2092 mutants and exhibited enhanced bacterial killing potency, targeting mutations in phage tail proteins gp12 and gp17. These parallel evolutionary trajectories suggest a common genetic mechanism driving adaptation, ultimately favoring the efficacy of phage therapy. Overall, our findings highlight the potential of phages not only as agents for combating bacterial resistance, but also a driver of evolution outcomes that could lead to more favorable clinical outcomes in the treatment of multidrug resistance pathogens.IMPORTANCECarbapenem-resistant Klebsiella pneumoniae represents one of the leading pathogens for infectious diseases. With traditional antibiotics often being ineffective, phage therapy has emerged as a promising alternative. However, phage predation imposes a strong evolutionary pressure on the rapid evolution of bacteria, challenging treatment efficacy. Our findings illustrate how co-evolution enhances phage lytic capabilities through accumulated mutations in the tail proteins gp12 and gp17, while simultaneously reducing bacterial virulence and antibiotic resistance. These insights advance our understanding of phage-host interactions in clinical settings, potentially inspiring new approaches akin to an "arms race" model to combat multidrug-resistant crises effectively.
Collapse
Affiliation(s)
- Yanshuang Yu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengzhu Wang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liuying Ju
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Minchun Li
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengshi Zhao
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Deng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Christopher Rensing
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiu E. Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shungui Zhou
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Sanchez-Martinez R, Arani A, Krupovic M, Weitz JS, Santos F, Antón J. Episomal virus maintenance enables bacterial population recovery from infection and promotes virus-bacterial coexistence. THE ISME JOURNAL 2025; 19:wraf066. [PMID: 40214158 PMCID: PMC12064560 DOI: 10.1093/ismejo/wraf066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/08/2025] [Accepted: 04/04/2025] [Indexed: 05/11/2025]
Abstract
Viruses are ubiquitous in aquatic environments with total densities of virus-like particles often exceeding 107/ml in surface marine oligotrophic waters. Hypersaline environments harbor elevated prokaryotic population densities of 108/ml that coexist with viruses at even higher densities, approaching 1010/ml. The presence of high densities of microbial populations and viruses challenge traditional explanations of top-down control exerted by viruses. At close to saturation salinities, prokaryotic populations are dominated by Archaea and the bacterial genus Salinibacter. In this work we examine the episomal maintenance of a virus within a Salinibacter ruber host. We found that infected cultures of Sal. ruber M1 developed a population-level resistance and underwent systematic and reproducible recovery post infection that was counter-intuitively dependent on the multiplicity of infection, where higher viral pressures led to better host outcomes. Furthermore, we developed a nonlinear population dynamics model that successfully reproduced the qualitative features of the recovery. Together, experiments and models suggest that episomal virus maintenance and lysis inhibition enable host-virus co-existence at high viral densities. Our results emphasize the ecological importance of exploring a spectrum of viral infection strategies beyond the conventional binary of lysis or lysogeny.
Collapse
Affiliation(s)
- Rodrigo Sanchez-Martinez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
| | - Akash Arani
- Department of Biology, University of Maryland, College Park, MD 20742, United States
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris 75015, France
| | - Joshua S Weitz
- Department of Biology, University of Maryland, College Park, MD 20742, United States
- Department of Physics, University of Maryland, College Park, MD 20742, United States
- Institut de Biologie, École Normale Supérieure, Paris 75005, France
| | - Fernando Santos
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
- Institute of Health and Biomedical Research of Alicante (ISABIAL), Alicante 03010, Spain
| | - Josefa Antón
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
- Institute of Health and Biomedical Research of Alicante (ISABIAL), Alicante 03010, Spain
- Multidisciplinary Institute of Environmental Studies Ramón Margalef, Alicante 03690, Spain
| |
Collapse
|
4
|
Alipour-Khezri E, Skurnik M, Zarrini G. Pseudomonas aeruginosa Bacteriophages and Their Clinical Applications. Viruses 2024; 16:1051. [PMID: 39066214 PMCID: PMC11281547 DOI: 10.3390/v16071051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance poses a serious risk to contemporary healthcare since it reduces the number of bacterial illnesses that may be treated with antibiotics, particularly for patients with long-term conditions like cystic fibrosis (CF). People with a genetic predisposition to CF often have recurrent bacterial infections in their lungs due to a buildup of sticky mucus, necessitating long-term antibiotic treatment. Pseudomonas aeruginosa infections are a major cause of CF lung illness, and P. aeruginosa airway isolates are frequently resistant to many antibiotics. Bacteriophages (also known as phages), viruses that infect bacteria, are a viable substitute for antimicrobials to treat P. aeruginosa infections in individuals with CF. Here, we reviewed the utilization of P. aeruginosa bacteriophages both in vivo and in vitro, as well as in the treatment of illnesses and diseases, and the outcomes of the latter.
