1
|
Traditional Fermented Dairy Products in Southern Mediterranean Countries: From Tradition to Innovation. FERMENTATION 2022. [DOI: 10.3390/fermentation8120743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fermented dairy products have been essential elements in the diet of Southern Mediterranean countries for centuries. This review aims to provide an overview of the traditional fermented products in Southern Mediterranean countries, with a focus on fermented dairy products, and to discuss innovative strategies to make improved versions of these traditional products. A large variety of fermented dairy products were reviewed, showing high diversity, depending on the used raw materials, starter cultures, and preparation procedures. Traditionally, dairy products were fermented using spontaneous fermentation, back-slopping, and/or the addition of rennet. Compared with commercial products, traditional products are characterized by peculiar organoleptic features owing to the indigenous microflora. The main limitation of traditional products is preservation as most products were consumed fresh. In addition to drying, brine or oil was used to extend the product shelf life but resulted in high salt/fat products. Several studies suggested alternative ingredients/processing to make revised products with new flavors, improved nutritional quality, and a longer shelf life. There is still plenty of room for more research to obtain a better understanding of the indigenous microflora and on quality improvement and standardization to reach a wider market.
Collapse
|
2
|
Safety and Quality of Milk and Milk Products in Senegal—A Review. Foods 2022; 11:foods11213479. [PMID: 36360092 PMCID: PMC9656659 DOI: 10.3390/foods11213479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Historically, local milk production in Senegal has struggled to keep up with the demands of consumers, so there has been a heavy reliance on imported milk and milk products. More recently, efforts have been made to improve local dairy production by establishing large, organized dairies that collect milk from rural production areas and developing small-scale processing units, such as mini dairies. The local dairy value chain in Senegal consists of (1) informal collection systems where farmers commonly deliver milk directly to dairies; (2) traditional and artisanal processing using simple equipment and techniques; and (3) short local marketing and sale circuits. Most West African dairy sectors are dominated by raw, unpasteurized milk or traditional, spontaneously fermented milk products, such as lait caillé in Senegal, sold through small-scale channels without a cold chain, so the risk of food safety hazards may be increased. Microbiological, chemical, and physical hazards have been found in milk and milk products across West Africa. There is a need to educate milk producers, small-scale processors, and vendors on the importance of refrigerating milk immediately after milking as well as maintaining the cold chain until the milk is heat treated and, subsequently, until the milk is marketed to the consumer. However, without assistance, obtaining the equipment necessary for cold storage and processing of milk can be challenging.
Collapse
|
3
|
Environmental Selection Shapes Bacterial Community Composition in Traditionally Fermented Maize-Based Foods from Benin, Tanzania and Zambia. Microorganisms 2022; 10:microorganisms10071354. [PMID: 35889073 PMCID: PMC9318576 DOI: 10.3390/microorganisms10071354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Natural (microbial) communities are complex ecosystems with many interactions and cross-dependencies. Among other factors, selection pressures from the environment are thought to drive the composition and functionality of microbial communities. Fermented foods, when processed using non-industrial methods, harbor such natural microbial communities. In non-alcoholic fermented foods the fermenting microbiota is commonly dominated by 4–10 species of bacteria, which make them suitable model systems to study ecosystem assembly and functioning. In this study, we assess the influence of the environment on the composition of microbial communities of traditional fermented products from Africa. We compare differences between microbial communities that are found in similar products but come from different countries, hypothesizing they experience different environmental selection pressures. We analyzed bacterial community composition in 36 samples of various cereal-based fermented foods from Benin, Tanzania and Zambia using 16S rDNA amplicon sequencing. The differential abundance analysis indicates that the bacterial communities of fermented foods from the three countries are dominated by mostly lactic acid bacteria belonging to the genera of Lactobacillus, Weisella and Curvibacter. The samples from Zambia contain the most dissimilar microbial communities in comparison with samples from Benin and Tanzania. We propose this is caused by the relatively low temperature in Zambia, suggesting that indeed environmental selection can shape community composition of fermenting microbes.
