1
|
Mares V, Reiter GS, Gumpinger M, Leigang O, Bogunovic H, Barthelmes D, Nehemy MB, Schmidt‐Erfurth U. Correlation of retinal fluid and photoreceptor and RPE loss in neovascular AMD by automated quantification, a real-world FRB! analysis. Acta Ophthalmol 2025; 103:295-303. [PMID: 39540601 PMCID: PMC11986395 DOI: 10.1111/aos.16799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE To quantify ellipsoid zone (EZ) loss during anti-VEGF therapy for neovascular age-related macular degeneration (nAMD) and correlate these findings with nAMD disease activity using artificial intelligence-based algorithms. METHODS Spectral domain optical coherence tomography (Spectralis, Heidelberg Engineering) images from nAMD treatment-naïve patients from the Fight Retinal Blindness! (FRB!) Registry from Zürich, Switzerland were processed at baseline and over 3 years of follow-up. An approved deep learning algorithm (Fluid Monitor, RetInSight) was used to automatically quantify intraretinal fluid (IRF), subretinal fluid (SRF) and pigment epithelial detachment (PED). An ensemble U-net deep learning algorithm was used to automated quantify EZ integrity based on EZ layer thickness. The impact of fluid volumes on EZ thickness and late-stages outcomes were calculated using Wilcoxon rank-sum tests, a linear mixed model and a longitudinal panel regression model. RESULTS Two hundred and eleven eyes from 158 patients were included. The mean ± SD EZ loss area in the central 6 mm was 1.81 ± 2.68 mm2 at baseline and reached 6.21 ± 6.15 mm2 at month 36. Higher fluid volumes (top 25%) of IRF and PED in the central 1 and 6 mm of the macula were significantly associated with more advanced EZ thinning and loss compared to the low fluid volume subgroup. The high SRF subgroup in the linear regression model showed no statistically significant association with EZ integrity in the central macula; however, the longitudinal analysis revealed an increased EZ thickness with no additional loss. CONCLUSIONS Intraretinal fluid and PED volumes and their resolution pattern have an impact on alteration of the underlying EZ layer. AI-supported quantifications are helpful in quantifying early signs of macular atrophy and providing individual risk profiles as a basis for tailored therapies for optimized visual outcomes.
Collapse
Affiliation(s)
- Virginia Mares
- Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and OptometryMedical University of ViennaViennaAustria
- Department of OphthalmologyFederal University of Minas GeraisBelo HorizonteBrazil
| | - Gregor S. Reiter
- Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and OptometryMedical University of ViennaViennaAustria
| | - Markus Gumpinger
- Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and OptometryMedical University of ViennaViennaAustria
| | | | - Hrvoje Bogunovic
- Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and OptometryMedical University of ViennaViennaAustria
| | - Daniel Barthelmes
- Department of OphthalmologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Marcio B. Nehemy
- Department of OphthalmologyFederal University of Minas GeraisBelo HorizonteBrazil
| | - Ursula Schmidt‐Erfurth
- Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and OptometryMedical University of ViennaViennaAustria
| |
Collapse
|
2
|
Ebner LJA, Karademir D, Nötzli S, Wögenstein GM, Samardzija M, Grimm C. Oxygen-dependent alternative mRNA splicing and a cone-specific motor protein revealed by single-cell RNA sequencing in hypoxic retinas. Exp Eye Res 2025; 251:110190. [PMID: 39638278 DOI: 10.1016/j.exer.2024.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Restricted oxygen supply in the aging eye may lead to hypoxic conditions in the outer retina and contribute not only to physiological aging but also to nonhereditary degenerative retinal diseases. To understand the hypoxic response of specific retinal cell types, we performed single-cell RNA sequencing of retinas isolated from mice exposed to hypoxia. Significantly upregulated expression of marker genes in hypoxic clusters confirmed a general transcriptional response to hypoxia. By focusing on the hypoxic response in photoreceptors, we identified and confirmed a kinesin motor protein (Kif4) that was specifically and strongly induced in hypoxic cones. In contrast, RNA-binding proteins Rbm3 and Cirbp were differentially expressed across clusters but demonstrated isoform switching in hypoxia. The resulting short variants of these gene transcripts are connected to epitranscriptomic regulation, a notion supported by the differential expression of writers, readers and erasers of m6A RNA methylations in the hypoxic retina. Our data indicate that retinal cells adapt to hypoxic conditions by adjusting their transcriptome at various levels including gene expression, alternative splicing and the epitranscriptome. Adaptational processes may be cell-type specific as exemplified by the cone-specific upregulation of Kif4 or general like alternative splicing of RNA binding proteins.