Collapse
Affiliation(s)
- Elaheh Alipour-Khezri
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51368, Iran;
| | - Mikael Skurnik
- Human Microbiome Research Program, and Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Gholamreza Zarrini
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51368, Iran;
- Microbial Biotechnology Research Group, University of Tabriz, Tabriz 51368, Iran
| |
Collapse
|
5
|
Zheng K, Liang Y, Paez-Espino D, Zou X, Gao C, Shao H, Sung YY, Mok WJ, Wong LL, Zhang YZ, Tian J, Chen F, Jiao N, Suttle CA, He J, McMinn A, Wang M. Identification of hidden N4-like viruses and their interactions with hosts. mSystems 2023; 8:e0019723. [PMID: 37702511 PMCID: PMC10654107 DOI: 10.1128/msystems.00197-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/19/2023] [Indexed: 09/14/2023] Open
Abstract
IMPORTANCE The findings of this study are significant, as N4-like viruses represent a unique viral lineage with a distinct replication mechanism and a conserved core genome. This work has resulted in a comprehensive global map of the entire N4-like viral lineage, including information on their distribution in different biomes, evolutionary divergence, genomic diversity, and the potential for viral-mediated host metabolic reprogramming. As such, this work significantly contributes to our understanding of the ecological function and viral-host interactions of bacteriophages.
Collapse
Affiliation(s)
- Kaiyang Zheng
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yantao Liang
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - David Paez-Espino
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Mammoth Biosciences Inc., South San Francisco, California, USA
| | - Xiao Zou
- Qingdao Central Hospital, Qingdao, China
| | - Chen Gao
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Hongbing Shao
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - Yu-Zhong Zhang
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Jiwei Tian
- Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Curtis A. Suttle
- Department of Earth, Ocean and Atmospheric Sciences, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jianfeng He
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Andrew McMinn
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Min Wang
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Sokolova D, Smolarska A, Bartnik P, Rabalski L, Kosinski M, Narajczyk M, Krzyżanowska DM, Rajewska M, Mruk I, Czaplewska P, Jafra S, Czajkowski R. Spontaneous mutations in hlyD and tuf genes result in resistance of Dickeya solani IPO 2222 to phage ϕD5 but cause decreased bacterial fitness and virulence in planta. Sci Rep 2023; 13:7534. [PMID: 37160956 PMCID: PMC10169776 DOI: 10.1038/s41598-023-34803-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/07/2023] [Indexed: 05/11/2023] Open
Abstract
Lytic bacteriophages able to infect and kill Dickeya spp. can be readily isolated from virtually all Dickeya spp. containing environments, yet little is known about the selective pressure those viruses exert on their hosts. Two spontaneous D. solani IPO 2222 mutants (0.8% of all obtained mutants), DsR34 and DsR207, resistant to infection caused by lytic phage vB_Dsol_D5 (ΦD5) were identified in this study that expressed a reduced ability to macerate potato tuber tissues compared to the wild-type, phage-susceptible D. solani IPO 2222 strain. Genome sequencing revealed that genes encoding: secretion protein HlyD (in mutant DsR34) and elongation factor Tu (EF-Tu) (in mutant DsR207) were altered in these strains. These mutations impacted the DsR34 and DsR207 proteomes. Features essential for the ecological success of these mutants in a plant environment, including their ability to use various carbon and nitrogen sources, production of plant cell wall degrading enzymes, ability to form biofilms, siderophore production, swimming and swarming motility and virulence in planta were assessed. Compared to the wild-type strain, D. solani IPO 2222, mutants DsR34 and DsR207 had a reduced ability to macerate chicory leaves and to colonize and cause symptoms in growing potato plants.
