1
|
Buttό S, Vidal S, Zeng XR, Rausch M, Yasa IC, Ferro MP. Engineered 3D Kidney Glomerular Microtissues to Model Podocyte-Centric Diseases for the Validation of New Drug Targets. Adv Healthc Mater 2025:e2404767. [PMID: 40405760 DOI: 10.1002/adhm.202404767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/15/2025] [Indexed: 05/24/2025]
Abstract
Podocytopathies are a diverse group of kidney diseases characterized by podocyte injury, leading to proteinuria and reduced kidney function. This injury often disrupts cytoskeletal dynamics and cellular adhesion, causing glomerular dysfunction. Current in vitro models fail to accurately mimic the three-dimensional (3D) organization and mechanics of kidney tissue, hindering the understanding of podocyte pathophysiology and therapeutic development. In this study, 3D microtissues are developed that replicate the structure and mechanics of the glomerular filtration barrier, enabling the modeling of chemically and genetically induced podocyte injuries for drug target validation. These microtissues simulate the glomerulus's three-layer structure and hemodynamic mechanical stretch, providing a platform to evaluate relevant mechanobiological signaling pathways and podocyte dynamics. Collective cellular forces are measured to assess podocyte resilience against genetic or chemical injuries. As a proof-of-concept, podocyte injury is modeled through transient receptor potantial canonical 6 (TRPC6) overexpression, a validated target in podocytopathies, and evaluated by the TRPC6 inhibitor SAR7334. The results demonstrated a loss of podocyte contractile forces upon TRPC6 overexpression, with recovery following treatment. This highlights the potential of glomerular microtissues to model podocyte mechano-pathophysiology and serves as a robust platform for screening new therapies.
Collapse
Affiliation(s)
- Sara Buttό
- Novartis Biomedical Research, Basel, CH-4056, Switzerland
| | - Solange Vidal
- Novartis Biomedical Research, Basel, CH-4056, Switzerland
| | - Xi Rui Zeng
- Thrusts of Robotics and Autonomous Systems, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, 511453, P. R. China
| | - Martin Rausch
- Novartis Biomedical Research, Basel, CH-4056, Switzerland
| | - Immihan Ceren Yasa
- Novartis Biomedical Research, Basel, CH-4056, Switzerland
- Thrusts of Robotics and Autonomous Systems, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, 511453, P. R. China
- Thrust of Bioscience and Biomedical Engineering, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, 511453, P. R. China
| | - Magali P Ferro
- Novartis Biomedical Research, Basel, CH-4056, Switzerland
| |
Collapse
|
2
|
Robinson CH, Smoyer WE, Cara-Fuentes G. Unraveling the Immunogenetic Mechanisms of Childhood Idiopathic Nephrotic Syndrome. J Pediatr 2025; 282:114595. [PMID: 40252964 DOI: 10.1016/j.jpeds.2025.114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/16/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Affiliation(s)
- Cal H Robinson
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada; Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada.
| | - William E Smoyer
- The Center for Clinical and Translational Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH; Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Gabriel Cara-Fuentes
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
| |
Collapse
|
3
|
Zhu Y, Xu G. Advances in Focal Segmental Glomerulosclerosis Treatment From the Perspective of the Newest Mechanisms of Podocyte Injury. Drug Des Devel Ther 2025; 19:857-875. [PMID: 39935575 PMCID: PMC11812565 DOI: 10.2147/dddt.s498457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/19/2024] [Indexed: 02/13/2025] Open
Abstract
Podocyte injury was widely recognized as a fundamental mechanism driving the progression of focal segmental glomerulosclerosis (FSGS). Recent research has therefore focused on the development of targeted therapies aimed at disrupting specific pathogenic signaling cascades within podocytes, resulting in noteworthy advancements. The role of mechanisms such as alterations in the actin cytoskeleton, oxidative stress, mitochondrial dysfunction, and inadequate autophagy within the microenvironment of podocyte injury have garnered increasing attention. Corresponding targeted medications such as Abatacept, chemokine receptor (CCR) inhibitors, CDDO-Im (2-Cyano-3,12-dioxooleana-1,9-dien-28-imidazolide), adenosine monophosphate-activated protein kinase (AMPK) activators, and Adalimumab are currently under investigation. Notably, some medications such as Rituximab and Sparsentan, may simultaneously target multiple downstream mechanisms, Furthermore, exploring molecular strategies for established medications and developing novel treatments guided by biomarkers such as Anti-CD40 antibody, blood microRNA, urinary microRNA, and tumor necrosis factor-alpha (TNF-α) may provide additional therapeutic avenues for patients with FSGS.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
| |
Collapse
|
4
|
Guaragna MS, Casimiro FMS, Varela P, de S Feltran L, Watanabe A, Neves PDMM, Pesquero JB, Belangero VMS, Nogueira PCK, Onuchic LF. Past and future in vitro and in vivo approaches toward circulating factors and biomarkers in idiopathic nephrotic syndrome. Pediatr Nephrol 2025:10.1007/s00467-024-06643-8. [PMID: 39883133 DOI: 10.1007/s00467-024-06643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025]
Abstract
Predicting the risks of progression to chronic kidney disease (CKD) stage 5 in idiopathic nephrotic syndrome (NS) and recurrence of the disease (rNS) following kidney transplantation (KT) is a key assessment to provide essential management information. NS has been categorized etiologically as genetic and immune-based. A genetic cause can be identified in ~ 30% of children with steroid-resistant NS (SRNS), a finding associated with a very low risk of rNS following KT. In immune-based NS, clinical overlap is observed among steroid-sensitive NS, secondary-resistant NS, and SRNS not associated with disease-causing genetic variants (non-monogenic SRNS). While ~ 50% of SRNS patients with no identified monogenic disease respond to intensified immunosuppressive treatments, the ones that do not respond to this therapy have a high risk of progression to CKD stage 5 and post-KT rNS. Secondary-resistant patients who progress to CKD stage 5 display the highest risk of post-KT rNS. The proposed shared underlying mechanism of the immune-based NS associated with post-KT rNS is based on a systemic circulating factor (CF) that affects glomerular permeability by inducing foot process effacement and focal segmental glomerulosclerosis. However, identifying patients without a detected genetic form who will recur post-KT is a major challenge. Extensive efforts, therefore, have been made to identify CFs and biomarkers potentially capable of predicting the risk of progression to CKD stage 5 and post-KT rNS. This review discusses the in vitro and in vivo approaches employed to date to identify and characterize potential CFs and CF-induced biomarkers of recurrent NS and offers an assessment of their potential to improve outcomes of KT in this patient population.