Collapse
Affiliation(s)
- Lynn J A Ebner
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland
| | - Duygu Karademir
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland
| | - Sarah Nötzli
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland
| | - Gabriele M Wögenstein
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Marijana Samardzija
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland
| | - Christian Grimm
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
3
|
Cheong KX, Li H, Tham YC, Teo KYC, Tan ACS, Schmetterer L, Wong TY, Cheung CMG, Cheng CY, Fan Q. Relationship Between Retinal Layer Thickness and Genetic Susceptibility to Age-Related Macular Degeneration in Asian Populations. OPHTHALMOLOGY SCIENCE 2023; 3:100396. [PMID: 38025159 PMCID: PMC10630670 DOI: 10.1016/j.xops.2023.100396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/12/2023] [Accepted: 08/30/2023] [Indexed: 12/01/2023]
Abstract
Purpose For OCT retinal thickness measurements to be used as a prodromal age-related macular degeneration (AMD) risk marker, the 3-dimensional (3D) topographic variation of the relationship between genetic susceptibility to AMD and retinal thickness needs to be assessed. We aimed to evaluate individual retinal layer thickness changes and topography at the macula that are associated with AMD genetic susceptibility. Design Genetic association study. Participants A total of 1579 healthy participants (782 Chinese, 353 Malays, and 444 Indians) from the multiethnic Singapore Epidemiology of Eye Diseases study were included. Methods Spectral-domain OCT and automatic segmentation of individual retinal layers were performed to produce 10 retinal layer thickness measurements at each ETDRS subfield, producing 3D topographic information. Age-related macular degeneration genetic susceptibility was represented via single nucleotide polymorphisms (SNPs) and aggregated via whole genome (overall) and pathway-specific age-related macular degeneration polygenic risk score (PRSAMD). Main Outcome Measures Associations of individual SNPs, overall PRSAMD, and pathway-specific PRSAMD with retinal thickness were analyzed by individual retinal layer and ETDRS subfield. Results CFH rs10922109, ARMS2-HTRA1 rs3750846, and LIPC rs2043085 were the top AMD susceptibility SNPs associated with retinal thickness of individual layers (P < 1.67 × 10-3), all at the central subfield. The overall PRSAMD was most associated with thinner L9 (outer segment photoreceptor/retinal pigment epithelium complex) thickness at the central subfield (β = -0.63 μm; P = 5.45 × 10-9). Pathway-specific PRSAMD for the complement cascade (β = -0.53 μm; P = 9.42 × 10-7) and lipoprotein metabolism (β = -0.05 μm; P = 0.0061) were associated with thinner photoreceptor layers (L9 and L7 [photoreceptor inner/outer segments], respectively) at the central subfield. The mean PRSAMD score was larger among Indians compared with that of the Chinese and had the thinnest thickness at the L9 central subfield (β = -1.00 μm; P = 2.91 × 10-7; R2 = 5.5%). Associations at other retinal layers and ETDRS regions were more heterogeneous. Conclusions Overall genetic susceptibility to AMD and the aggregate effects of the complement cascade and lipoprotein metabolism pathway are associated most significantly with L7 and L9 photoreceptor thinning at the central macula in healthy individuals. Photoreceptor thinning has potential to be a prodromal AMD risk marker, and topographic variation should be considered. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Kai Xiong Cheong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Hengtong Li
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Yih Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kelvin Yi Chong Teo
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Anna Cheng Sim Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Tien Yin Wong
- Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Chui Ming Gemmy Cheung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qiao Fan
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
4
|
Heloterä H, Kaarniranta K. A Linkage between Angiogenesis and Inflammation in Neovascular Age-Related Macular Degeneration. Cells 2022; 11:cells11213453. [PMID: 36359849 PMCID: PMC9654543 DOI: 10.3390/cells11213453] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of visual impairment in the aging population with a limited understanding of its pathogenesis and the number of patients are all the time increasing. AMD is classified into two main forms: dry and neovascular AMD (nAMD). Dry AMD is the most prevalent form (80–90%) of AMD cases. Neovascular AMD (10–20% of AMD cases) is treated with monthly or more sparsely given intravitreal anti-vascular endothelial growth factor inhibitors, but unfortunately, not all patients respond to the current treatments. A clinical hallmark of nAMD is choroidal neovascularization. The progression of AMD is initially characterized by atrophic alterations in the retinal pigment epithelium, as well as the formation of lysosomal lipofuscin and extracellular drusen deposits. Cellular damage caused by chronic oxidative stress, protein aggregation and inflammatory processes may lead to advanced geographic atrophy and/or choroidal neovascularization and fibrosis. Currently, it is not fully known why different AMD phenotypes develop. In this review, we connect angiogenesis and inflammatory regulators in the development of nAMD and discuss therapy challenges and hopes.