Collapse
Affiliation(s)
- Daryna Sokolova
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Academika Zabolotnoho St., Kyiv, 03143, Ukraine
| | - Anna Smolarska
- Department of Cancer Biology, Institute of Biology, Warsaw, University of Life Sciences (SGGW), J. Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Przemysław Bartnik
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
| | - Lukasz Rabalski
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
| | - Maciej Kosinski
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Dorota M Krzyżanowska
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
| | - Magdalena Rajewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama, 58, 80-307, Gdansk, Poland
| | - Inez Mruk
- Laboratory of Mass Spectrometry-Core Facility Laboratories, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307, Gdansk, Poland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry-Core Facility Laboratories, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307, Gdansk, Poland
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama, 58, 80-307, Gdansk, Poland
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland.
| |
Collapse
|
7
|
Menon ND, Penziner S, Montaño ET, Zurich R, Pride DT, Nair BG, Kumar GB, Nizet V. Increased Innate Immune Susceptibility in Hyperpigmented Bacteriophage-Resistant Mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2022; 66:e0023922. [PMID: 35862755 PMCID: PMC9380547 DOI: 10.1128/aac.00239-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/17/2022] [Indexed: 01/11/2023] Open
Abstract
Bacteriophage (phage) therapy is an alternative to traditional antibiotic treatments that is particularly important for multidrug-resistant pathogens, such as Pseudomonas aeruginosa. Unfortunately, phage resistance commonly arises during treatment as bacteria evolve to survive phage predation. During in vitro phage treatment of a P. aeruginosa-type strain, we observed the emergence of phage-resistant mutants with brown pigmentation that was indicative of pyomelanin. As increased pyomelanin (due to hmgA gene mutation) was recently associated with enhanced resistance to hydrogen peroxide and persistence in experimental lung infection, we questioned if therapeutic phage applications could inadvertently select for hypervirulent populations. Pyomelanogenic phage-resistant mutants of P. aeruginosa PAO1 were selected for upon treatment with three distinct phages. Phage-resistant pyomelanogenic mutants did not possess increased survival of pyomelanogenic ΔhmgA in hydrogen peroxide. At the genomic level, large (~300 kb) deletions in the phage-resistant mutants resulted in the loss of ≥227 genes, many of which had roles in survival, virulence, and antibiotic resistance. Phage-resistant pyomelanogenic mutants were hypersusceptible to cationic peptides LL-37 and colistin and were more easily cleared in human whole blood, serum, and a murine infection model. Our findings suggest that hyperpigmented phage-resistant mutants that may arise during phage therapy are markedly less virulent than their predecessors due to large genomic deletions. Thus, their existence does not present a contraindication to using anti-pseudomonal phage therapy, especially considering that these mutants develop drug susceptibility to the familiar FDA-approved antibiotic, colistin.
Collapse
Affiliation(s)
- Nitasha D. Menon
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, California, USA
| | - Samuel Penziner
- Division of Infectious Diseases and Global Public Health, Department of Medicine, UC San Diego, La Jolla, California, USA
| | - Elizabeth T. Montaño
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, California, USA
| | - Raymond Zurich
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, California, USA
| | - David T. Pride
- Division of Infectious Diseases and Global Public Health, Department of Medicine, UC San Diego, La Jolla, California, USA
- Department of Pathology, UC San Diego, La Jolla, California, USA
| | - Bipin G. Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Tata Institute for Genetics and Society (TIGS), Bangalore, Karnataka, India
| | - Geetha B. Kumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Tata Institute for Genetics and Society (TIGS), Bangalore, Karnataka, India
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California, USA
| |
Collapse
|
8
|
Letarov AV, Letarova MA, Ivanov PA, Belalov IS, Clokie MRJ, Galyov EE. Genetic analysis of the cold-sensitive growth phenotype of Burkholderia pseudomallei/thailandensis bacteriophage AMP1. Sci Rep 2022; 12:4288. [PMID: 35277541 PMCID: PMC8917201 DOI: 10.1038/s41598-022-07763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Abstract
Bacteriophages related to phage Bp_AMP1 are the most widely spread group of phages infecting Burkholderia pseudomallei-the causative agent of melioidosis. These viruses are also infective against the nonpathogenic host Burkholderia thailandensis, allowing experimental work with them without any special safety precautions. The indirect data as well as the results of the mathematical modelling suggest that the AMP1-like viruses may act as natural biocontrol agents influencing the population levels of B. pseudomallei in soil and water habitats in endemic regions. The cold sensitivity of the lytic growth (CSg) of these phages was suggested to be an important feature modulating the effect of viral infection on host populations in nature. We performed genetic analysis to determine the molecular background of the CSg phenotype of the AMP1 phage. The results indicate that CSg is not due to the lack of any function or product missing at low temperature (25 °C) but results in growth inhibition by a phage-encoded temperature-sensitive genetic switch. We identified phage ORF3 and ORF14 to be involved in the genetic determination of this mechanism.