Collapse
Affiliation(s)
- Mara S Guaragna
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil
- Center for Molecular Biology and Genetic Engineering, State University of Campinas, Campinas, Brazil
| | - Fernanda M S Casimiro
- Center for Diagnosis and Research On Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Patrícia Varela
- Center for Diagnosis and Research On Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luciana de S Feltran
- Division of Pediatric Kidney Transplantation, São Paulo Samaritan Hospital, São Paulo, Brazil
| | - Andreia Watanabe
- Department of Pediatrics, University of São Paulo School of Medicine, São Paulo, Brazil
- Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Precil D M M Neves
- Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Division of Nephrology, University of São Paulo School of Medicine, Avenida Dr. Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil
| | - João B Pesquero
- Center for Diagnosis and Research On Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Vera M S Belangero
- Department of Pediatrics, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Paulo C K Nogueira
- Division of Pediatric Kidney Transplantation, São Paulo Samaritan Hospital, São Paulo, Brazil
- Department of Pediatric Nephrology, São Paulo Federal University, São Paulo, Brazil
| | - Luiz F Onuchic
- Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil.
- Division of Nephrology, University of São Paulo School of Medicine, Avenida Dr. Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil.
| |
Collapse
|
5
|
Zununi Vahed S, Hosseiniyan Khatibi SM, Ardalan M. Canonical effects of cytokines on glomerulonephritis: A new outlook in nephrology. Med Res Rev 2025; 45:144-163. [PMID: 39164945 DOI: 10.1002/med.22074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 08/28/2022] [Accepted: 08/04/2024] [Indexed: 08/22/2024]
Abstract
Glomerulonephritis (GN) is an important cause of renal inflammation resulting from kidney-targeted adaptive and innate immune responses and consequent glomerular damage. Given the lack of autoantibodies, immune complexes, or the infiltrating immune cells in some forms of GN, for example, focal segmental glomerulosclerosis and minimal change disease, along with paraneoplastic syndrome and a special form of renal involvement in some viral infections, the likeliest causative scenario would be secreted factors, mainly cytokine(s). Since cytokines can modulate the inflammatory mechanisms, severity, and clinical outcomes of GN, it is rational to consider the umbrella term of cytokine GN as a new outlook to reclassify a group of previously known GN. We focus here, particularly, on cytokines that have the central "canonical effect" in the development of GN.
Collapse
|
6
|
Altintas MM, Agarwal S, Sudhini Y, Zhu K, Wei C, Reiser J. Pathogenesis of Focal Segmental Glomerulosclerosis and Related Disorders. ANNUAL REVIEW OF PATHOLOGY 2025; 20:329-353. [PMID: 39854184 PMCID: PMC11875227 DOI: 10.1146/annurev-pathol-051220-092001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Focal segmental glomerulosclerosis (FSGS) is the morphologic manifestation of a spectrum of kidney diseases that primarily impact podocytes, cells that create the filtration barrier of the glomerulus. As its name implies, only parts of the kidney and glomeruli are affected, and only a portion of the affected glomerulus may be sclerosed. Although the diagnosis is based primarily on microscopic features, patient stratification relies on clinical data such as proteinuria and etiological criteria. FSGS affects both children and adults and has an elevated risk of progression to end-stage renal disease. The prevalence of FSGS is rising among various populations, and the efficacy of various therapies is limited. Therefore, understanding the pathophysiology of FSGS and developing targeted therapies to address the complex needs of FSGS patients are topics of great interest that are currently being studied across various clinical trials. We discuss the etiology of FSGS, describe the major contributing pathophysiological pathways, and outline emerging therapeutic strategies along with their pitfalls.
Collapse
Affiliation(s)
- Mehmet M Altintas
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA;
| | | | - Yashwanth Sudhini
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Ke Zhu
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA;
| | - Changli Wei
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA;
| | - Jochen Reiser
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA;
| |
Collapse
|
7
|
Nagaram S, Charles P, Nisha Y, Stephen N, Hanumanthappa N, Parameswaran S, Chinnakali P, Nachiappa Ganesh R. Role of baseline soluble tumor necrosis factor receptor 2 as a biomarker in primary podocytopathy: Implications for renal impairment and disease progression. BMC Nephrol 2024; 25:378. [PMID: 39455940 PMCID: PMC11515380 DOI: 10.1186/s12882-024-03772-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Podocytopathies, including minimal change disease (MCD), focal segmental glomerulosclerosis (FSGS), and collapsing glomerulopathy (CG), are kidney diseases that damage glomerular podocytes, leading to heavy proteinuria and nephrotic syndrome (NS). Inflammation plays a critical role in the progression of chronic kidney disease (CKD), with recent studies linking inflammatory biomarkers to declining kidney function. Tumor necrosis factor-alpha (TNF-α), an essential inflammatory cytokine, interacts with its circulating receptors, TNFR1 and TNFR2. The TNF-α pathway has been implicated in the pathogenesis of FSGS and MCD. Increased circulating TNFR2 levels have been associated with worsening renal function in podocytopathies, suggesting that the TNF-α inflammatory pathway significantly contributes to disease progression. METHODS We conducted a study involving 53 patients with biopsy-proven MCD or FSGS and 53 healthy, age- and gender-matched controls. All patients were followed for 18 months. We analyzed serum and urine TNFR2 levels and gene expression at baseline and after three months. To assess the ability of TNFR2 to predict persistent decline in estimated glomerular filtration rate (eGFR < 30 mL/min/1.73m2), remission, and relapse, we employed Cox regression analysis. Additionally, we evaluated its prognostic utility for predicting progression to stage 4 CKD using ROC curve analysis. RESULTS Serum and urine TNFR2 levels were significantly elevated in patients compared to controls. Serum TNFR2 was a significant predictor in univariate Cox regression analysis for persistent eGFR decline (HR 1.017, 95% CI: 1.003 to 1.032, p = 0.018), remission (HR 0.995, 95% CI: 0.992 to 0.999, p = 0.006), and relapse (HR 1.005, 95% CI: 1.001 to 1.010, p = 0.029). The ROC curve analysis demonstrated that serum TNFR2 levels had a strong prognostic ability for predicting progression to stage 4 CKD, with an AUC of 0.848 (95% CI: 0.737-0.960), sensitivity of 81%, and specificity of 71%. CONCLUSION This study underscores the critical role of circulating TNFR2 in kidney injury among patients with primary podocytopathy. Elevated TNFR2 levels are significant predictors of persistent eGFR decline and disease relapse, highlighting their potential as biomarkers for disease progression and prognosis.