Collapse
Affiliation(s)
- Hanna Heloterä
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Correspondence:
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| |
Collapse
|
5
|
Foster WJ, Berg BW, Luminais SN, Hadayer A, Schaal S. Computational Modeling of Ophthalmic Procedures: Computational Modeling of Ophthalmic Procedures. Am J Ophthalmol 2022; 241:87-107. [PMID: 35358485 PMCID: PMC9444883 DOI: 10.1016/j.ajo.2022.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/16/2022] [Accepted: 03/17/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE To explore how finite-element calculations can continue to contribute to diverse problems in ophthalmology and vision science, we describe our recent work on modeling the force on the peripheral retina in intravitreal injections and how that force increases with shorter, smaller gauge needles. We also present a calculation that determines the location and stress on a retinal pigment epithelial detachment during an intravitreal injection, the possibility that stress induced by the injection can lead to a tear of the retinal pigment epithelium. BACKGROUND Advanced computational models can provide a critical insight into the underlying physics in many surgical procedures, which may not be intuitive. METHODS The simulations were implemented using COMSOL Multiphysics. We compared the monkey retinal adhesive force of 18 Pa with the results of this study to quantify the maximum retinal stress that occurs during intravitreal injections. CONCLUSIONS Currently used 30-gauge needles produce stress on the retina during intravitreal injections that is only slightly below the limit that can create retinal tears. As retina specialists attempt to use smaller needles, the risk of complications may increase. In addition, we find that during an intravitreal injection, the stress on the retina in a pigment epithelial detachment occurs at the edge of the detachment (found clinically), and the stress is sufficient to tear the retina. These findings may guide physicians in future clinical research. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
Affiliation(s)
- William J Foster
- From the Department of Bioengineering (W.J.F.), Lewes Katz School of Medicine (B.W.B., S.N.L.), Temple University, Philadelphia, Pennsylvania, USA; Altasciences, Montréal, Québec, Canada (W.J.F.).
| | - Brian W Berg
- From the Department of Bioengineering (W.J.F.), Lewes Katz School of Medicine (B.W.B., S.N.L.), Temple University, Philadelphia, Pennsylvania, USA
| | - Steven N Luminais
- From the Department of Bioengineering (W.J.F.), Lewes Katz School of Medicine (B.W.B., S.N.L.), Temple University, Philadelphia, Pennsylvania, USA
| | - Amir Hadayer
- Department of Ophthalmology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (A.H.)
| | - Shlomit Schaal
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts, USA (S.S.)
| |
Collapse
|
6
|
Zekavat SM, Sekimitsu S, Ye Y, Raghu V, Zhao H, Elze T, Segrè AV, Wiggs JL, Natarajan P, Del Priore L, Zebardast N, Wang JC. Photoreceptor Layer Thinning Is an Early Biomarker for Age-Related Macular Degeneration: Epidemiologic and Genetic Evidence from UK Biobank OCT Data. Ophthalmology 2022; 129:694-707. [PMID: 35149155 PMCID: PMC9134644 DOI: 10.1016/j.ophtha.2022.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Despite widespread use of OCT, an early-stage imaging biomarker for age-related macular degeneration (AMD) has not been identified. Pathophysiologically, the timing of drusen accumulation in relationship to photoreceptor degeneration in AMD remains unclear, as are the inherited genetic variants contributing to these processes. Herein, we jointly analyzed OCT, electronic health record data, and genomic data to characterize the time sequence of changes in retinal layer thicknesses in AMD, as well as epidemiologic and genetic associations between retinal layer thicknesses and AMD. DESIGN Cohort study. PARTICIPANTS Forty-four thousand eight hundred twenty-three individuals from the UK Biobank (enrollment age range, 40-70 years; 54% women; median follow-up, 10 years). METHODS The Topcon Advanced Boundary Segmentation algorithm was used for retinal layer segmentation. We associated 9 retinal layer thicknesses with prevalent AMD (present at enrollment) in a logistic regression model and with incident AMD (diagnosed after enrollment) in a Cox proportional hazards model. Next, we associated AMD-associated genetic alleles, individually and as a polygenic risk score (PRS), with retinal layer thicknesses. All analyses were adjusted for age, age-squared (age2), sex, smoking status, and principal components of ancestry. MAIN OUTCOME MEASURES Prevalent and incident AMD. RESULTS Photoreceptor segment (PS) thinning was observed throughout the lifespan of individuals analyzed, whereas retinal pigment epithelium (RPE) and Bruch's membrane (BM) complex thickening started after 57 years of age. Each standard deviation (SD) of PS thinning and RPE-BM complex thickening was associated with incident AMD (PS: hazard ratio [HR], 1.35; 95% confidence interval [CI], 1.23-1.47; P = 3.7 × 10-11; RPE-BM complex: HR, 1.14; 95% CI, 1.06-1.22; P = 0.00024). The AMD PRS was associated with PS thinning (β, -0.21 SD per twofold genetically increased risk of AMD; 95% CI, -0.23 to -0.19; P = 2.8 × 10-74), and its association with RPE-BM complex was U-shaped (thinning with AMD PRS less than the 92nd percentile and thickening with AMD PRS more than the 92nd percentile). The loci with strongest support for genetic correlation were AMD risk-raising variants Complement Factor H (CFH):rs570618-T, CFH:rs10922109-C, and Age-Related Maculopathy Susceptibility 2 (ARMS2)/High-Temperature Requirement Serine Protease 1 (HTRA1):rs3750846-C on PS thinning and SYN3/Tissue Inhibitor of Metalloprotease 3 (TIMP3):rs5754227-T on RPE-BM complex thickening. CONCLUSIONS Epidemiologically, PS thinning precedes RPE-BM complex thickening by decades and is the retinal layer most strongly predictive of future AMD risk. Genetically, AMD risk variants are associated with decreased PS thickness. Overall, these findings support PS thinning as an early-stage biomarker for future AMD development.
