1
|
Brandes N, Hahn H, Uhmann A. CD4 expression controls epidermal stem cell balance. Sci Rep 2025; 15:4185. [PMID: 39905055 PMCID: PMC11794708 DOI: 10.1038/s41598-025-87915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025] Open
Abstract
The balance of stem cell populations is essential for the maintenance, renewal, and repair of the mammalian epidermis. Here, we report that CD4, which is a typical marker of helper T cells, monocytes, macrophages, and dendritic cells, is also expressed on murine K5+ keratinocytes. Lineage tracing of CD4+ cells reveals that their epidermal progeny has self-renewal abilities and clonogenic potential. The progeny of CD4+ epidermal cells contributes to epidermal renewal and progressively colonizes the interfollicular epidermis and hair follicles with age, thereby developing to all epidermal lineages. Wound healing studies furthermore show that the progeny of CD4+ epidermal cells accumulates at wound sites. Finally, using CD4 knockout mice we demonstrate that CD4 expression is essential for maintaining fast-cycling epidermal stem cells during homeostasis and that CD4 loss mitigates the age-related decline in wound repair capacity. Collectively, our data support the conclusion that CD4 expression is required for long-term maintenance of the epidermal stem cell balance.
Collapse
Affiliation(s)
- Nadine Brandes
- Institute of Human Genetics, Tumor Genetics Group, Universitätsmedizin Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
| | - Heidi Hahn
- Institute of Human Genetics, Tumor Genetics Group, Universitätsmedizin Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
| | - Anja Uhmann
- Institute of Human Genetics, Tumor Genetics Group, Universitätsmedizin Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany.
| |
Collapse
|
2
|
Bejaoui M, Oliva Mizushima AK, Ngoc Linh T, Arimura T, Tominaga K, Isoda H. Triethylene Glycol Squalene Improves Hair Regeneration by Maintaining the Inductive Capacity of Human Dermal Papilla Cells and Preventing Premature Aging. ACS Pharmacol Transl Sci 2024; 7:2006-2022. [PMID: 39022356 PMCID: PMC11249624 DOI: 10.1021/acsptsci.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024]
Abstract
De novo hair follicle (HF) regeneration, achieved through the replenishment of the dermal papilla (DP), acknowledged as the principal orchestrator of the hair growth cycle, is emerging as a prospective therapeutic intervention for alopecia. Nonetheless, multiple attempts have shown that these cells lose key inductive properties when cultured in a two-dimensional (2D) monolayer, leading to precocious senescence engendered by oxidative stress and inflammatory processes. Consequently, the three-dimensional (3D) spheroid technique is presently widely employed for DP cell culture. Nevertheless, substantiating the regenerative potential of these cells within the hair follicle (HF) milieu remains a challenge. In this current study, we aim to find a new approach to activate the inductive properties of DP cells. This involves the application of hair-growth-stimulating agents that not only exhibit concurrent protective efficacy against the aging process but also induce HF regeneration. To achieve this objective, we initially synthesized a novel highly amphiphilic derivative derived from squalene (SQ), named triethylene glycol squalene (Tri-SQ). Squalene itself is a potent antioxidant and anti-inflammatory compound traditionally employed as a drug carrier for alopecia treatment. However, its application is limited due to its low solubility. Subsequently, we applied this newly synthesized derivative to DP cells. The data obtained demonstrated that the derivative exhibits robust antioxidant and anti-inflammatory activities while concurrently promoting the expression of genes associated with hair growth. Moreover, to further assess the hair regrowth inductive properties of DP cells, we cultured the cells and treated them with Tri-SQ within a 3D spheroid system. Subsequently, these treated cells were injected into the previously depilated dorsal area of six-week-old male C57BL/6 mice. Results revealed that 20 days postinjection, a complete regrowth of hair in the previously hairless area, particularly evident in the case of 3D spheroids treated with the derivative, was observed. Additionally, histological and molecular analyses demonstrated an upregulation of markers associated with hair growth and a concurrent decrease in aging hallmarks, specifically in the 3D spheroids treated with the compound. In summary, our approach, which involves the treatment of Tri-SQ combined with a 3D spheroid system, exhibited a notably robust stimulating effect. This effect was observed in the induction of inductive properties in DP cells, leading to HF regeneration, and concurrently, it demonstrated an inhibitory effect on cellular and follicular aging.