Collapse
Affiliation(s)
- Srinivas Nagaram
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Priscilla Charles
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Yadav Nisha
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Norton Stephen
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Nandeesha Hanumanthappa
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Sreejith Parameswaran
- Department of Nephrology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Palanivel Chinnakali
- Department of Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Rajesh Nachiappa Ganesh
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India.
| |
Collapse
|
8
|
Mekala JR, Nalluri HP, Reddy PN, S B S, N S SK, G V S D SK, Dhiman R, Chamarthy S, Komaragiri RR, Manyam RR, Dirisala VR. Emerging trends and therapeutic applications of monoclonal antibodies. Gene 2024; 925:148607. [PMID: 38797505 DOI: 10.1016/j.gene.2024.148607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Monoclonal antibodies (mAbs) are being used to prevent, detect, and treat a broad spectrum of malignancies and infectious and autoimmune diseases. Over the past few years, the market for mAbs has grown exponentially. They have become a significant part of many pharmaceutical product lines, and more than 250 therapeutic mAbs are undergoing clinical trials. Ever since the advent of hybridoma technology, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some of the benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies, which are affordable versions of therapeutic antibodies. Along with biosimilars, innovations in antibody engineering have helped to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. In the future, mAbs generated by applying next-generation sequencing (NGS) are expected to become a powerful tool in clinical therapeutics. This article describes the methods of mAb production, pre-clinical and clinical development of mAbs, approved indications targeted by mAbs, and novel developments in the field of mAb research.
Collapse
Affiliation(s)
- Janaki Ramaiah Mekala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522502, Guntur, Andhra Pradesh, INDIA.
| | - Hari P Nalluri
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India
| | - Prakash Narayana Reddy
- Department of Microbiology, Dr. V.S. Krishna Government College, Visakhapatnam 530013, India
| | - Sainath S B
- Department of Biotechnology, Vikrama Simhapuri University, Nellore 524320, AP, India
| | - Sampath Kumar N S
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India
| | - Sai Kiran G V S D
- Santhiram Medical College and General Hospital, Nandyal, Kurnool 518501, AP, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Sciences, National Institute of Technology Rourkela-769008, India
| | - Sahiti Chamarthy
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522502, Guntur, Andhra Pradesh, INDIA
| | - Raghava Rao Komaragiri
- Department of CSE, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522302, Andhra Pradesh, INDIA
| | - Rajasekhar Reddy Manyam
- Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amaravati Campus, Amaravati, Andhra Pradesh, India
| | - Vijaya R Dirisala
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India.
| |
Collapse
|
9
|
Meliambro K, He JC, Campbell KN. Podocyte-targeted therapies - progress and future directions. Nat Rev Nephrol 2024; 20:643-658. [PMID: 38724717 DOI: 10.1038/s41581-024-00843-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 09/14/2024]
Abstract
Podocytes are the key target cells for injury across the spectrum of primary and secondary proteinuric kidney disorders, which account for up to 90% of cases of kidney failure worldwide. Seminal experimental and clinical studies have established a causative link between podocyte depletion and the magnitude of proteinuria in progressive glomerular disease. However, no substantial advances have been made in glomerular disease therapies, and the standard of care for podocytopathies relies on repurposed immunosuppressive drugs. The past two decades have seen a remarkable expansion in understanding of the mechanistic basis of podocyte injury, with prospects increasing for precision-based treatment approaches. Dozens of disease-causing genes with roles in the pathogenesis of clinical podocytopathies have been identified, as well as a number of putative glomerular permeability factors. These achievements, together with the identification of novel targets of podocyte injury, the development of potential approaches to harness the endogenous podocyte regenerative potential of progenitor cell populations, ongoing clinical trials of podocyte-specific pharmacological agents and the development of podocyte-directed drug delivery systems, contribute to an optimistic outlook for the future of glomerular disease therapy.
Collapse
Affiliation(s)
- Kristin Meliambro
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John C He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kirk N Campbell
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Gowtham BC, Dawman L, Tiewsoh K, Kushwah S, Rawat A, Singh T, Gupta A. Serum tumour necrosis factor-alpha as a marker of disease activity in children with nephrotic syndrome. J Trop Pediatr 2024; 70:fmae025. [PMID: 39142803 DOI: 10.1093/tropej/fmae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Idiopathic nephrotic syndrome (NS) is a common glomerular disease in children throughout the world; however, the exact pathogenesis of the disease remains unknown. Several studies have shown that tumour necrosis factor-alpha (TNF-α), a proinflammatory cytokine, plays a significant role in the pathogenesis of NS. The literature lacks sufficient data to establish the relationship between TNF-α and NS. This prospective study was conducted on children aged 1-14 years diagnosed with idiopathic NS. All enrolled individuals were followed up from disease onset or relapse of NS until remission or at least 42 days with steroid therapy if remission was not achieved. Serum TNF-α levels were measured at presentation and remission or after 42 days of steroid therapy if remission was not achieved. The role of TNF-α levels in response to steroid therapy in NS was also assessed. One hundred and twelve children (68% boys) with idiopathic NS were enrolled. The median age (interquartile range) at enrolment was 58.5 (37-84.7) months, while the median age at symptom onset was 47.5 (24-60.7) months. The median TNF-α level at presentation was 7.5 (3.5-12.1) pg/ml, and that at remission was 5.25 (1.62-8.8) pg/ml. The median TNF-α levels among first-episode NS at presentation were 3.98 pg/ml and 1.88 pg/ml (P = .04) at remission, whereas in steroid-resistant NS, it was 6.59 pg/ml at presentation and 9.02 pg/ml at 42 days (P = .45). There was a significant negative correlation between the duration of steroid therapy and TNF-α levels, with a correlation factor of -0.021 and R2 of 0.154 (P≤.001). Serum TNF-α levels decrease with steroid therapy in children with steroid-sensitive NS, which correlates clinically with the achievement of remission.
Collapse
Affiliation(s)
- B C Gowtham
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Lesa Dawman
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Karalanglin Tiewsoh
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Sunil Kushwah
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Amit Rawat
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Thakurvir Singh
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Aarchie Gupta
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
11
|
Cybulsky AV, Papillon J, Guillemette J, Navarro-Betancourt JR, Chung CF, Iwawaki T, Fantus IG. Deletion of IRE1α in podocytes exacerbates diabetic nephropathy in mice. Sci Rep 2024; 14:11718. [PMID: 38778209 PMCID: PMC11111796 DOI: 10.1038/s41598-024-62599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Protein misfolding in the endoplasmic reticulum (ER) of podocytes contributes to the pathogenesis of glomerular diseases. Protein misfolding activates the unfolded protein response (UPR), a compensatory signaling network. We address the role of the UPR and the UPR transducer, inositol-requiring enzyme 1α (IRE1α), in streptozotocin-induced diabetic nephropathy in mice. Diabetes caused progressive albuminuria in control mice that was exacerbated in podocyte-specific IRE1α knockout (KO) mice. Compared to diabetic controls, diabetic IRE1α KO mice showed reductions in podocyte number and synaptopodin. Glomerular ultrastructure was altered only in diabetic IRE1α KO mice; the major changes included widening of podocyte foot processes and glomerular basement membrane. Activation of the UPR and autophagy was evident in diabetic control, but not diabetic IRE1α KO mice. Analysis of human glomerular gene expression in the JuCKD-Glom database demonstrated induction of genes associated with the ER, UPR and autophagy in diabetic nephropathy. Thus, mice with podocyte-specific deletion of IRE1α demonstrate more severe diabetic nephropathy and attenuation of the glomerular UPR and autophagy, implying a protective effect of IRE1α. These results are consistent with data in human diabetic nephropathy and highlight the potential for therapeutically targeting these pathways.