Collapse
Affiliation(s)
- Seyedeh Maryam Zekavat
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, Connecticut; Computational Biology & Bioinformatics Program, Yale University, New Haven, Connecticut; Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Yixuan Ye
- Computational Biology & Bioinformatics Program, Yale University, New Haven, Connecticut
| | - Vineet Raghu
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hongyu Zhao
- Computational Biology & Bioinformatics Program, Yale University, New Haven, Connecticut; School of Public Health, Yale University, New Haven, Connecticut
| | - Tobias Elze
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Ayellet V Segrè
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Pradeep Natarajan
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lucian Del Priore
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, Connecticut
| | - Nazlee Zebardast
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Jay C Wang
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, Connecticut; Northern California Retina Vitreous Associates, Mountain View, California.
| |
Collapse
|
7
|
Outer Retinal Layer Thickening Predicts the Onset of Exudative Neovascular Age-Related Macular Degeneration. Am J Ophthalmol 2021; 231:19-27. [PMID: 34058152 DOI: 10.1016/j.ajo.2021.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE To assess changes in outer retinal layer (ORL) thickness before the development of exudative macular neovascularization (MNV) in eyes with age-related macular degeneration. DESIGN Retrospective observational case series. METHODS Eyes with age-related macular degeneration that eventually developed exudative MNV followed with sequential optical coherence tomography for ≥2 years before the exudation occurred were enrolled. The ORL thickness was automatically calculated by the optical coherence tomography software for each sector of the early treatment diabetic retinopathy study map at each follow-up visit. The ORL thickness change from baseline to the day when the exudative MNV developed was compared between sectors that eventually developed exudative MNV and those that did not. RESULTS Forty-seven eyes (47 patients) were included. At baseline (24 ± 3 months before exudative MNV), mean (standard deviation) ORL thickness of sectors that eventually developed exudative MNV was similar to that of sectors that did not (85.2 [8.2] µm vs 86.8 [5.7] µm, P = .08). ORL thickness significantly increased in sectors that developed exudative MNV compared with those that did not (+5.8 [10.4] µm vs -2.8 [3.6] µm, P < .01). The regression model based on these data predicted an increase in ORL thickness from baseline of +4.2% 55 days and +11.1% 30 days before exudative MNV was detected. The ORL thickness of areas that did not develop exudative MNV did not change. CONCLUSION Thickening of the ORL begins in the area where exudative MNV will develop long before the exudation, accelerating significantly in the last 2 months. The occurrence of exudative MNV could be predicted by 2 months using this simple analysis.
Collapse
|
8
|
CDC-Net: Cascaded decoupled convolutional network for lesion-assisted detection and grading of retinopathy using optical coherence tomography (OCT) scans. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.103030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Transcriptomic analysis of the mouse retina after acute and chronic normobaric and hypobaric hypoxia. Sci Rep 2021; 11:16666. [PMID: 34404875 PMCID: PMC8371159 DOI: 10.1038/s41598-021-96150-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
Oxygen delivery to the retinal pigment epithelium and the outer retina is essential for metabolism, function, and survival of photoreceptors. Chronically reduced oxygen supply leads to retinal pathologies in patients and causes age-dependent retinal degeneration in mice. Hypoxia can result from decreased levels of inspired oxygen (normobaric hypoxia) or reduced barometric pressure (hypobaric hypoxia). Since the response of retinal cells to chronic normobaric or hypobaric hypoxia is mostly unknown, we examined the effect of six hypoxic conditions on the retinal transcriptome and photoreceptor morphology. Mice were exposed to short- and long-term normobaric hypoxia at 400 m or hypobaric hypoxia at 3450 m above sea level. Longitudinal studies over 11 weeks in normobaric hypoxia revealed four classes of genes that adapted differentially to the hypoxic condition. Seventeen genes were specifically regulated in hypobaric hypoxia and may affect the structural integrity of the retina, resulting in the shortening of photoreceptor segment length detected in various hypoxic groups. This study shows that retinal cells have the capacity to adapt to long-term hypoxia and that consequences of hypobaric hypoxia differ from those of normobaric hypoxia. Our datasets can be used as references to validate and compare retinal disease models associated with hypoxia.
