1
|
Huisken JL, Rehan SM. Transcriptomic correlates of nutritional manipulation in a facultatively social bee. J Exp Biol 2025; 228:jeb250024. [PMID: 40099389 PMCID: PMC12045643 DOI: 10.1242/jeb.250024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Subsocial behaviour in insects consists of extended parental care and may set the stage for the evolution of cooperation through manipulation of offspring. Manipulation of brood nutrition may produce differences in developmental or adult gene regulation, but it also produces smaller offspring which may be coerced into cooperation. The eastern small carpenter bee Ceratina calcarata frequently produces a smaller under-provisioned dwarf eldest daughter (DED). These DEDs are the only offspring to forage and feed siblings. To test whether nutritional manipulation of DEDs alters gene expression, inducing cooperative sibling care, we conducted a transcriptomic study, using whole heads, to assess differences in brain gene expression among naturally provisioned regular daughters and DEDs, experimentally under-provisioned regular daughters, and experimentally supplemented DEDs, prior to social interaction. Differences in gene expression were minimal among groups but were dramatic as a function of body size as a continuous variable, suggesting that differences in gene expression are more associated with absolute differences in body size, not discrete castes or order of eclosion. Enrichment for GO terms related to hormonal regulation in small bees points to hormonal regulation of transcription factors in behavioural differences that emerge in DEDs. Subordinate behaviours thus likely involve experience and social environment, though other developmental mechanisms, such as parental care, and later adult social interactions after eclosion, may act on differences in body size and gene expression to produce the distinct behaviour of DEDs.
Collapse
Affiliation(s)
- Jesse L. Huisken
- Department of Biology, York University, Toronto, ON, Canada, M3J 1P3
| | - Sandra M. Rehan
- Department of Biology, York University, Toronto, ON, Canada, M3J 1P3
| |
Collapse
|
2
|
Zhu S, Chen X, Xia S, Li Q, Ye Z, Zhao S, Liu K, Liu F. Hexamerin and allergen are required for female reproduction in the American cockroach, Periplaneta americana. INSECT SCIENCE 2024; 31:186-200. [PMID: 37327125 DOI: 10.1111/1744-7917.13218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/10/2023] [Accepted: 05/04/2023] [Indexed: 06/18/2023]
Abstract
Reproduction is of great importance for the continuation of the species. In insects, the fat body is the major tissue for nutrient storage and involved in vitellogenesis, which is essential for female reproduction. Here, 2 proteins, hexamerin and allergen, were separated from the fat bodies of adult female American cockroaches (Periplaneta americana) and identified as storage proteins, encoding for 733 amino acids with molecular weight of 87.88 kDa and 686 amino acids with molecular weight of 82.18 kDa, respectively. The encoding genes of these 2 storage proteins are mainly expressed in the fat body. RNA interference-mediated knockdown of Hexamerin and Allergen in the early stage of the first reproductive cycle in females suppressed vitellogenesis and ovarian maturation, indicating that these storage proteins are involved in controlling reproduction. Importantly, the expression of Hexamerin and Allergen was repressed by knockdown of the juvenile hormone (JH) receptor gene Met and the primary response gene Kr-h1, and was induced by methoprene, a JH analog, in both in vivo and in vitro experiments. Altogether, we have determined that hexamerin and allergen are identified as storage proteins and play an important role in promoting female reproduction in the American cockroach. The expression of their encoding genes is induced by JH signaling. Our data reveal a novel mechanism by which hexamerin and allergen are necessary for JH-stimulated female reproduction.
Collapse
Affiliation(s)
- Shiming Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaoyi Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sishi Xia
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ziqi Ye
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shaoting Zhao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kexin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fangfang Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
3
|
Starkey J, Hawkings C, Tamborindeguy C. Influence of juvenile hormone analog on behavior in the red imported fire ant, Solenopsis invicta. Sci Rep 2023; 13:14726. [PMID: 37679373 PMCID: PMC10485025 DOI: 10.1038/s41598-023-41540-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Division of labor is a hallmark characteristic of social insect colonies. While it is understood that worker differentiation is regulated through either the queen or her brood, the understanding of the physiology behind task regulation varies within social species. Studies in eusocial insects have shown that juvenile hormone (JH) is associated with division of labor and the onset of foraging tasks. Although, outside of a few key species, this interaction has yet to be elucidated in the red imported fire ant, Solenopsis invicta. In this study, we evaluated the role of a JH analog, S-hydroprene in worker task transition in Solenopsis invicta. S-hydroprene was applied to nurses to observe behavioral changes. S-hyroprene application to nurses did not affect phototaxis, but there was a shift in behavior from internal, nest-based behaviors to external, foraging-based behaviors. These results show that JH may be implicated in worker task transition in S. invicta and may function similarly as it does in other eusocial insects.