Collapse
Affiliation(s)
- Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada.
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - José R Navarro-Betancourt
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - Chen-Fang Chung
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - Takao Iwawaki
- Department of Life Science, Kanazawa Medical University, Uchinada, Japan
| | - I George Fantus
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Jiang H, Shen Z, Zhuang J, Lu C, Qu Y, Xu C, Yang S, Tian X. Understanding the podocyte immune responses in proteinuric kidney diseases: from pathogenesis to therapy. Front Immunol 2024; 14:1335936. [PMID: 38288116 PMCID: PMC10822972 DOI: 10.3389/fimmu.2023.1335936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
The glomerular filtration barrier, comprising the inner layer of capillary fenestrated endothelial cells, outermost podocytes, and the glomerular basement membrane between them, plays a pivotal role in kidney function. Podocytes, terminally differentiated epithelial cells, are challenging to regenerate once injured. They are essential for maintaining the integrity of the glomerular filtration barrier. Damage to podocytes, resulting from intrinsic or extrinsic factors, leads to proteinuria in the early stages and eventually progresses to chronic kidney disease (CKD). Immune-mediated podocyte injury is a primary pathogenic mechanism in proteinuric glomerular diseases, including minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, and lupus nephritis with podocyte involvement. An extensive body of evidence indicates that podocytes not only contribute significantly to the maintenance of the glomerular filtration barrier and serve as targets of immune responses but also exhibit immune cell-like characteristics, participating in both innate and adaptive immunity. They play a pivotal role in mediating glomerular injury and represent potential therapeutic targets for CKD. This review aims to systematically elucidate the mechanisms of podocyte immune injury in various podocyte lesions and provide an overview of recent advances in podocyte immunotherapy. It offers valuable insights for a deeper understanding of the role of podocytes in proteinuric glomerular diseases, and the identification of new therapeutic targets, and has significant implications for the future clinical diagnosis and treatment of podocyte-related disorders.
Collapse
Affiliation(s)
- Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhirang Shen
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jing Zhuang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chen Lu
- Division of Nephrology, Department of Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yue Qu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chengren Xu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
13
|
Cybulsky AV, Papillon J, Bryan C, Navarro‐Betancourt JR, Sabourin LA. Role of the Ste20-like kinase SLK in podocyte adhesion. Physiol Rep 2024; 12:e15897. [PMID: 38163671 PMCID: PMC10758337 DOI: 10.14814/phy2.15897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024] Open
Abstract
SLK controls the cytoskeleton, cell adhesion, and migration. Podocyte-specific deletion of SLK in mice leads to podocyte injury as mice age and exacerbates injury in experimental focal segment glomerulosclerosis (FSGS; adriamycin nephrosis). We hypothesized that adhesion proteins may be substrates of SLK. In adriamycin nephrosis, podocyte ultrastructural injury was exaggerated by SLK deletion. Analysis of a protein kinase phosphorylation site dataset showed that podocyte adhesion proteins-paxillin, vinculin, and talin-1 may be potential SLK substrates. In cultured podocytes, deletion of SLK increased adhesion to collagen. Analysis of paxillin, vinculin, and talin-1 showed that SLK deletion reduced focal adhesion complexes (FACs) containing these proteins mainly in adriamycin-induced injury; there was no change in FAC turnover (focal adhesion kinase Y397 phosphorylation). In podocytes, paxillin S250 showed basal phosphorylation that was slightly enhanced by SLK; however, SLK did not phosphorylate talin-1. In adriamycin nephrosis, SLK deletion did not alter glomerular expression/localization of talin-1 and vinculin, but increased focal adhesion kinase phosphorylation modestly. Therefore, SLK decreases podocyte adhesion, but FAC proteins in podocytes are not major substrates of SLK in health and disease.
Collapse
Affiliation(s)
- Andrey V. Cybulsky
- Department of MedicineMcGill University Health Centre Research Institute, McGill UniversityMontrealQuebecCanada
| | - Joan Papillon
- Department of MedicineMcGill University Health Centre Research Institute, McGill UniversityMontrealQuebecCanada
| | - Craig Bryan
- Department of MedicineMcGill University Health Centre Research Institute, McGill UniversityMontrealQuebecCanada
| | - José R. Navarro‐Betancourt
- Department of MedicineMcGill University Health Centre Research Institute, McGill UniversityMontrealQuebecCanada
| | - Luc A. Sabourin
- Ottawa Hospital Research Institute, Cancer TherapeuticsOttawaOntarioCanada
| |
Collapse
|
14
|
Salfi G, Casiraghi F, Remuzzi G. Current understanding of the molecular mechanisms of circulating permeability factor in focal segmental glomerulosclerosis. Front Immunol 2023; 14:1247606. [PMID: 37795085 PMCID: PMC10546017 DOI: 10.3389/fimmu.2023.1247606] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023] Open
Abstract
The pathogenetic mechanisms underlying the onset and the post-transplant recurrence of primary focal segmental glomerulosclerosis (FSGS) are complex and remain yet to be fully elucidated. However, a growing body of evidence emphasizes the pivotal role of the immune system in both initiating and perpetuating the disease. Extensive investigations, encompassing both experimental models and patient studies, have implicated T cells, B cells, and complement as crucial actors in the pathogenesis of primary FSGS, with various molecules being proposed as potential "circulating factors" contributing to the disease and its recurrence post kidney-transplantation. In this review, we critically assessed the existing literature to identify essential pathways for a comprehensive characterization of the pathogenesis of FSGS. Recent discoveries have shed further light on the intricate interplay between these mechanisms. We present an overview of the current understanding of the engagement of distinct molecules and immune cells in FSGS pathogenesis while highlighting critical knowledge gaps that require attention. A thorough characterization of these intricate immune mechanisms holds the potential to identify noninvasive biomarkers that can accurately identify patients at high risk of post-transplant recurrence. Such knowledge can pave the way for the development of targeted and personalized therapeutic approaches in the management of FSGS.