Collapse
|
10
|
Verticchio Vercellin AC, Harris A, Chiaravalli G, Sacco R, Siesky B, Ciulla T, Guidoboni G. Physics-based modeling of Age-related Macular Degeneration-A theoretical approach to quantify retinal and choroidal contributions to macular oxygenation. Math Biosci 2021; 339:108650. [PMID: 34197878 DOI: 10.1016/j.mbs.2021.108650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
We developed a mathematical model to characterize how macular oxygenation may be affected by abnormalities in the retinal and choroidal oxygen supplies. The macular region is modeled as a layered structure including: ganglion cell and nerve fiber layers, inner plexiform layer, inner nuclear layer, outer plexiform layer, outer nuclear layer, inner segment of photoreceptors layer and retinal pigmented epithelium. Each layer is characterized by specific levels of oxygen consumption. The vitreous and the choroid are located at the macula boundary and provide oxygen via boundary conditions of Dirichlet type. The three capillary plexi (superficial, intermediate, and deep) of the retinal circulation pierce the macular layers and provide oxygen via a volumetric source that depends on the retinal blood flow. Oxygen profiles through the macular tissue are calculated by simulating the balance among oxygen supply, consumption and diffusion in: (a) physiological baseline conditions; (b) retinal blood flow reduced by 10%, 30% and 50% with respect to baseline; (c) choroidal oxygen level diminished by 10%, 30% and 50% with respect to baseline. Model simulations predict that: (1) the oxygenation of the foveal avascular zone is not affected by reduction in retinal blood flow; (2) a reduction in choroidal oxygen supply significantly affects the outer layers, especially the photoreceptors and outer nuclear layers; (3) the impact of reduction in choroidal oxygen supply is larger in the region more proximal to the macular center; (4) the impact of reduction in retinal blood flow is larger in the region more proximal to the macular periphery. The proposed mathematical model suggests that changes in retinal and choroidal oxygen supplies impact the oxygenation of the macular tissue differentially. These results may help better understand the pathogenesis of macular degeneration.
Collapse
Affiliation(s)
| | - Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.
| | - Greta Chiaravalli
- Italian Institute of Technology, Milano, Italy; Dipartimento di Fisica, Politecnico di Milano, Italy
| | - Riccardo Sacco
- Dipartimento di Matematica, Politecnico di Milano, Italy
| | - Brent Siesky
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Thomas Ciulla
- Vitreoretinal Medicine and Surgery, Midwest Eye Institute, Indianapolis, IN 46290, United States of America
| | - Giovanna Guidoboni
- Department of Electrical Engineering and Computer Science, Department of Mathematics, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
11
|
Chen W, He S, Xiang D. Hypoxia-induced retinal pigment epithelium cell-derived bFGF promotes the migration and angiogenesis of HUVECs through regulating TGF-β1/smad2/3 pathway. Gene 2021; 790:145695. [PMID: 33964379 DOI: 10.1016/j.gene.2021.145695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/18/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
Hypoxia promotes the secretion of basic fibroblast growth factor (bFGF) in retinal pigment epithelium (RPE), which plays an important part in retinopathy of prematurity (ROP). This study preliminarily explored the effect of hypoxia-induced RPE-derived bFGF on the biological functions of human umbilical vein endothelial cells (HUVECs). After cell culture in hypoxia conditions, the cell viability, apoptosis, and the expressions of bFGF and vascular endothelial growth factor A (VEGFA) in human RPEs were detected by 3-(4, 5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, western blot, RT-qPCR, or ELISA. The HUVECs were transfected with siRNA for bFGF (sibFGF) or transforming growth factor-β1 (TGF-β1) (siTGF-β1) and grown in the supernatant RPE under normoxia conditions or hypoxia conditions to further determine the cell viability, migration, angiogenesis, and the expressions of TGF-β1, p-smad2/3, and smad2/3 in the cells by performing MTT, transwell, tube formation, Western blot, or RT-qPCR. Hypoxia culture decreased the cell viability and promoted the apoptosis as well as the expressions of bFGF and VEGFA in RPEs. In both normoxia and hypoxia conditions, RPE-derived bFGF increased the cell viability, migration, angiogenesis, and the expressions of TGF-β1 and p-smad2/3 in the HUVECs, with hypoxia-induced RPE-derived bFGF showing a stronger effect than bFGF induced by normoxia. However, sibFGF reversed the effects caused by RPE-derived bFGF. Moreover, siTGF-β1 decreased the high cell viability, migration and angiogenesis of HUVECs, and downregulated the expressions of TGF-β1 and phosphorylated (p)-smad2/3 upregulated by hypoxia-induced RPE-derived bFGF. Hypoxia-induced RPE-derived bFGF could promote the migration and angiogenesis of HUVECs through regulating TGF-β1/smad2/3 pathway.
Collapse
Affiliation(s)
- Wensi Chen
- Department of Pediatric Ophthalmology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China
| | - Shiping He
- Department of Ophthalmology, Aier Eye Hospital, China
| | - Daoman Xiang
- Department of Pediatric Ophthalmology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China.