Collapse
Affiliation(s)
- Andrey V Letarov
- Winogradsky Institute of Microbiology RC Biotechnology RAS, Moscow, Russia.
| | - Maria A Letarova
- Winogradsky Institute of Microbiology RC Biotechnology RAS, Moscow, Russia
| | - Pavel A Ivanov
- Winogradsky Institute of Microbiology RC Biotechnology RAS, Moscow, Russia
| | - Ilya S Belalov
- Winogradsky Institute of Microbiology RC Biotechnology RAS, Moscow, Russia
| | - Martha R J Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Edouard E Galyov
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
9
|
Liedtke J, Depelteau JS, Briegel A. How advances in cryo-electron tomography have contributed to our current view of bacterial cell biology. J Struct Biol X 2022; 6:100065. [PMID: 35252838 PMCID: PMC8894267 DOI: 10.1016/j.yjsbx.2022.100065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Advancements in the field of cryo-electron tomography have greatly contributed to our current understanding of prokaryotic cell organization and revealed intracellular structures with remarkable architecture. In this review, we present some of the prominent advancements in cryo-electron tomography, illustrated by a subset of structural examples to demonstrate the power of the technique. More specifically, we focus on technical advances in automation of data collection and processing, sample thinning approaches, correlative cryo-light and electron microscopy, and sub-tomogram averaging methods. In turn, each of these advances enabled new insights into bacterial cell architecture, cell cycle progression, and the structure and function of molecular machines. Taken together, these significant advances within the cryo-electron tomography workflow have led to a greater understanding of prokaryotic biology. The advances made the technique available to a wider audience and more biological questions and provide the basis for continued advances in the near future.
Collapse
Affiliation(s)
- Janine Liedtke
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Jamie S Depelteau
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Ariane Briegel
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
10
|
Hu J, Ye H, Wang S, Wang J, Han D. Prophage Activation in the Intestine: Insights Into Functions and Possible Applications. Front Microbiol 2021; 12:785634. [PMID: 34966370 PMCID: PMC8710666 DOI: 10.3389/fmicb.2021.785634] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023] Open
Abstract
Prophage activation in intestinal environments has been frequently reported to affect host adaptability, pathogen virulence, gut bacterial community composition, and intestinal health. Prophage activation is mostly caused by various stimulators, such as diet, antibiotics, some bacterial metabolites, gastrointestinal transit, inflammatory environment, oxidative stress, and quorum sensing. Moreover, with advancements in biotechnology and the deepening cognition of prophages, prophage activation regulation therapy is currently applied to the treatment of some bacterial intestinal diseases such as Shiga toxin-producing Escherichia coli infection. This review aims to make headway on prophage induction in the intestine, in order to make a better understanding of dynamic changes of prophages, effects of prophage activation on physiological characteristics of bacteria and intestinal health, and subsequently provide guidance on prophage activation regulation therapy.
Collapse
Affiliation(s)
| | | | | | | | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Koderi Valappil S, Shetty P, Deim Z, Terhes G, Urbán E, Váczi S, Patai R, Polgár T, Pertics BZ, Schneider G, Kovács T, Rákhely G. Survival Comes at a Cost: A Coevolution of Phage and Its Host Leads to Phage Resistance and Antibiotic Sensitivity of Pseudomonas aeruginosa Multidrug Resistant Strains. Front Microbiol 2021; 12:783722. [PMID: 34925289 PMCID: PMC8678094 DOI: 10.3389/fmicb.2021.783722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/08/2021] [Indexed: 01/12/2023] Open
Abstract
The increasing ineffectiveness of traditional antibiotics and the rise of multidrug resistant (MDR) bacteria have necessitated the revival of bacteriophage (phage) therapy. However, bacteria might also evolve resistance against phages. Phages and their bacterial hosts coexist in nature, resulting in a continuous coevolutionary competition for survival. We have isolated several clinical strains of Pseudomonas aeruginosa and phages that infect them. Among these, the PIAS (Phage Induced Antibiotic Sensitivity) phage belonging to the Myoviridae family can induce multistep genomic deletion in drug-resistant clinical strains of P. aeruginosa, producing a compromised drug efflux system in the bacterial host. We identified two types of mutant lines in the process: green mutants with SNPs (single nucleotide polymorphisms) and smaller deletions and brown mutants with large (∼250 kbp) genomic deletion. We demonstrated that PIAS used the MexXY-OprM system to initiate the infection. P. aeruginosa clogged PIAS phage infection by either modifying or deleting these receptors. The green mutant gaining phage resistance by SNPs could be overcome by evolved PIASs (E-PIASs) with a mutation in its tail-fiber protein. Characterization of the mutant phages will provide a deeper understanding of phage-host interaction. The coevolutionary process continued with large deletions in the same regions of the bacterial genomes to block the (E-)PIAS infection. These mutants gained phage resistance via either complete loss or substantial modifications of the phage receptor, MexXY-OprM, negating its essential role in antibiotic resistance. In vitro and in vivo studies indicated that combined use of PIAS and antibiotics could effectively inhibit P. aeruginosa growth. The phage can either eradicate bacteria or induce antibiotic sensitivity in MDR-resistant clinical strains. We have explored the potential use of combination therapy as an alternative approach against MDR P. aeruginosa infection.