Collapse
Affiliation(s)
| | - Federica Casiraghi
- Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy
| | | |
Collapse
|
15
|
Shankland SJ, Jefferson JA, Wessely O. Repurposing drugs for diseases associated with podocyte dysfunction. Kidney Int 2023; 104:455-462. [PMID: 37290603 PMCID: PMC11088848 DOI: 10.1016/j.kint.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/02/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023]
Abstract
The majority of podocyte disorders are progressive in nature leading to chronic kidney disease and often kidney failure. The scope of current therapies is typically nonspecific immunosuppressant medications, which are accompanied by unwanted and serious side effects. However, many exciting clinical trials are underway to reduce the burden of podocyte diseases in our patients. Major advances and discoveries have recently been made experimentally in our understanding of the molecular and cellular mechanisms underlying podocyte injury in disease. This begs the question of how best to take advantage of these impressive strides. One approach to consider is the repurposing of therapeutics that have already been approved by the Food and Drug Administration, European Medicines Agency, and other regulatory agencies for indications beyond the kidney. The advantages of therapy repurposing include known safety profiles, drug development that has already been completed, and overall reduced costs for studying alternative indications for selected therapies. The purpose of this mini review is to examine the experimental literature of podocyte damage and determine if there are mechanistic targets in which prior approved therapies can be considered for repurposing to podocyte disorders.
Collapse
Affiliation(s)
- Stuart J Shankland
- Division of Nephrology, University of Washington, Seattle, Washington, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| | - J Ashley Jefferson
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Oliver Wessely
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.
| |
Collapse
|
16
|
Chhuon C, Herrera-Marcos LV, Zhang SY, Charrière-Bertrand C, Jung V, Lipecka J, Savas B, Nasser N, Pawlak A, Boulmerka H, Audard V, Sahali D, Guerrera IC, Ollero M. Proteomics of Plasma and Plasma-Treated Podocytes: Application to Focal and Segmental Glomerulosclerosis. Int J Mol Sci 2023; 24:12124. [PMID: 37569500 PMCID: PMC10418338 DOI: 10.3390/ijms241512124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Focal and segmental glomerulosclerosis (FSGS) is a severe form of idiopathic nephrotic syndrome (INS), a glomerulopathy of presumably immune origin that is attributed to extrarenal pathogenic circulating factors. The recurrence of FSGS (rFSGS) after transplant occurs in 30% to 50% of cases. The direct analysis of patient plasma proteome has scarcely been addressed to date, mainly due to the methodological difficulties associated with plasma complexity and dynamic range. In this study, first, we compared different methods of plasma preparation, second, we compared the plasma proteomes of rFSGS and controls using two preparation methods, and third, we analyzed the early proximal signaling events in podocytes subjected to patient plasma, through a combination of phosphoproteomics and lipid-raft proteomics (raftomics). By combining immunodepletion and high pH fractionation, we performed a differential proteomic analysis of soluble plasma proteins and of extracellular vesicles (EV) obtained from healthy controls, non-INS patient controls, and rFSGS patients (n = 4). In both the soluble- and the EV-protein sets from the rFSGS patients, we found a statistically significant increase in a cluster of proteins involved in neutrophil degranulation. A group of lipid-binding proteins, generally associated with lipoproteins, was found to be decreased in the soluble set from the rFSGS patients. In addition, three amino acid transporters involved in mTORC1 activation were found to be significantly increased in the EV from the rFSGS. Next, we incubated human podocytes for 30 min with 10% plasma from both groups of patients. The phosphoproteomics and raftomics of the podocytes revealed profound differences in the proteins involved in the mTOR pathway, in autophagy, and in cytoskeleton organization. We analyzed the correlation between the abundance of plasma and plasma-regulated podocyte proteins. The observed changes highlight some of the mechanisms involved in FSGS recurrence and could be used as specific early markers of circulating-factor activity in podocytes.
Collapse
Affiliation(s)
- Cerina Chhuon
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Luis Vicente Herrera-Marcos
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Shao-Yu Zhang
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Cécile Charrière-Bertrand
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Vincent Jung
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Joanna Lipecka
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Berkan Savas
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Nour Nasser
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - André Pawlak
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Hocine Boulmerka
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Vincent Audard
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
- AP-HP, Hôpitaux Universitaires Henri Mondor, Service de Néphrologie, F-94010 Creteil, France
| | - Dil Sahali
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
- AP-HP, Hôpitaux Universitaires Henri Mondor, Service de Néphrologie, F-94010 Creteil, France
| | - Ida Chiara Guerrera
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Mario Ollero
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| |
Collapse
|
17
|
Rashmi P, Sigdel TK, Rychkov D, Damm I, Da Silva AA, Vincenti F, Lourenco AL, Craik CS, Reiser J, Sarwal MM. Perturbations in podocyte transcriptome and biological pathways induced by FSGS associated circulating factors. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:315. [PMID: 37404982 PMCID: PMC10316099 DOI: 10.21037/atm-22-3670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/03/2022] [Indexed: 07/06/2023]
Abstract
Background Focal segmental glomerulosclerosis (FSGS) is frequently associated with heavy proteinuria and progressive renal failure requiring dialysis or kidney transplantation. However, primary FSGS also has a ~40% risk of recurrence of disease in the transplanted kidney (rFSGS). Multiple circulating factors have been identified to contribute to the pathogenesis of primary and rFSGS including soluble urokinase-type plasminogen activator receptor (suPAR) and patient-derived CD40 autoantibody (CD40autoAb). However, the downstream effector pathways specific to individual factors require further study. The tumor necrosis factor, TNF pathway activation by one or more circulating factors present in the sera of patients with FSGS has been supported by multiple studies. Methods A human in vitro model was used to study podocyte injury measured as the loss of actin stress fibers. Anti-CD40 autoantibody was isolated from FSGS patients (recurrent and non-recurrent) and control patients with ESRD due to non-FSGS related causes. Two novel human antibodies-anti-uPAR (2G10) and anti-CD40 antibody (Bristol Meyer Squibb, 986090) were tested for their ability to rescue podocyte injury. Podocytes treated with patient derived antibody were transcriptionally profiled using whole human genome microarray. Results Here we show that podocyte injury caused by sera from FSGS patients is mediated by CD40 and suPAR and can be blocked by human anti-uPAR and anti-CD40 antibodies. Transcriptomic studies to compare the molecules and pathways activated in response to CD40 autoantibody from rFSGS patients (rFSGS/CD40autoAb) and suPAR, identified unique inflammatory pathways associated with FSGS injury. Conclusions We identified several novel and previously described genes associated with FSGS progression. Targeted blockade of suPAR and CD40 pathways with novel human antibodies showed inhibition of podocyte injury in FSGS.