| |
Collapse
|
12
|
Bonadiman BDSR, Chaves C, Assmann CE, Weis GCC, Alves ADO, Gindri AL, Chaves C, Cruz IBMD, Zamoner A, Bagatini MD. Tucumã ( Astrocaryum aculeatum) Prevents Oxidative and DNA Damage to Retinal Pigment Epithelium Cells. J Med Food 2021; 24:1050-1057. [PMID: 33769097 DOI: 10.1089/jmf.2020.0171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Eye diseases have a negative impact on the eyesight quality of the world population. The age-related macular degeneration (AMD) draws special attention since it is a chronic disorder characterized by oxidative and inflammatory damage to the retinal epithelial pigment, which triggers progressive vision loss. In the Brazilian Amazon, Astrocaryum aculeatum is an Amazonian fruit (Tucumã) used by riverside communities in traditional medicine to treat a number of ailments. These communities have recently shown to have increased longevity and reduced prevalence of age-related morbidity. Thus, the aim of this research was to chemically characterize and analyze the in vitro antioxidant effect and molecular damage prevention of the Tucumã ethanolic extract in retinal pigment epithelium (RPE) cells in a model for AMD. The extract was chemically characterized by ultra-high-performance liquid chromatography (HPLC) coupled with diode-array detection and mass spectrophotometry (HPLC-DAD-MS). In vitro protocols were performed, and the cytopreventive effect of Tucumã on RPE cells exposed to high concentrations of superoxide anion, an oxidant and genotoxic molecule, as well as the effect of Tucumã extract on oxidative and molecular makers were assessed. Biochemical and flow cytometry analyses were conducted in these protocols. The extract presents high concentrations of caffeic acid, gallic acid, catechin, luteolin, quercetin, and rutin. Treatment did not show cytotoxic effects in cells treated only with extract at 50 μg/mL. In fact, it improved cell viability and was able to prevent necrosis and apoptosis, and oxidative and molecular damage was significantly reduced. In summary, Tucumã is an important Amazon fruit, which seems to contribute significantly to improve human health conditions, as our findings suggest that its extract has a relevant chemical matrix rich in antioxidant molecules, and its consumption could improve eye health and contribute to prevention against oxidative stress through cytoprevention, reactive oxygen species reduction, and maintenance of DNA integrity in retinal pigment epithelium (RPE) cells.
Collapse
Affiliation(s)
| | - Cláudia Chaves
- Department of Ophthalmology, Health Science Center, Nilton Lins University, Manaus, Amazonas, Brazil
| | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Audrei de Oliveira Alves
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Amanda Leitão Gindri
- Department of Biological Sciences Center, Integrated Regional University of Upper Uruguay and the Missions (URI), Santiago, Brazil
| | - Cláudio Chaves
- Department of Ophthalmology, Ophthalmology Institute of Manaus, Manaus, Amazonas, Brazil
| | | | - Ariane Zamoner
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Campus Chapecó, Federal University of Fronteira Sul, Chapecó, Brazil
| |
Collapse
|
13
|
Frankhauser DE, Jovanovic‐Talisman T, Lai L, Yee LD, Wang LV, Mahabal A, Geradts J, Rockne RC, Tomsic J, Jones V, Sistrunk C, Miranda‐Carboni G, Dietze EC, Erhunmwunsee L, Hyslop T, Seewaldt VL. Spatiotemporal strategies to identify aggressive biology in precancerous breast biopsies. WIREs Mech Dis 2021; 13:e1506. [PMID: 33001587 PMCID: PMC8544796 DOI: 10.1002/wsbm.1506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 01/12/2023]
Abstract
Over 90% of breast cancer is cured; yet there remain highly aggressive breast cancers that develop rapidly and are extremely difficult to treat, much less prevent. Breast cancers that rapidly develop between breast image screening are called "interval cancers." The efforts of our team focus on identifying multiscale integrated strategies to identify biologically aggressive precancerous breast lesions. Our goal is to identify spatiotemporal changes that occur prior to development of interval breast cancers. To accomplish this requires integration of new technology. Our team has the ability to perform single cell in situ transcriptional profiling, noncontrast biological imaging, mathematical analysis, and nanoscale evaluation of receptor organization and signaling. These technological innovations allow us to start to identify multidimensional spatial and temporal relationships that drive the transition from biologically aggressive precancer to biologically aggressive interval breast cancer. This article is categorized under: Cancer > Computational Models Cancer > Molecular and Cellular Physiology Cancer > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- David E. Frankhauser
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | | | - Lily Lai
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Lisa D. Yee
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Lihong V. Wang
- Department of Medical EngineeringCalifornia Institute of TechnologyPasadena, CaliforniaUSA
| | - Ashish Mahabal
- Center for Data Driven DiscoveryCalifornia Institute of TechnologyPasadena, CaliforniaUSA
| | - Joseph Geradts
- Department of PathologyDuke UniversityDurhamNorth CarolinaUSA
| | - Russell C. Rockne
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Jerneja Tomsic
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Veronica Jones
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Christopher Sistrunk
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | | | - Eric C. Dietze
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Loretta Erhunmwunsee
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Terry Hyslop
- Department of BiostatisticsDuke UniversityDurhamNorth CarolinaUSA
| | - Victoria L. Seewaldt
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| |
Collapse
|
14
|
Edwards DA, Emerick B, Kondic AG, Kiradjiev K, Raymond C, Zyskin M. Mathematical models for the effect of anti-vascular endothelial growth factor on visual acuity. J Math Biol 2020; 81:1397-1428. [PMID: 32968840 DOI: 10.1007/s00285-020-01544-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/09/2020] [Accepted: 09/13/2020] [Indexed: 11/27/2022]
Abstract
The standard of care treatment for neovascular age-related macular degeneration, delivered as ocular injection, is based on anti-vascular endothelial growth factor (anti-VEGF). The course of treatment may need to be modified quickly for certain patients based on their response. Models that track both the concentration and the response to an anti-VEGF treatment are presented. The specific focus is to assess the existence of analytical solutions for the different types of models. Both an ODE-based model and a map-based model illustrate the dependence of the solution on various biological parameters and allow the measurement of patient-specific parameters from experimental data. A PDE-based model incorporates diffusive effects. The results are consistent with observed values, and could provide a framework for practitioners to understand the effect of the therapy on the progression of the disease in both responsive and non-responsive patients.