Collapse
Affiliation(s)
| | - Prateek Shetty
- Institute of Plant Biology, Biological Research Center, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Zoltán Deim
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gabriella Terhes
- Department of Clinical Microbiology, University of Szeged, Szeged, Hungary
| | - Edit Urbán
- Department of Clinical Microbiology, University of Szeged, Szeged, Hungary
| | - Sándor Váczi
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Roland Patai
- Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | - Tamás Polgár
- Institute of Biophysics, Biological Research Center, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | | | - György Schneider
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Tamás Kovács
- Department of Biotechnology, Nanophagetherapy Center, Enviroinvest Corp., Pécs, Hungary
- Biopesticide Ltd., Pécs, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Institute of Biophysics, Biological Research Center, Szeged, Hungary
| |
Collapse
|
12
|
Genome-driven elucidation of phage-host interplay and impact of phage resistance evolution on bacterial fitness. ISME JOURNAL 2021; 16:533-542. [PMID: 34465897 PMCID: PMC8776877 DOI: 10.1038/s41396-021-01096-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 01/21/2023]
Abstract
When considering the interactions between bacteriophages and their host, the issue of phage-resistance emergence is a key element in understanding the ecological impact of phages on the bacterial population. It is also an essential parameter for the implementation of phage therapy to combat antibiotic-resistant pathogens. This study investigates the phenotypic and genetic responses of five Pseudomonas aeruginosa strains (PAO1, A5803, AA43, CHA, and PAK) to the infection by seven phages with distinct evolutionary backgrounds and recognised receptors (LPS/T4P). Emerging phage-insensitivity was generally accompanied by self and cross-resistance mechanisms. Significant differences were observed between the reference PAO1 responses compared to other clinical representatives. LPS-dependent phage infections in clinical strains selected for mutations in the "global regulatory" and "other" genes, rather than in the LPS-synthesis clusters detected in PAO1 clones. Reduced fitness, as proxied by the growth rate, was correlated with large deletion (20-500 kbp) and phage carrier state. Multi-phage resistance was significantly correlated with a reduced growth rate but only in the PAO1 population. In addition, we observed that the presence of prophages decreased the lytic phage maintenance seemingly protecting the host against carrier state and occasional lytic phage propagation, thus preventing a significant reduction in bacterial growth rate.
Collapse
|
13
|
Chow MYT, Chang RYK, Li M, Wang Y, Lin Y, Morales S, McLachlan AJ, Kutter E, Li J, Chan HK. Pharmacokinetics and Time-Kill Study of Inhaled Antipseudomonal Bacteriophage Therapy in Mice. Antimicrob Agents Chemother 2020; 65:e01470-20. [PMID: 33077657 PMCID: PMC7927809 DOI: 10.1128/aac.01470-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/10/2020] [Indexed: 12/21/2022] Open
Abstract
Inhaled bacteriophage (phage) therapy is a potential alternative to conventional antibiotic therapy to combat multidrug-resistant (MDR) Pseudomonas aeruginosa infections. However, pharmacokinetics (PK) and pharmacodynamics (PD) of phages are fundamentally different from antibiotics and the lack of understanding potentially limits optimal dosing. The aim of this study was to investigate the in vivo PK and PD profiles of antipseudomonal phage PEV31 delivered by pulmonary route in immune-suppressed mice. BALB/c mice were administered phage PEV31 at doses of 107 and 109 PFU by the intratracheal route. Mice (n = 4) were sacrificed at 0, 1, 2, 4, 8, and 24 h posttreatment and various tissues (lungs, kidney, spleen, and liver), bronchoalveolar lavage fluid, and blood were collected for phage quantification. In a separate study combining phage with bacteria, mice (n = 4) were treated with PEV31 (109 PFU) or phosphate-buffered saline (PBS) at 2 h postinoculation with MDR P. aeruginosa Infective PEV31 and bacteria were enumerated from the lungs. In the phage-only study, the PEV31 titer gradually decreased in the lungs over 24 h, with a half-life of approximately 8 h for both doses. In the presence of bacteria, in contrast, the PEV31 titer increased by almost 2-log10 in the lungs at 16 h. Furthermore, bacterial growth was suppressed in the PEV31-treated group, while the PBS-treated group showed exponential growth. Of the 10 colonies tested, four phage-resistant isolates were observed from the lung homogenates sampled at 24 h after phage treatment. These colonies had a different antibiogram to the parent bacteria. This study provides evidence that pulmonary delivery of phage PEV31 in mice can reduce the MDR bacterial burden.