Collapse
Affiliation(s)
- Priyanka Rashmi
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Tara K. Sigdel
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Dmitry Rychkov
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Izabella Damm
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Andrea Alice Da Silva
- Department of Immunology, Laboratory of Autoimmunity and Immunoregulation, Fluminense Federal University, Niteroi, Brazil
| | - Flavio Vincenti
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Andre L. Lourenco
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Minnie M. Sarwal
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
18
|
Chung CF, Papillon J, Navarro-Betancourt JR, Guillemette J, Bhope A, Emad A, Cybulsky AV. Analysis of gene expression and use of connectivity mapping to identify drugs for treatment of human glomerulopathies. Front Med (Lausanne) 2023; 10:1122328. [PMID: 36993805 PMCID: PMC10042326 DOI: 10.3389/fmed.2023.1122328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
Background Human glomerulonephritis (GN)-membranous nephropathy (MN), focal segmental glomerulosclerosis (FSGS) and IgA nephropathy (IgAN), as well as diabetic nephropathy (DN) are leading causes of chronic kidney disease. In these glomerulopathies, distinct stimuli disrupt metabolic pathways in glomerular cells. Other pathways, including the endoplasmic reticulum (ER) unfolded protein response (UPR) and autophagy, are activated in parallel to attenuate cell injury or promote repair. Methods We used publicly available datasets to examine gene transcriptional pathways in glomeruli of human GN and DN and to identify drugs. Results We demonstrate that there are many common genes upregulated in MN, FSGS, IgAN, and DN. Furthermore, these glomerulopathies were associated with increased expression of ER/UPR and autophagy genes, a significant number of which were shared. Several candidate drugs for treatment of glomerulopathies were identified by relating gene expression signatures of distinct drugs in cell culture with the ER/UPR and autophagy genes upregulated in the glomerulopathies ("connectivity mapping"). Using a glomerular cell culture assay that correlates with glomerular damage in vivo, we showed that one candidate drug - neratinib (an epidermal growth factor receptor inhibitor) is cytoprotective. Conclusion The UPR and autophagy are activated in multiple types of glomerular injury. Connectivity mapping identified candidate drugs that shared common signatures with ER/UPR and autophagy genes upregulated in glomerulopathies, and one of these drugs attenuated injury of glomerular cells. The present study opens the possibility for modulating the UPR or autophagy pharmacologically as therapy for GN.
Collapse
Affiliation(s)
- Chen-Fang Chung
- Department of Medicine, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | | | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Ameya Bhope
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada
| | - Amin Emad
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada
| | - Andrey V. Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, Montreal, QC, Canada
| |
Collapse
|
19
|
Abstract
Idiopathic nephrotic syndrome often responds to immunosuppressive treatment. Nevertheless, this syndrome-and the drugs used to treat it-remain important causes of patient morbidity. Idiopathic nephrotic syndrome is usually caused by minimal change disease or FSGS, diseases that primarily affect the podocytes. In spite of decades of research, the underlying causes of both diseases remain incompletely understood. There is, however, a large body of observational and experimental data linking the immune system with both minimal change disease and FSGS, including associations with systemic infections and hematologic malignancies. Perhaps most compellingly, many different immunomodulatory drugs are effective for treating idiopathic nephrotic syndrome, including biologic agents that have well-defined immune targets. In fact, the unexpected efficacy of targeted therapeutic agents has provided important new insights into the pathogenesis of these diseases. Given the large number of drugs that are available to deplete or block specific cells and molecules within the immune system, a better understanding of the immunologic causes of idiopathic nephrotic syndrome may lead to better diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Ruth E. Campbell
- Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, Colorado
| | - Joshua M. Thurman
- Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
20
|
Kitsou K, Askiti V, Mitsioni A, Spoulou V. The immunopathogenesis of idiopathic nephrotic syndrome: a narrative review of the literature. Eur J Pediatr 2022; 181:1395-1404. [PMID: 35098401 DOI: 10.1007/s00431-021-04357-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/21/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022]
Abstract
UNLABELLED Idiopathic nephrotic syndrome (INS) is a common glomerular disease in childhood, and the immunological involvement in the pathogenesis of non-genetic INS, although not fully elucidated, is evident. This narrative review aims to offer a concise and in-depth view of the current knowledge on the immunological mechanisms of the development of INS as well as the role of the immunological components of the disease in the responsiveness to treatment. T cell immunity appears to play a major role in the INS immunopathogenesis and has been the first to be linked to the disease. Various T cell immunophenotypes are implicated in INS, including T-helper-1, T-helper-2, T-helper-17, and T regulatory cells, and various cytokines have been proposed as surrogate biomarkers of the disease; however, no distinct T helper or cytokine profile has been conclusively linked to the disease. More recently, the recognition of the role of B cell mediated immunity and the various B cell subsets that are dysregulated in patients with INS have led to new hypotheses on the underlying immunological causes of INS. Finally, the disambiguation of the exact mechanisms of the INS development in the future may be the key to the development of more targeted personalized approaches in managing INS. CONCLUSIONS INS demonstrates particularly interesting immunopathogenetic pathways, in which multiple interactions between T cell and B cell immunity and the podocyte are involved. The disambiguation of these pathways will provide promising novel therapeutic targets in INS. WHAT IS KNOWN • INS is the most common glomerular disease in the paediatric population, and its onset and relapses have been linked to various immunological triggers. • Multiple immunological mechanisms have been implicated in the pathogenesis of INS; however, no single distinct immunological profile has been recognized. WHAT IS NEW • Th17 cells and Treg cells play an important role in the immune dysregulation in INS. • Transitional B cell levels as well as the transitional/memory B cell ratio have been correlated to nephrotic relapses and have been proposed as biomarkers of INS relapses in SSNS patients.
Collapse
Affiliation(s)
- Konstantina Kitsou
- Immunobiology and Vaccinology Research Laboratory, First Department of Paediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Varvara Askiti
- Department of Nephrology, "P. and A. Kyriakou" Children's Hospital, Athens, Greece
| | - Andromachi Mitsioni
- Department of Nephrology, "P. and A. Kyriakou" Children's Hospital, Athens, Greece
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory, First Department of Paediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
21
|
The unfolded protein response transducer IRE1α promotes reticulophagy in podocytes. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166391. [PMID: 35304860 DOI: 10.1016/j.bbadis.2022.166391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/18/2023]
Abstract
Glomerular diseases involving podocyte/glomerular epithelial cell (GEC) injury feature protein misfolding and endoplasmic reticulum (ER) stress. Inositol-requiring enzyme 1α (IRE1α) mediates chaperone production and autophagy during ER stress. We examined the role of IRE1α in selective autophagy of the ER (reticulophagy). Control and IRE1α knockout (KO) GECs were incubated with tunicamycin to induce ER stress and subjected to proteomic analysis. This showed IRE1α-dependent upregulation of secretory pathway mediators, including the coat protein complex II component Sec23B. Tunicamycin enhanced expression of Sec23B and the reticulophagy adaptor reticulon-3-long (RTN3L) in control, but not IRE1α KO GECs. Knockdown of Sec23B reduced autophagosome formation in response to ER stress. Tunicamycin stimulated colocalization of autophagosomes with Sec23B and RTN3L in an IRE1α-dependent manner. Similarly, during ER stress, glomerular α5 collagen IV colocalized with RTN3L and autophagosomes. Degradation of RTN3L and collagen IV increased in response to tunicamycin, and the turnover was blocked by deletion of IRE1α; thus, the IRE1α pathway promotes RTN3L-mediated reticulophagy and collagen IV may be an IRE1α-dependent reticulophagy substrate. In experimental glomerulonephritis, expression of Sec23B, RTN3L, and LC3-II increased in glomeruli of control mice, but not in podocyte-specific IRE1α KO littermates. In conclusion, during ER stress, IRE1α redirects a subset of Sec23B-positive vesicles to deliver RTN3L-coated ER fragments to autophagosomes. Reticulophagy is a novel outcome of the IRE1α pathway in podocytes and may play a cytoprotective role in glomerular diseases.