Collapse
Affiliation(s)
- David A Edwards
- Department of Mathematical Sciences, University of Delaware, Newark, DE, 19716, USA.
| | - Brooks Emerick
- Department of Mathematics, Kutztown University, Kutztown, PA, 19530, USA
| | | | | | - Christopher Raymond
- Department of Mathematical Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Maxim Zyskin
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| |
Collapse
|
15
|
Kauppinen A, Kaarniranta K, Salminen A. Potential Role of Myeloid-Derived Suppressor Cells (MDSCs) in Age-Related Macular Degeneration (AMD). Front Immunol 2020; 11:384. [PMID: 32265903 PMCID: PMC7099658 DOI: 10.3389/fimmu.2020.00384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/18/2020] [Indexed: 12/23/2022] Open
Abstract
Myeloid cells, such as granulocytes/neutrophils and macrophages, have responsibilities that include pathogen destruction, waste material degradation, or antigen presentation upon inflammation. During persistent stress, myeloid cells can remain partially differentiated and adopt immunosuppressive functions. Myeloid-derived suppressor cells (MDSCs) are primarily beneficial upon restoring homeostasis after inflammation. Because of their ability to suppress adaptive immunity, MDSCs can also ameliorate autoimmune diseases and semi-allogenic responses, e.g., in pregnancy or transplantation. However, immunosuppression is not always desirable. In certain conditions, such as cancer or chronically inflamed tissue, MDSCs prevent restorative immune responses and thereby aggravate disease progression. Age-related macular degeneration (AMD) is the most common disease in Western countries that severely threatens the central vision of aged people. The pathogenesis of this multifactorial disease is not fully elucidated, but inflammation is known to participate in both dry and wet AMD. In this paper, we provide an overview about the potential role of MDSCs in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Anu Kauppinen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
16
|
Sinha T, Ikelle L, Naash MI, Al-Ubaidi MR. The Intersection of Serine Metabolism and Cellular Dysfunction in Retinal Degeneration. Cells 2020; 9:cells9030674. [PMID: 32164325 PMCID: PMC7140600 DOI: 10.3390/cells9030674] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
In the past, the importance of serine to pathologic or physiologic anomalies was inadequately addressed. Omics research has significantly advanced in the last two decades, and metabolomic data of various tissues has finally brought serine metabolism to the forefront of metabolic research, primarily for its varied role throughout the central nervous system. The retina is one of the most complex neuronal tissues with a multitude of functions. Although recent studies have highlighted the importance of free serine and its derivatives to retinal homeostasis, currently few reviews exist that comprehensively analyze the topic. Here, we address this gap by emphasizing how and why the de novo production and demand for serine is exceptionally elevated in the retina. Many basic physiological functions of the retina require serine. Serine-derived sphingolipids and phosphatidylserine for phagocytosis by the retinal pigment epithelium (RPE) and neuronal crosstalk of the inner retina via D-serine require proper serine metabolism. Moreover, serine is involved in sphingolipid–ceramide balance for both the outer retina and the RPE and the reductive currency generation for the RPE via serine biosynthesis. Finally and perhaps the most vital part of serine metabolism is free radical scavenging in the entire retina via serine-derived scavengers like glycine and GSH. It is hard to imagine that a single tissue could have such a broad and extensive dependency on serine homeostasis. Any dysregulation in serine mechanisms can result in a wide spectrum of retinopathies. Therefore, most critically, this review provides a strong argument for the exploration of serine-based clinical interventions for retinal pathologies.
Collapse
Affiliation(s)
| | | | - Muna I. Naash
- Correspondence: (M.I.N.); (M.R.A.-U.); Tel.: +1-713-743-1651 (M.I.N.); Fax: +1-713-743-0226 (M.I.N.)
| | - Muayyad R. Al-Ubaidi
- Correspondence: (M.I.N.); (M.R.A.-U.); Tel.: +1-713-743-1651 (M.I.N.); Fax: +1-713-743-0226 (M.I.N.)