Collapse
Affiliation(s)
- Michael Y T Chow
- Advanced Drug Delivery Group, Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Mengyu Li
- Advanced Drug Delivery Group, Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Yuncheng Wang
- Advanced Drug Delivery Group, Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Yu Lin
- Advanced Drug Delivery Group, Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Andrew J McLachlan
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Jian Li
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Federici S, Nobs SP, Elinav E. Phages and their potential to modulate the microbiome and immunity. Cell Mol Immunol 2020; 18:889-904. [PMID: 32901128 DOI: 10.1038/s41423-020-00532-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages (hence termed phages) are viruses that target bacteria and have long been considered as potential future treatments against antibiotic-resistant bacterial infection. However, the molecular nature of phage interactions with bacteria and the human host has remained elusive for decades, limiting their therapeutic application. While many phages and their functional repertoires remain unknown, the advent of next-generation sequencing has increasingly enabled researchers to decode new lytic and lysogenic mechanisms by which they attack and destroy bacteria. Furthermore, the last decade has witnessed a renewed interest in the utilization of phages as therapeutic vectors and as a means of targeting pathogenic or commensal bacteria or inducing immunomodulation. Importantly, the narrow host range, immense antibacterial repertoire, and ease of manipulating phages may potentially allow for their use as targeted modulators of pathogenic, commensal and pathobiont members of the microbiome, thereby impacting mammalian physiology and immunity along mucosal surfaces in health and in microbiome-associated diseases. In this review, we aim to highlight recent advances in phage biology and how a mechanistic understanding of phage-bacteria-host interactions may facilitate the development of novel phage-based therapeutics. We provide an overview of the challenges of the therapeutic use of phages and how these could be addressed for future use of phages as specific modulators of the human microbiome in a variety of infectious and noncommunicable human diseases.
Collapse
Affiliation(s)
- Sara Federici
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Samuel P Nobs
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel. .,Cancer-Microbiome Division Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
15
|
The Basis for Natural Multiresistance to Phage in Pseudomonas aeruginosa. Antibiotics (Basel) 2020; 9:antibiotics9060339. [PMID: 32570896 PMCID: PMC7344871 DOI: 10.3390/antibiotics9060339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa is responsible for long-term infections and is particularly resistant to treatments when hiding inside the extracellular matrix or biofilms. Phage therapy might represent an alternative to antibiotic treatment, but up to 10% of clinical strains appear to resist multiple phages. We investigated the characteristics of P. aeruginosa clinical strains naturally resistant to phages and compared them to highly susceptible strains. The phage-resistant strains were defective in lipopolysaccharide (LPS) biosynthesis, were nonmotile and displayed an important degree of autolysis, releasing phages and pyocins. Complete genome sequencing of three resistant strains showed the existence of a large accessory genome made of multiple insertion elements, genomic islands, pyocins and prophages, including two phages performing lateral transduction. Mutations were found in genes responsible for the synthesis of LPS and/or type IV pilus, the major receptors for most phages. CRISPR-Cas systems appeared to be absent or inactive in phage-resistant strains, confirming that they do not play a role in the resistance to lytic phages but control the insertion of exogenous sequences. We show that, despite their apparent weakness, the multiphage-resistant strains described in this study displayed selective advantages through the possession of various functions, including weapons to eliminate other strains of the same or closely related species.