Collapse
|
4
|
“Hygiene does not affect our cheese quality”: A qualitative assessment of traditional cheese processors in Ghana. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Rohani AS, Yuandani Y, Sitorus P, Andrianto D, Dalimunthe A. Anti-hypercholesterolemic activity of standardized fermented Allium cepa L. var aggregatum extract: In vitro and in vivo studies. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Allium cepa extract has been reported to have anti-hypercholesterolemic activity in rats. This study was conducted to investigate the effects of standardized fermented A. cepa L. var aggregatum extract on cholesterol levels and HMG-CoA reductase enzyme. Methods: The fermented A. cepa extract was standardized by the presence of quercetin using a validated high performance liquid chromatography (HPLC) method. The activity of the extract on HMG-CoA reductase was determined using HMG-CoA Assay kits, then measured by Nano spectrophotometry. In vivo study was conducted in hypercholesterolemic rats. The extract was administered orally at doses of 100, 200, and 300 mg/kg body weight (bw) to rats for 21 days and the cholesterol levels were measured every week. Results: All doses of fermented A. cepa extract and its marker compound, quercetin, ameliorated the levels of high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) as compared to those of negative control (P<0.05). Of all the doses, fermented A. cepa extract at the dose of 200 mg/kg bw displayed the highest reduction in LDL-C levels. In addition, the extract at the dose of 200 mg/kg bw showed the strongest enhancement in HDL-C levels. The fermented A. cepa extract and quercetin also inhibited the HMG-CoA reductase enzyme with inhibitory activity of 61.78%. Conclusion: The ethanol extract of fermented A. cepa shows anti-hypercholesterolemic activity. The strong anti-hypercholesterolemic activity of the extract might be due to the high amounts of quercetin, although other constituents may also contribute.
Collapse
Affiliation(s)
- Ade Sri Rohani
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Yuandani Yuandani
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
- Centre of Excellence for Chitosan and Advanced Materials, Universitas Sumatera Utara, Medan, Indonesia
| | - Panal Sitorus
- Department of Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Dimas Andrianto
- Department of Biochemistry, Bogor Agricultural University, West Java, Indonesia
| | - Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
6
|
Moonga HB, Schoustra SE, Linnemann AR, Shindano J, Smid EJ. Towards valorisation of indigenous traditional fermented milk: mabisi as a model. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Alekseeva AY, Groenenboom AE, Smid EJ, Schoustra SE. Eco-Evolutionary Dynamics in Microbial Communities from Spontaneous Fermented Foods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910093. [PMID: 34639397 PMCID: PMC8508538 DOI: 10.3390/ijerph181910093] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 01/02/2023]
Abstract
Eco-evolutionary forces are the key drivers of ecosystem biodiversity dynamics. This resulted in a large body of theory, which has partially been experimentally tested by mimicking evolutionary processes in the laboratory. In the first part of this perspective, we outline what model systems are used for experimental testing of eco-evolutionary processes, ranging from simple microbial combinations and, more recently, to complex natural communities. Microbial communities of spontaneous fermented foods are a promising model system to study eco-evolutionary dynamics. They combine the complexity of a natural community with extensive knowledge about community members and the ease of manipulating the system in a laboratory setup. Due to rapidly developing sequencing techniques and meta-omics approaches incorporating data in building ecosystem models, the diversity in these communities can be analysed with relative ease while hypotheses developed in simple systems can be tested. Here, we highlight several eco-evolutionary questions that are addressed using microbial communities from fermented foods. These questions relate to analysing species frequencies in space and time, the diversity-stability relationship, niche space and community coalescence. We provide several hypotheses of the influence of these factors on community evolution specifying the experimental setup of studies where microbial communities of spontaneous fermented food are used.
Collapse
Affiliation(s)
- Anna Y. Alekseeva
- Laboratory of Genetics, Wageningen University and Research, 6700 HB Wageningen, The Netherlands; (A.E.G.); (S.E.S.)
- Correspondence:
| | - Anneloes E. Groenenboom
- Laboratory of Genetics, Wageningen University and Research, 6700 HB Wageningen, The Netherlands; (A.E.G.); (S.E.S.)
- Laboratory of Food Microbiology, Wageningen University and Research, 6700 HB Wageningen, The Netherlands;
| | - Eddy J. Smid
- Laboratory of Food Microbiology, Wageningen University and Research, 6700 HB Wageningen, The Netherlands;
| | - Sijmen E. Schoustra
- Laboratory of Genetics, Wageningen University and Research, 6700 HB Wageningen, The Netherlands; (A.E.G.); (S.E.S.)