Collapse
|
22
|
The Role of Cytokines in Nephrotic Syndrome. Mediators Inflamm 2022; 2022:6499668. [PMID: 35185384 PMCID: PMC8849808 DOI: 10.1155/2022/6499668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 12/22/2022] Open
Abstract
Idiopathic nephrotic syndrome (INS) is an important primary glomerular disease characterized by severe proteinuria. Evidence supports a role for T cell dysfunction in the pathogenesis of INS. Glucocorticoids are the primary therapy for INS; however, steroid-resistant NS (SRNS) patients are at a higher risk of drug-induced side effects and harbor poor prognosis. Although the exact mechanism of the resistance is unknown, the imbalances of T helper subtype 1 (Th1), Th2, and regulatory T cells (Tregs) and their cytokines may be involved in the pathogenesis of glucocorticoid responsiveness. Up to now, no confirmed biomarkers have been able to predict SRNS; however, a panel of cytokines may predict responsiveness and identify SRNS patients. Thus, the introduction of distinctive cytokines as novel biomarkers of SRNS enables both preventions of drug-related toxicity and earlier switch to more effective therapies. This review highlights the impacts of T cell population imbalances and their downstream cytokines on response to glucocorticoid responsiveness state in INS.
Collapse
|
23
|
Purohit S, Piani F, Ordoñez FA, de Lucas-Collantes C, Bauer C, Cara-Fuentes G. Molecular Mechanisms of Proteinuria in Minimal Change Disease. Front Med (Lausanne) 2022; 8:761600. [PMID: 35004732 PMCID: PMC8733331 DOI: 10.3389/fmed.2021.761600] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Minimal change disease (MCD) is the most common type of idiopathic nephrotic syndrome in childhood and represents about 15% cases in adults. It is characterized by massive proteinuria, edema, hypoalbuminemia, and podocyte foot process effacement on electron microscopy. Clinical and experimental studies have shown an association between MCD and immune dysregulation. Given the lack of inflammatory changes or immunocomplex deposits in the kidney tissue, MCD has been traditionally thought to be mediated by an unknown circulating factor(s), probably released by T cells that directly target podocytes leading to podocyte ultrastructural changes and proteinuria. Not surprisingly, research efforts have focused on the role of T cells and podocytes in the disease process. Nevertheless, the pathogenesis of the disease remains a mystery. More recently, B cells have been postulated as an important player in the disease either by activating T cells or by releasing circulating autoantibodies against podocyte targets. There are also few reports of endothelial injury in MCD, but whether glomerular endothelial cells play a role in the disease remains unexplored. Genome-wide association studies are providing insights into the genetic susceptibility to develop the disease and found a link between MCD and certain human haplotype antigen variants. Altogether, these findings emphasize the complex interplay between the immune system, glomerular cells, and the genome, raising the possibility of distinct underlying triggers and/or mechanisms of proteinuria among patients with MCD. The heterogeneity of the disease and the lack of good animal models of MCD remain major obstacles in the understanding of MCD. In this study, we will review the most relevant candidate mediators and mechanisms of proteinuria involved in MCD and the current models of MCD-like injury.
Collapse
Affiliation(s)
- Shrey Purohit
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pediatrics, Section of Pediatric Nephrology, Children's Hospital Colorado, Aurora, CO, United States
| | - Federica Piani
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Medicine and Surgery Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Flor A Ordoñez
- Division of Pediatric Nephrology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Colin Bauer
- Department of Pediatrics, Section of Pediatric Nephrology, Children's Hospital Colorado, Aurora, CO, United States
| | - Gabriel Cara-Fuentes
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pediatrics, Section of Pediatric Nephrology, Children's Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
24
|
Glassock RJ. Precision medicine for the treatment of glomerulonephritis: A bold goal but not yet a transformative achievement. Clin Kidney J 2021; 15:657-662. [PMID: 35371458 PMCID: PMC8967540 DOI: 10.1093/ckj/sfab270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
The revolution in our ability to recognize the alterations in fundamental biology brought about by disease has fostered a renewed interest in precision or personalized medicine (“the right treatment, or diagnostic test, for the right patient at the right time”). This nascent field has been led by oncology, immune-hematology and infectious disease, but nephrology is catching up, and quickly. Specific forms of glomerulonephritis thought to represent specific “diseases” have been “downgraded” to “patterns of injury”. New entities have emerged through application of sophisticated molecular technologies; often embraced by the term “multi-omics”. Kidney biopsies are now interpreted by next generation imaging and machine learning. Many opportunities are manifest that will translate these remarkable developments into novel safe and effective treatment regimens for specific pathogenic pathways evoking glomerulonephritis and its progression to kidney failure. A few successes emboldens a positive look to the future. A sustained and highly collaborative engagement with this new paradigm will be required for this field, full of hope and high expectations, to realize its goal of transforming glomerular therapeutics from “one size fits all (or many)” to a true individualized management principle.
Collapse
Affiliation(s)
- Richard J Glassock
- Emeritus Professor, Department of Medicine, Geffen School of Medicine. Los Angeles, CA, USA
| |
Collapse
|
25
|
De Vriese AS, Wetzels JF, Glassock RJ, Sethi S, Fervenza FC. Therapeutic trials in adult FSGS: lessons learned and the road forward. Nat Rev Nephrol 2021; 17:619-630. [PMID: 34017116 PMCID: PMC8136112 DOI: 10.1038/s41581-021-00427-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/03/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is not a specific disease entity but a lesion that primarily targets the podocyte. In a broad sense, the causes of the lesion can be divided into those triggered by a presumed circulating permeability factor, those that occur secondary to a process that might originate outside the kidneys, those caused by a genetic mutation in a podocyte or glomerular basement membrane protein, and those that arise through an as yet unidentifiable process, seemingly unrelated to a circulating permeability factor. A careful attempt to correctly stratify patients with FSGS based on their clinical presentation and pathological findings on kidney biopsy is essential for sound treatment decisions in individual patients. However, it is also essential for the rational design of therapeutic trials in FSGS. Greater recognition of the pathophysiology underlying podocyte stress and damage in FSGS will increase the likelihood that the cause of an FSGS lesion is properly identified and enable stratification of patients in future interventional trials. Such efforts will facilitate the identification of effective therapeutic agents.