Collapse
|
16
|
Boon M, Holtappels D, Lood C, van Noort V, Lavigne R. Host Range Expansion of Pseudomonas Virus LUZ7 Is Driven by a Conserved Tail Fiber Mutation. PHAGE (NEW ROCHELLE, N.Y.) 2020; 1:87-90. [PMID: 36147895 PMCID: PMC9041470 DOI: 10.1089/phage.2020.0006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Background: When subjected to phage infection, bacteria can rapidly become resistant by changes in the phage receptors at the bacterial surface. Phages thus require adaptive mechanisms to circumvent this type of resistance. Methods: LUZ7 phage with an altered host range were isolated and analysed for mutations and their effect. Results: We find that Pseudomonas virus LUZ7 has an unusually high number of mutants (0.01-0.1% of the population) that drive host range expansion. Interestingly, all tested mutants have a single D737Y mutation in the tail fiber. This mutation allows the phage to adsorb to P. aeruginosa strains that are not natively recognized by the wild-type phage. Conclusion: The high number and specificity of mutants suggests the presence of an uncharacterized mechanism that drives these mutations. This mechanism enables the phage to better evade host resistance at the surface level and expand its host range in general, a feature that could be valuable in phage therapeutic settings or for phage engineering.
Collapse
Affiliation(s)
- Maarten Boon
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Dominique Holtappels
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Cédric Lood
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Vera van Noort
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Hays SG, Seed KD. Dominant Vibrio cholerae phage exhibits lysis inhibition sensitive to disruption by a defensive phage satellite. eLife 2020; 9:e53200. [PMID: 32329714 PMCID: PMC7182436 DOI: 10.7554/elife.53200] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/01/2020] [Indexed: 12/28/2022] Open
Abstract
Bacteria, bacteriophages that prey upon them, and mobile genetic elements (MGEs) compete in dynamic environments, evolving strategies to sense the milieu. The first discovered environmental sensing by phages, lysis inhibition, has only been characterized and studied in the limited context of T-even coliphages. Here, we discover lysis inhibition in the etiological agent of the diarrheal disease cholera, Vibrio cholerae, infected by ICP1, a phage ubiquitous in clinical samples. This work identifies the ICP1-encoded holin, teaA, and antiholin, arrA, that mediate lysis inhibition. Further, we show that an MGE, the defensive phage satellite PLE, collapses lysis inhibition. Through lysis inhibition disruption a conserved PLE protein, LidI, is sufficient to limit the phage produced from infection, bottlenecking ICP1. These studies link a novel incarnation of the classic lysis inhibition phenomenon with conserved defensive function of a phage satellite in a disease context, highlighting the importance of lysis timing during infection and parasitization.
Collapse
Affiliation(s)
- Stephanie G Hays
- Department of Plant and Microbial Biology, University of CaliforniaBerkeleyUnited States
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of CaliforniaBerkeleyUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| |
Collapse
|
18
|
Huss P, Raman S. Engineered bacteriophages as programmable biocontrol agents. Curr Opin Biotechnol 2019; 61:116-121. [PMID: 31862543 PMCID: PMC7103757 DOI: 10.1016/j.copbio.2019.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/26/2022]
Abstract
Engineered bacteriophages are promising tools for use in food biotechnology. Diverse natural bacteriophages can be leveraged by engineering for specificity and infectivity. Engineered bacteriophages are potent tools for pathogen biocontrol. Engineered bacteriophages can be used for targeted delivery vectors and pathogen detection.
Bacteriophages (or ‘phages’) can be potent biocontrol agents but their potential has not been fully realized due to inherent limitations of natural phages. By leveraging new tools in synthetic biology, natural phages can be engineered to overcome these limitations to markedly improve their efficacy and programmability. Engineered phages can be used for targeted detection and removal of pathogens, in situ microbiome editing, gene delivery and programmable control of phage-bacterial interactions. In this mini review we examine different ways natural phages can be engineered as effective biocontrol agents through a design-build-test-learn platform and identify novel applications of engineered phages in food biotechnology.