Collapse
Affiliation(s)
- Meriem Bejaoui
- Open
Innovation Laboratory for Food and Medicinal Resource Engineering
(FoodMed-OIL), National Institute of Advanced
Industrial Science and Technology (AIST), Tsukuba City 305-8568, Japan
- Alliance
for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City 305-0006, Japan
- Research
and Development Center for Tailor-Made QOL Program, University of Tsukuba, Tsukuba
City 305-0006, Japan
| | - Aprill Kee Oliva Mizushima
- Alliance
for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City 305-0006, Japan
- Research
and Development Center for Tailor-Made QOL Program, University of Tsukuba, Tsukuba
City 305-0006, Japan
| | - Tran Ngoc Linh
- Open
Innovation Laboratory for Food and Medicinal Resource Engineering
(FoodMed-OIL), National Institute of Advanced
Industrial Science and Technology (AIST), Tsukuba City 305-8568, Japan
| | - Takashi Arimura
- Open
Innovation Laboratory for Food and Medicinal Resource Engineering
(FoodMed-OIL), National Institute of Advanced
Industrial Science and Technology (AIST), Tsukuba City 305-8568, Japan
| | - Kenichi Tominaga
- Open
Innovation Laboratory for Food and Medicinal Resource Engineering
(FoodMed-OIL), National Institute of Advanced
Industrial Science and Technology (AIST), Tsukuba City 305-8568, Japan
| | - Hiroko Isoda
- Open
Innovation Laboratory for Food and Medicinal Resource Engineering
(FoodMed-OIL), National Institute of Advanced
Industrial Science and Technology (AIST), Tsukuba City 305-8568, Japan
- Alliance
for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City 305-0006, Japan
- Research
and Development Center for Tailor-Made QOL Program, University of Tsukuba, Tsukuba
City 305-0006, Japan
- Faculty
of Life and Environmental Sciences, University
of Tsukuba, Tsukuba City 305-0006, Japan
| |
Collapse
|
3
|
Raja E, Clarin MTRDC, Yanagisawa H. Matricellular Proteins in the Homeostasis, Regeneration, and Aging of Skin. Int J Mol Sci 2023; 24:14274. [PMID: 37762584 PMCID: PMC10531864 DOI: 10.3390/ijms241814274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Matricellular proteins are secreted extracellular proteins that bear no primary structural functions but play crucial roles in tissue remodeling during development, homeostasis, and aging. Despite their low expression after birth, matricellular proteins within skin compartments support the structural function of many extracellular matrix proteins, such as collagens. In this review, we summarize the function of matricellular proteins in skin stem cell niches that influence stem cells' fate and self-renewal ability. In the epidermal stem cell niche, fibulin 7 promotes epidermal stem cells' heterogeneity and fitness into old age, and the transforming growth factor-β-induced protein ig-h3 (TGFBI)-enhances epidermal stem cell growth and wound healing. In the hair follicle stem cell niche, matricellular proteins such as periostin, tenascin C, SPARC, fibulin 1, CCN2, and R-Spondin 2 and 3 modulate stem cell activity during the hair cycle and may stabilize arrector pili muscle attachment to the hair follicle during piloerections (goosebumps). In skin wound healing, matricellular proteins are upregulated, and their functions have been examined in various gain-and-loss-of-function studies. However, much remains unknown concerning whether these proteins modulate skin stem cell behavior, plasticity, or cell-cell communications during wound healing and aging, leaving a new avenue for future studies.