Collapse
Affiliation(s)
- An S De Vriese
- Division of Nephrology and Infectious Diseases, AZ Sint-Jan Brugge, Brugge, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Jack F Wetzels
- Department of Nephrology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Richard J Glassock
- Department of Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
26
|
Podestà MA, Ponticelli C. Autoimmunity in Focal Segmental Glomerulosclerosis: A Long-Standing Yet Elusive Association. Front Med (Lausanne) 2020; 7:604961. [PMID: 33330569 PMCID: PMC7715033 DOI: 10.3389/fmed.2020.604961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/26/2020] [Indexed: 01/17/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a histological term that describes a pathologic renal entity affecting both adults and children, with a wide array of possible underlying etiologies. Podocyte damage with scarring, the hallmark of this condition, leads to altered permeability of the glomerular barrier, which may result in massive proteinuria and relentless renal function deterioration. A definite cause of focal segmental glomerulosclerosis can be confirmed in a minority of cases, while most forms have been traditionally labeled as primary or idiopathic. Despite this definition, increasing evidence indicates that primary forms are a heterogenous group rather than a single disease entity: several circulating factors that may affect glomerular permeability have been proposed as potential culprits, and both humoral and cellular immunity have been implicated in the pathogenesis of the disease. Consistently, immunosuppressive drugs are considered as the cornerstone of treatment for primary focal segmental glomerulosclerosis, but response to these agents and long-term outcomes are highly variable. In this review we provide a summary of historical and recent advances on the pathogenesis of primary focal segmental glomerulosclerosis, focusing on implications for its differential diagnosis and treatment.
Collapse
|
27
|
Navarro-Betancourt JR, Papillon J, Guillemette J, Iwawaki T, Chung CF, Cybulsky AV. Role of IRE1α in podocyte proteostasis and mitochondrial health. Cell Death Discov 2020; 6:128. [PMID: 33298866 PMCID: PMC7677398 DOI: 10.1038/s41420-020-00361-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Glomerular epithelial cell (GEC)/podocyte proteostasis is dysregulated in glomerular diseases. The unfolded protein response (UPR) is an adaptive pathway in the endoplasmic reticulum (ER) that upregulates proteostasis resources. This study characterizes mechanisms by which inositol requiring enzyme-1α (IRE1α), a UPR transducer, regulates proteostasis in GECs. Mice with podocyte-specific deletion of IRE1α (IRE1α KO) were produced and nephrosis was induced with adriamycin. Compared with control, IRE1α KO mice had greater albuminuria. Adriamycin increased glomerular ER chaperones in control mice, but this upregulation was impaired in IRE1α KO mice. Likewise, autophagy was blunted in adriamycin-treated IRE1α KO animals, evidenced by reduced LC3-II and increased p62. Mitochondrial ultrastructure was markedly disrupted in podocytes of adriamycin-treated IRE1α KO mice. To pursue mechanistic studies, GECs were cultured from glomeruli of IRE1α flox/flox mice and IRE1α was deleted by Cre-lox recombination. In GECs incubated with tunicamycin, deletion of IRE1α attenuated upregulation of ER chaperones, LC3 lipidation, and LC3 transcription, compared with control GECs. Deletion of IRE1α decreased maximal and ATP-linked oxygen consumption, as well as mitochondrial membrane potential. In summary, stress-induced chaperone production, autophagy, and mitochondrial health are compromised by deletion of IRE1α. The IRE1α pathway is cytoprotective in glomerular disease associated with podocyte injury and ER stress.
Collapse
Affiliation(s)
- José R Navarro-Betancourt
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - Takao Iwawaki
- Department of Life Science, Kanazawa Medical University, Uchinada, Japan
| | - Chen-Fang Chung
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
28
|
A New Cu(II)-Containing Coordination Polymer: Crystal Structure, Molecular Docking and Protective Effect on Primary Focal Segmental Glomerulosclerosis by Regulating NF-κB Pathway. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-019-01353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Identification of glomerular and podocyte-specific genes and pathways activated by sera of patients with focal segmental glomerulosclerosis. PLoS One 2019; 14:e0222948. [PMID: 31581251 PMCID: PMC6776339 DOI: 10.1371/journal.pone.0222948] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) accounts for about 40% of all nephrotic syndrome cases in adults. The presence of several potential circulating factors has been suggested in patients with primary FSGS and particularly in patients with recurrent disease after transplant. Irrespectively of the nature of the circulating factors, this study was aimed at identifying early glomerular/podocyte-specific pathways that are activated by the sera of patients affected by FSGS. Kidney biopsies were obtained from patients undergoing kidney transplantation due to primary FSGS. Donor kidneys were biopsied pre-reperfusion (PreR) and a subset 1–2 hours after reperfusion of the kidney (PostR). Thirty-one post reperfusion (PostR) and 36 PreR biopsy samples were analyzed by microarray and gene enrichment KEGG pathway analysis. Data were compared to those obtained from patients with incident primary FSGS enrolled in other cohorts as well as with another cohort to correct for pathways activated by ischemia reperfusion. Using an ex-vivo cell-based assay in which human podocytes were cultured in the presence of sera from patients with recurrent and non recurrent FSGS, the molecular signature of podocytes exposed to sera from patients with REC was compared to the one established from patients with NON REC. We demonstrate that inflammatory pathways, including the TNF pathway, are primarily activated immediately after exposure to the sera of patients with primary FSGS, while phagocytotic pathways are activated when proteinuria becomes clinically evident. The TNF pathway activation by one or more circulating factors present in the sera of patients with FSGS supports prior experimental findings from our group demonstrating a causative role of local TNF in podocyte injury in FSGS. Correlation analysis with clinical and histological parameters of disease was performed and further supported a possible role for TNF pathway activation in FSGS. Additionally, we identified a unique set of genes that is specifically activated in podocytes when cultured in the presence of serum of patients with REC FSGS. This clinical translational study supports our prior experimental findings describing a potential role of the TNF pathway in the pathogenesis of FSGS. Validation of these findings in larger cohorts may lay the ground for the implementation of integrated system biology approaches to risk stratify patients affected by FSGS and to identify novel pathways relevant to podocyte injury.
Collapse
|