Collapse
Affiliation(s)
- Phil Huss
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
19
|
Olszak T, Danis-Wlodarczyk K, Arabski M, Gula G, Maciejewska B, Wasik S, Lood C, Higgins G, Harvey BJ, Lavigne R, Drulis-Kawa Z. Pseudomonas aeruginosa PA5oct Jumbo Phage Impacts Planktonic and Biofilm Population and Reduces Its Host Virulence. Viruses 2019; 11:E1089. [PMID: 31771160 PMCID: PMC6950013 DOI: 10.3390/v11121089] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022] Open
Abstract
The emergence of phage-resistant mutants is a key aspect of lytic phages-bacteria interaction and the main driver for the co-evolution between both organisms. Here, we analyze the impact of PA5oct jumbo phage treatment on planktonic/cell line associated and sessile P. aeruginosa population. Besides its broad-spectrum activity and efficient bacteria reduction in both airway surface liquid (ASL) model, and biofilm matrix degradation, PA5oct appears to persist in most of phage-resistant clones. Indeed, a high percentage of resistance (20/30 clones) to PA5oct is accompanied by the presence of phage DNA within bacterial culture. Moreover, the maintenance of this phage in the bacterial population correlates with reduced P. aeruginosa virulence, coupled with a sensitization to innate immune mechanisms, and a significantly reduced growth rate. We observed rather unusual consequences of PA5oct infection causing an increased inflammatory response of monocytes to P. aeruginosa. This phenomenon, combined with the loss or modification of the phage receptor, makes most of the phage-resistant clones significantly less pathogenic in in vivo model. These findings provide new insights into the general knowledge of giant phages biology and the impact of their application in phage therapy.
Collapse
Affiliation(s)
- Tomasz Olszak
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, 51-148 Wroclaw, Poland; (T.O.); (K.D.-W.); (G.G.); (B.M.)
| | - Katarzyna Danis-Wlodarczyk
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, 51-148 Wroclaw, Poland; (T.O.); (K.D.-W.); (G.G.); (B.M.)
- Laboratory of Gene Technology, KU Leuven, 3001 Heverlee, Belgium; (C.L.); (R.L.)
| | - Michal Arabski
- Department of Biochemistry and Genetics, Institute of Biology, The Jan Kochanowski University in Kielce, 25-406 Kielce, Poland;
| | - Grzegorz Gula
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, 51-148 Wroclaw, Poland; (T.O.); (K.D.-W.); (G.G.); (B.M.)
| | - Barbara Maciejewska
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, 51-148 Wroclaw, Poland; (T.O.); (K.D.-W.); (G.G.); (B.M.)
| | - Slawomir Wasik
- Department of Molecular Physics, Institute of Physics, The Jan Kochanowski University in Kielce, 25-406 Kielce, Poland;
| | - Cédric Lood
- Laboratory of Gene Technology, KU Leuven, 3001 Heverlee, Belgium; (C.L.); (R.L.)
- Laboratory of Computational Systems Biology, KU Leuven, 3000 Leuven, Belgium
| | - Gerard Higgins
- National Children Research Centre, Our Lady’s Children’s Hospital, Crumlin, 12 Dublin, Ireland;
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, 9 Dublin, Ireland;
| | - Brian J. Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, 9 Dublin, Ireland;
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, 3001 Heverlee, Belgium; (C.L.); (R.L.)
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, 51-148 Wroclaw, Poland; (T.O.); (K.D.-W.); (G.G.); (B.M.)
| |
Collapse
|
20
|
Identification of a Ribosomal Protein RpsB as a Surface-Exposed Protein and Adhesin of Rickettsia heilongjiangensis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9297129. [PMID: 31360728 PMCID: PMC6652061 DOI: 10.1155/2019/9297129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 11/26/2022]
Abstract
Rickettsia heilongjiangensis is an obligate intracellular bacterium that is responsible for far-eastern spotted fever. Surface-exposed proteins (SEPs) play important roles in its pathogenesis. Previous work identified a ribosomal protein RpsB as an SEP by biotin-avidin affinity, a seroreactive antigen, and a diagnostic candidate protein, indicating that it might play an important role in the pathogenesis of rickettsiae. However, in the absence of other evidence, its subcellular location of being surface-exposed was puzzling because ribosomal proteins are located in the cytoplasm. In the present study, the subcellular location of RpsB was analyzed with bioinformatics tools coupled with immunoelectron microscopy. The adhesion ability of RpsB was evaluated by protein microarray and cellular ELISA. Consequently, different bioinformatics tools gave different location predication results. Thus, RpsB was found in the cytoplasma and inner and outer membranes of R. heilongjiangensis by transmission electron microscopy. Protein microarray and cellular ELISA showed that RpsB binds to the host cell surface and its adhesion ability was even stronger than the known adhesin Adr1. In conclusion, RpsB was visually and directly shown for the time to be an SEP of rickettsiae and might be an important ligand and adhesin of rickettsiae. Its roles in pathogenesis warrant further study.
Collapse
|