Collapse
Affiliation(s)
- Erna Raja
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| | - Maria Thea Rane Dela Cruz Clarin
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
- Ph.D. Program in Humanics, School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| |
Collapse
|
4
|
Raja E, Changarathil G, Oinam L, Tsunezumi J, Ngo YX, Ishii R, Sasaki T, Imanaka‐Yoshida K, Yanagisawa H, Sada A. The extracellular matrix fibulin 7 maintains epidermal stem cell heterogeneity during skin aging. EMBO Rep 2022; 23:e55478. [PMID: 36278510 PMCID: PMC9724670 DOI: 10.15252/embr.202255478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 12/12/2022] Open
Abstract
Tissue stem cells (SCs) divide infrequently as a protective mechanism against internal and external stresses associated with aging. Here, we demonstrate that slow- and fast-cycling SCs in the mouse skin epidermis undergo distinct aging processes. Two years of lineage tracing reveals that Dlx1+ slow-cycling clones expand into the fast-cycling SC territory, while the number of Slc1a3+ fast-cycling clones gradually declines. Transcriptome analysis further indicate that the molecular properties of each SC population are altered with age. Mice lacking fibulin 7, an extracellular matrix (ECM) protein, show early impairments resembling epidermal SC aging, such as the loss of fast-cycling clones, delayed wound healing, and increased expression of inflammation- and differentiation-related genes. Fibulin 7 interacts with structural ECM and matricellular proteins, and the overexpression of fibulin 7 in primary keratinocytes results in slower proliferation and suppresses differentiation. These results suggest that fibulin 7 plays a crucial role in maintaining tissue resilience and epidermal SC heterogeneity during skin aging.
Collapse
Affiliation(s)
- Erna Raja
- International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of TsukubaTsukubaJapan
| | - Gopakumar Changarathil
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of TsukubaTsukubaJapan
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Lalhaba Oinam
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of TsukubaTsukubaJapan
- School of Integrative and Global MajorsUniversity of TsukubaTsukubaJapan
| | - Jun Tsunezumi
- Department of Pharmaceutical SciencesKyushu University of Health and WelfareMiyazakiJapan
| | - Yen Xuan Ngo
- International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of TsukubaTsukubaJapan
- School of Integrative and Global MajorsUniversity of TsukubaTsukubaJapan
| | - Ryutaro Ishii
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of TsukubaTsukubaJapan
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
- Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Takako Sasaki
- Department of Biochemistry IIOita UniversityOitaJapan
| | - Kyoko Imanaka‐Yoshida
- Department of Pathology and Matrix BiologyMie University Graduate School of MedicineMieJapan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of TsukubaTsukubaJapan
- Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Aiko Sada
- International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of TsukubaTsukubaJapan
| |
Collapse
|
5
|
Kawagishi-Hotta M, Hasegawa S, Hasebe Y, Inoue Y, Okuno R, Arima M, Iwata Y, Sugiura K, Akamatsu H. Increase in Inhibin beta A/Activin-A expression in the human epidermis and the suppression of epidermal stem/progenitor cell proliferation with aging. J Dermatol Sci 2022; 106:150-158. [DOI: 10.1016/j.jdermsci.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/21/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
|
6
|
The Function of Sialidase Revealed by Sialidase Activity Imaging Probe. Int J Mol Sci 2021; 22:ijms22063187. [PMID: 33804798 PMCID: PMC8003999 DOI: 10.3390/ijms22063187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
Sialidase cleaves sialic acid residues from glycans such as glycoproteins and glycolipids. In the brain, desorption of the sialic acid by sialidase is essential for synaptic plasticity, learning and memory and synaptic transmission. BTP3-Neu5Ac has been developed for sensitive imaging of sialidase enzyme activity in mammalian tissues. Sialidase activity in the rat hippocampus detected with BTP3-Neu5Ac increases rapidly by neuronal depolarization. It is presumed that an increased sialidase activity in conjunction with neural excitation is involved in the formation of the neural circuit for memory. Since sialidase inhibits the exocytosis of the excitatory neurotransmitter glutamate, the increased sialidase activity by neural excitation might play a role in the negative feedback mechanism against the glutamate release. Mammalian tissues other than the brain have also been stained with BTP3-Neu5Ac. On the basis of information on the sialidase activity imaging in the pancreas, it was found that sialidase inhibitor can be used as an anti-diabetic drug that can avoid hypoglycemia, a serious side effect of insulin secretagogues. In this review, we discuss the role of sialidase in the brain as well as in the pancreas and skin, as revealed by using a sialidase activity imaging probe. We also present the detection of influenza virus with BTP3-Neu5Ac and modification of BTP3-Neu5Ac.