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Zambia, Lusaka 10101, Zambia
| |
Collapse
|
8
|
Muhialdin BJ, Zawawi N, Abdull Razis AF, Bakar J, Zarei M. Antiviral activity of fermented foods and their probiotics bacteria towards respiratory and alimentary tracts viruses. Food Control 2021; 127:108140. [PMID: 33867696 PMCID: PMC8036130 DOI: 10.1016/j.foodcont.2021.108140] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/09/2021] [Accepted: 04/04/2021] [Indexed: 02/06/2023]
Abstract
The recent COVID-19, a viral outbreak calls for a high demand for non-conventional antiviral agents that can reduce the risk of infections and promote fast recovery. Fermented foods and their probiotics bacteria have recently received increasing interest due to the reported potential of high antiviral activity. Several probiotics strains demonstrated broad range of antiviral activities and different mechanisms of action. This article will review the diversity, health benefits, interaction with immune system and antiviral activity of fermented foods and their probiotics bacteria. In addition, the mechanisms of action will be reviewed to determine the broad range potential antiviral activity against the respiratory and alimentary tracts viruses. The probiotics bacteria and bioactive compounds in fermented foods demonstrated antiviral activities against respiratory and alimentary tracts viruses. The mechanism of action was reported to be due to the stimulation of the immune system function via enhancing natural killers cell toxicity, enhance the production of pro-inflammatory cytokines, and increasing the cytotoxic of T lymphocytes (CD3+, CD16+, CD56+). However, further studies are highly recommended to determine the potential antiviral activity for traditional fermented foods.
Collapse
Affiliation(s)
- Belal J Muhialdin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Halal Products Research Institute, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Norhasnida Zawawi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Natural Medicines and Product Research Laboratory, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Natural Medicines and Product Research Laboratory, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Jamilah Bakar
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Mohammad Zarei
- Department of Food Science and Technology, School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450, Selangor, Malaysia
| |
Collapse
|
9
|
Groenenboom AE, Shindano J, Cheepa N, Smid EJ, Schoustra SE. Microbial population dynamics during traditional production of Mabisi, a spontaneous fermented milk product from Zambia: a field trial. World J Microbiol Biotechnol 2020; 36:184. [PMID: 33191438 PMCID: PMC7667141 DOI: 10.1007/s11274-020-02957-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/03/2020] [Indexed: 11/29/2022]
Abstract
Mabisi is a fermented milk product, traditionally produced in a calabash by uncontrolled fermentation. Due to high costs and a reduced availability of calabashes, nowadays plastic containers are also used for Mabisi production. However, the effect of this change in production practice on the properties of the product has not been documented. Therefore, we aimed at determining the effect of fermentation vessels and types of back-slopping on acidification and microbial communities during fermentation. A series of fifteen experiments using two types of fermentation vessels (plastic buckets and calabashes) in combination with different types of back-slopping (no back-slopping, passive back-slopping, and active back-slopping) were set up at a field site in rural Zambia. In each of the fifteen fermentations we analysed acidification rate of traditional Mabisi fermentation and bacterial diversity over time. No significant difference was found in terms of microbial diversity during and at the end of fermentation between fermentations performed in buckets or previously used calabashes. Bacterial communities in general decreased in diversity over time, where the drop in pH correlated with a decrease in Shannon Index. In case of active back-slopping, the pH drop started right after inoculation while in the no back-slopping and passive back-slopping fermentations, there was a clear lag phase before acidification started. All experimental series resulted in a microbial community dominated by Lactococcus lactis and a Shannon Index, as a measure for diversity, between 0.6 and 2.0. The use of plastic buckets for Mabisi fermentation can be a valuable alternative to the use of calabashes as this study showed no biological and physico-chemical differences between Mabisi resulting from both fermentation vessels, although the reason for perceived differences should be further investigated.
Collapse
Affiliation(s)
- Anneloes E Groenenboom
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
- Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - John Shindano
- Department of Food Science and Nutrition, University of Zambia, Lusaka, Zambia
| | | | - Eddy J Smid
- Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Sijmen E Schoustra
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands.