| |
Collapse
|
17
|
The Expression of Decidual Protein Induced by Progesterone (DEPP) is Controlled by Three Distal Consensus Hypoxia Responsive Element (HRE) in Hypoxic Retinal Epithelial Cells. Genes (Basel) 2020; 11:genes11010111. [PMID: 31963726 PMCID: PMC7016973 DOI: 10.3390/genes11010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
Hypoxia affects the development and/or progression of several retinopathies. Decidual protein induced by progesterone (DEPP) has been identified as a hypoxia-responsive gene that may be part of cellular pathways such as autophagy and connected to retinal diseases. To increase our understanding of DEPP regulation in the eye, we defined its expression pattern in mouse and human retina and retinal pigment epithelium (RPE). Interestingly, DEPP expression was increased in an age-dependent way in the central human RPE. We showed that DEPP was regulated by hypoxia in the mouse retina and eyecup and that this regulation was controlled by hypoxia-inducible transcription factors 1 and 2 (HIF1 and HIF2). Furthermore, we identified three hypoxia response elements (HREs) about 3.5 kb proximal to the transcriptional start site that were responsible for hypoxic induction of DEPP in a human RPE cell line. Comparative genomics analysis suggested that one of the three HREs resides in a highly conserved genomic region. Collectively, we defined the molecular elements controlling hypoxic induction of DEPP in an RPE cell line, and provided evidence for an enrichment of DEPP in the aged RPE of human donors. This makes DEPP an interesting gene to study with respect to aging and age-related retinal pathologies.
Collapse
|
18
|
Hif1a and Hif2a can be safely inactivated in cone photoreceptors. Sci Rep 2019; 9:16121. [PMID: 31695081 PMCID: PMC6834587 DOI: 10.1038/s41598-019-52508-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022] Open
Abstract
Impaired tissue oxygenation results in hypoxia and leads to the activation of hypoxia-inducible transcription factors (HIF). A chronic, HIF-triggered molecular response to hypoxia may be an important factor in the etiology of age-related macular degeneration (AMD) and is likely activated before any clinical manifestation of the disease. Thus, HIF1 and HIF2 recently emerged as potential therapeutic targets for AMD. To address and evaluate potential consequences of anti-HIF therapies for retinal physiology and function, we generated mouse lines that have Hif1a, or both Hif1a and Hif2a ablated specifically in cone photoreceptors. The knockdown of Hifs in cones did not cause detectable pathological alterations such as loss of cone photoreceptors, retinal degeneration or abnormalities of the retinal vasculature, had no impact on retinal function and resulted in a similar tolerance to hypoxic exposure. Our data indicate that HIF transcription factors are dispensable for maintaining normal cone function and survival in retinas of adult mice. This study provides the groundwork necessary to establish safety profiles for strategies aiming at antagonizing HIF1A and HIF2A function in cone photoreceptors for the treatment of retinal degenerative diseases that involve a hypoxic component such as AMD.
Collapse
|
19
|
Lee CY, Chen HC, Wu PH, Chi JCY, Sun CC, Huang JY, Lin HY, Yang SF. Increased incidence of age-related macular degeneration in sensorineural hearing loss: A population-based cohort study. PLoS One 2019; 14:e0222919. [PMID: 31644539 PMCID: PMC6808445 DOI: 10.1371/journal.pone.0222919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/29/2019] [Indexed: 12/26/2022] Open
Abstract
Background To evaluate the incidence of age-related macular degeneration (AMD) in patients diagnosed with sensorineural hearing loss (SNHL) via the application of the National Health Insurance Research Database in Taiwan. Methodology/Principal findings A retrospective cohort study was conducted. Patients with a diagnosis of SNHL was enrolled in the study group after exclusion and a propensity score matched group without SNHL was served as the control group with a 1:2 ratio. The main outcome was regarded as the emergence of AMD diagnostic codes. Cox proportional hazard regression was applied to analyze the incidence and adjusted hazard ratio (aHR) of AMD in the multivariate model. A total of 15,686 patients with SNHL were included in the study group while another 31,372 non-SNHL patients served as the control group. After a follow-up interval up to 16 years, there were 484 AMD events occurred in the study group and 660 AMD cases in those non-SNHL patients with a significantly higher aHR compared to the control group after adjusting for multiple potential risk factors (aHR: 1.399, 95% CI: 1.244–1.574). Other prominent risk factors for AMD included older age, ischemic heart disease, hyperlipidemia, Alzheimer's disease, liver disease and kidney disease. Besides, a higher cumulative probability of AMD was observed in the study group (log-rank P <0.0001). Conclusion The patients with SNHL demonstrated a higher incidence of developing AMD.
Collapse
Affiliation(s)
- Chia-Yi Lee
- Department of Ophthalmology, Show Chwan Memorial Hospital, Changhua, Taiwan
- Department of Optometry, College of Medicine and Life Science, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Hung-Chi Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Pei-Hsuan Wu
- Department of Otolaryngology–Head and Neck Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Jessie Chao-Yun Chi
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otorhinolaryngology Head and Neck Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Chi-Chin Sun
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Chinese Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Jing-Yang Huang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hung-Yu Lin
- Department of Ophthalmology, Show Chwan Memorial Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Optometry, Chung Shan Medical University, Taichung, Taiwan
- Department of Exercise and Health Promotion, Chung Chou University of Science and Technology, Changhua, Taiwan
- * E-mail: (S-FY); (H-YL)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: (S-FY); (H-YL)
| |
Collapse
|