Collapse
|
7
|
Minami A, Fujita Y, Goto J, Iuchi A, Fujita K, Mikami Y, Shiratori M, Ishii A, Mitragotri S, Iwao Y, Kanazawa H, Kurebayashi Y, Takahashi T, Otsubo T, Ikeda K, Suzuki T. Enhancement of elastin expression by transdermal administration of sialidase isozyme Neu2. Sci Rep 2021; 11:3302. [PMID: 33558588 PMCID: PMC7870814 DOI: 10.1038/s41598-021-82820-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
Reduction of elastin in the skin causes various skin diseases as well as wrinkles and sagging with aging. Sialidase is a hydrolase that cleaves a sialic acid residue from sialoglycoconjugate. Cleavage of sialic acid from microfibrils by the sialidase isozyme Neu1 facilitates elastic fiber assembly. In the present study, we showed that a lower layer of the dermis and muscle showed relatively intense sialidase activity. The sialidase activity in the skin decreased with aging. Choline and geranate (CAGE), one of the ionic liquids, can deliver the sialidase subcutaneously while maintaining the enzymatic activity. The elastin level in the dermis was increased by applying sialidase from Arthrobacter ureafaciens (AUSA) with CAGE on the skin for 5 days in rats and senescence-accelerated mice prone 1 and 8. Sialidase activity in the dermis was considered to be mainly due to Neu2 based on the expression level of sialidase isozyme mRNA. Transdermal administration of Neu2 with CAGE also increased the level of elastin in the dermis. Therefore, not only Neu1 but also Neu2 would be involved in elastic fiber assembly. Transdermal administration of sialidase is expected to be useful for improvement of wrinkles and skin disorders due to the loss of elastic fibers.
Collapse
Affiliation(s)
- Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| | - Yuka Fujita
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Jun Goto
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Ayano Iuchi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Kosei Fujita
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yasuyo Mikami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Mako Shiratori
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Ami Ishii
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Yasunori Iwao
- Laboratory of Synthetic Organic and Medicinal Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Hiroaki Kanazawa
- Department of Functional Anatomy, School of Nursing, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yuuki Kurebayashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Tadamune Otsubo
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, 737-0112, Japan
| | - Kiyoshi Ikeda
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, 737-0112, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| |
Collapse
|
8
|
Sánchez-Melgar A, Albasanz JL, Pallàs M, Martín M. Adenosine Metabolism in the Cerebral Cortex from Several Mice Models during Aging. Int J Mol Sci 2020; 21:ijms21197300. [PMID: 33023260 PMCID: PMC7582336 DOI: 10.3390/ijms21197300] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Adenosine is a neuromodulator that has been involved in aging and neurodegenerative diseases as Alzheimer’s disease (AD). In the present work, we analyzed the possible modulation of purine metabolites, 5’nucleotidase (5′NT) and adenosine deaminase (ADA) activities, and adenosine monophosphate (AMP)-activated protein kinase (AMPK) and its phosphorylated form during aging in the cerebral cortex. Three murine models were used: senescence-accelerated mouse-resistant 1 (SAMR1, normal senescence), senescence-accelerated mouse-prone 8 (SAMP8, a model of AD), and the wild-type C57BL/6J (model of aging) mice strains. Glutamate and excitatory amino acid transporter 2 (EAAT2) levels were also measured in these animals. HPLC, Western blotting, and enzymatic activity evaluation were performed to this aim. 5′-Nucleotidase (5′NT) activity was decreased at six months and recovered at 12 months in SAMP8 while opposite effects were observed in SAMR1 at the same age, and no changes in C57BL/6J mice. ADA activity significantly decreased from 3 to 12 months in the SAMR1 mice strain, while a significant decrease from 6 to 12 months was observed in the SAMP8 mice strain. Regarding purine metabolites, xanthine and guanosine levels were increased at six months in SAMR1 without significant differences in SAMP8 mice. In C57BL/6J mice, inosine and xanthine were increased, while adenosine decreased, from 4 to 24 months. The AMPK level was decreased at six months in SAMP8 without significant changes nor in SAMR1 or C57BL/6J strains. Glutamate and EAAT2 levels were also modulated during aging. Our data show a different modulation of adenosine metabolism participants in the cerebral cortex of these animal models. Interestingly, the main differences between SAMR1 and SAMP8 mice were found at six months of age, SAMP8 being the most affected strain. As SAMP8 is an AD model, results suggest that adenosinergic metabolism is involved in the neurodegeneration of AD.