- Department of Food Science and Nutrition, University of Zambia, Lusaka, Zambia.
| |
Collapse
|
10
|
Saak CC, Dinh CB, Dutton RJ. Experimental approaches to tracking mobile genetic elements in microbial communities. FEMS Microbiol Rev 2020; 44:606-630. [PMID: 32672812 PMCID: PMC7476777 DOI: 10.1093/femsre/fuaa025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Horizontal gene transfer is an important mechanism of microbial evolution and is often driven by the movement of mobile genetic elements between cells. Due to the fact that microbes live within communities, various mechanisms of horizontal gene transfer and types of mobile elements can co-occur. However, the ways in which horizontal gene transfer impacts and is impacted by communities containing diverse mobile elements has been challenging to address. Thus, the field would benefit from incorporating community-level information and novel approaches alongside existing methods. Emerging technologies for tracking mobile elements and assigning them to host organisms provide promise for understanding the web of potential DNA transfers in diverse microbial communities more comprehensively. Compared to existing experimental approaches, chromosome conformation capture and methylome analyses have the potential to simultaneously study various types of mobile elements and their associated hosts. We also briefly discuss how fermented food microbiomes, given their experimental tractability and moderate species complexity, make ideal models to which to apply the techniques discussed herein and how they can be used to address outstanding questions in the field of horizontal gene transfer in microbial communities.
Collapse
Affiliation(s)
- Christina C Saak
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Cong B Dinh
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Rachel J Dutton
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Chileshe J, van den Heuvel J, Handema R, Zwaan BJ, Talsma EF, Schoustra S. Nutritional Composition and Microbial Communities of Two Non-alcoholic Traditional Fermented Beverages from Zambia: A Study of Mabisi and Munkoyo. Nutrients 2020; 12:nu12061628. [PMID: 32492891 PMCID: PMC7352844 DOI: 10.3390/nu12061628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 01/01/2023] Open
Abstract
Traditional fermented foods and beverages are common in many countries, including Zambia. While the general (nutritional) benefits of fermented foods are widely recognised, the nutritional composition of most traditional fermented foods is unknown. Furthermore, fermentation is known to add nutritional value to raw materials, mainly by adding B-vitamins and removing anti-nutritional factors. In the case of traditional fermentation, the composition of microbial communities responsible for fermentation varies from producer to producer and this may also be true for the nutritional composition. Here, we characterized the nutrient profile and microbial community composition of two traditional fermented foods: milk-based Mabisi and cereal-based Munkoyo. We found that the two products are different with respect to their nutritional parameters and their microbial compositions. Mabisi was found to have higher nutritional values for crude protein, fat, and carbohydrates than Munkoyo. The microbial community composition was also different for the two products, while both communities were dominated by lactic acid bacteria. Our analyses showed that variations in nutritional composition, defined as the amount of consumption that would contribute to the estimated average requirement (EAR), might be explained by variations in microbial community composition. Consumption of Mabisi appeared to contribute more than Munkoyo to the EAR and its inclusion in food-based recommendations is warranted. Our results show the potential of traditional fermented foods such as Mabisi and Munkoyo to add value to current diets and suggests that variations in microbial composition between specific product samples can result in variations in nutritional composition.
Collapse
Affiliation(s)
- Justin Chileshe
- Laboratory of Genetics, Wageningen University and Research, P.O. Box 16, 6700AA Wageningen, The Netherlands; (J.C.); (J.v.d.H.); (B.J.Z.)
- Tropical Diseases Research Centre, Department of Biomedical Sciences, P.O. Box 71769, Ndola 10101, Zambia;
- Division of Human Nutrition and Health, Wageningen University, P.O. Box 57, 6700AB Wageningen, The Netherlands;
| | - Joost van den Heuvel
- Laboratory of Genetics, Wageningen University and Research, P.O. Box 16, 6700AA Wageningen, The Netherlands; (J.C.); (J.v.d.H.); (B.J.Z.)
| | - Ray Handema
- Tropical Diseases Research Centre, Department of Biomedical Sciences, P.O. Box 71769, Ndola 10101, Zambia;
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University and Research, P.O. Box 16, 6700AA Wageningen, The Netherlands; (J.C.); (J.v.d.H.); (B.J.Z.)
| | - Elise F. Talsma
- Division of Human Nutrition and Health, Wageningen University, P.O. Box 57, 6700AB Wageningen, The Netherlands;
| | - Sijmen Schoustra
- Laboratory of Genetics, Wageningen University and Research, P.O. Box 16, 6700AA Wageningen, The Netherlands; (J.C.); (J.v.d.H.); (B.J.Z.)
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
- Correspondence: ; Tel.: +31-317-483142
| |
Collapse
|