Collapse
Affiliation(s)
- Alejandro Sánchez-Melgar
- Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, Universidad de Castilla-La Mancha, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), 13071 Ciudad Real, Spain; (A.S.-M.); (M.M.)
| | - José Luis Albasanz
- Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, Universidad de Castilla-La Mancha, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), 13071 Ciudad Real, Spain; (A.S.-M.); (M.M.)
- Correspondence:
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain;
| | - Mairena Martín
- Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, Universidad de Castilla-La Mancha, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), 13071 Ciudad Real, Spain; (A.S.-M.); (M.M.)
| |
Collapse
|
9
|
Oinam L, Changarathil G, Raja E, Ngo YX, Tateno H, Sada A, Yanagisawa H. Glycome profiling by lectin microarray reveals dynamic glycan alterations during epidermal stem cell aging. Aging Cell 2020; 19:e13190. [PMID: 32681764 PMCID: PMC7431822 DOI: 10.1111/acel.13190] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 05/01/2020] [Accepted: 06/06/2020] [Indexed: 12/02/2022] Open
Abstract
Aging in the epidermis is marked by a gradual decline in barrier function, impaired wound healing, hair loss, and an increased risk of cancer. This could be due to age‐related changes in the properties of epidermal stem cells and defective interactions with their microenvironment. Currently, no biochemical tools are available to detect and evaluate the aging of epidermal stem cells. The cellular glycosylation is involved in cell–cell communications and cell–matrix adhesions in various physiological and pathological conditions. Here, we explored the changes of glycans in epidermal stem cells as a potential biomarker of aging. Using lectin microarray, we performed a comprehensive glycan profiling of freshly isolated epidermal stem cells from young and old mouse skin. Epidermal stem cells exhibited a significant difference in glycan profiles between young and old mice. In particular, the binding of a mannose‐binder rHeltuba was decreased in old epidermal stem cells, whereas that of an α2‐3Sia‐binder rGal8N increased. These glycan changes were accompanied by upregulation of sialyltransferase, St3gal2 and St6gal1 and mannosidase Man1a genes in old epidermal stem cells. The modification of cell surface glycans by overexpressing these glycogenes leads to a defect in the regenerative ability of epidermal stem cells in culture. Hence, our study suggests the age‐related global alterations in cellular glycosylation patterns and its potential contribution to the stem cell function. These glycan modifications detected by lectins may serve as molecular markers for aging, and further functional studies will lead us to a better understanding of the process of skin aging.
Collapse
Affiliation(s)
- Lalhaba Oinam
- Life Science Center for Survival Dynamics Tsukuba Advanced Research Alliance (TARA) University of Tsukuba Tsukuba Japan
- Ph.D. Program in Human Biology School of Integrative and Global Majors University of Tsukuba Tsukuba Japan
| | - Gopakumar Changarathil
- Life Science Center for Survival Dynamics Tsukuba Advanced Research Alliance (TARA) University of Tsukuba Tsukuba Japan
- Graduate School of Comprehensive Human Sciences University of Tsukuba Tsukuba Japan
| | - Erna Raja
- Life Science Center for Survival Dynamics Tsukuba Advanced Research Alliance (TARA) University of Tsukuba Tsukuba Japan
- International Research Center for Medical Sciences (IRCMS) Kumamoto University Kumamoto Japan
| | - Yen Xuan Ngo
- Life Science Center for Survival Dynamics Tsukuba Advanced Research Alliance (TARA) University of Tsukuba Tsukuba Japan
- Ph.D. Program in Human Biology School of Integrative and Global Majors University of Tsukuba Tsukuba Japan
| | - Hiroaki Tateno
- Life Science Center for Survival Dynamics Tsukuba Advanced Research Alliance (TARA) University of Tsukuba Tsukuba Japan
- Cellular and Molecular Biotechnology Research Institute National Institute of Advanced Industrial Science and Technology Tsukuba Japan
| | - Aiko Sada
- Life Science Center for Survival Dynamics Tsukuba Advanced Research Alliance (TARA) University of Tsukuba Tsukuba Japan
- International Research Center for Medical Sciences (IRCMS) Kumamoto University Kumamoto Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics Tsukuba Advanced Research Alliance (TARA) University of Tsukuba Tsukuba Japan
- Faculty of Medicine University of Tsukuba Tsukuba Japan
| |
Collapse
|