Collapse
Affiliation(s)
- Jesse Starkey
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, TX, 77843, USA
| | - Chloe Hawkings
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, TX, 77843, USA
- Department of Entomology, Rutgers University, Thompson Hall, New Brunswick, NJ, 08901, USA
| | - Cecilia Tamborindeguy
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Huisken JL, Rehan SM. Brain Gene Expression of Foraging Behavior and Social Environment in Ceratina calcarata. Genome Biol Evol 2023; 15:evad117. [PMID: 37364293 PMCID: PMC10337991 DOI: 10.1093/gbe/evad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
Rudimentary social systems have the potential to both advance our understanding of how complex sociality may have evolved and our understanding of how changes in social environment may influence gene expression and cooperation. Recently, studies of primitively social Hymenoptera have greatly expanded empirical evidence for the role of social environment in shaping behavior and gene expression. Here, we compare brain gene expression profiles of foragers across social contexts in the small carpenter bee, Ceratina calcarata. We conducted experimental manipulations of field colonies to examine gene expression profiles among social contexts including foraging mothers, regular daughters, and worker-like dwarf eldest daughters in the presence and absence of mother. Our analysis found significant differences in gene expression associated with female age, reproductive status, and social environment, including circadian clock gene dyw, hexamerin, and genes involved in the regulation of juvenile hormone and chemical communication. We also found that candidate genes differentially expressed in our study were also associated with division of labor, including foraging, in other primitively and advanced eusocial insects. Our results offer evidence for the role of the regulation of key developmental hormones and circadian rhythms in producing cooperative behavior in rudimentary insect societies.
Collapse
|
5
|
Jones BM, Rubin BER, Dudchenko O, Kingwell CJ, Traniello IM, Wang ZY, Kapheim KM, Wyman ES, Adastra PA, Liu W, Parsons LR, Jackson SR, Goodwin K, Davidson SM, McBride MJ, Webb AE, Omufwoko KS, Van Dorp N, Otárola MF, Pham M, Omer AD, Weisz D, Schraiber J, Villanea F, Wcislo WT, Paxton RJ, Hunt BG, Aiden EL, Kocher SD. Convergent and complementary selection shaped gains and losses of eusociality in sweat bees. Nat Ecol Evol 2023; 7:557-569. [PMID: 36941345 PMCID: PMC11610481 DOI: 10.1038/s41559-023-02001-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/18/2023] [Indexed: 03/23/2023]
Abstract
Sweat bees have repeatedly gained and lost eusociality, a transition from individual to group reproduction. Here we generate chromosome-length genome assemblies for 17 species and identify genomic signatures of evolutionary trade-offs associated with transitions between social and solitary living. Both young genes and regulatory regions show enrichment for these molecular patterns. We also identify loci that show evidence of complementary signals of positive and relaxed selection linked specifically to the convergent gains and losses of eusociality in sweat bees. This includes two pleiotropic proteins that bind and transport juvenile hormone (JH)-a key regulator of insect development and reproduction. We find that one of these proteins is primarily expressed in subperineurial glial cells that form the insect blood-brain barrier and that brain levels of JH vary by sociality. Our findings are consistent with a role of JH in modulating social behaviour and suggest that eusocial evolution was facilitated by alteration of the proteins that bind and transport JH, revealing how an ancestral developmental hormone may have been co-opted during one of life's major transitions. More broadly, our results highlight how evolutionary trade-offs have structured the molecular basis of eusociality in these bees and demonstrate how both directional selection and release from constraint can shape trait evolution.
Collapse
Affiliation(s)
- Beryl M Jones
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Benjamin E R Rubin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Callum J Kingwell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Ian M Traniello
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Z Yan Wang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Karen M Kapheim
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
- Department of Biology, Utah State University, Logan, UT, USA
| | - Eli S Wyman
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Per A Adastra
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Weijie Liu
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Lance R Parsons
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - S RaElle Jackson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Shawn M Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Matthew J McBride
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Andrew E Webb
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kennedy S Omufwoko
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Nikki Van Dorp
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Mauricio Fernández Otárola
- Biodiversity and Tropical Ecology Research Center (CIBET) and School of Biology, University of Costa Rica, San José, Costa Rica
| | - Melanie Pham
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Arina D Omer
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - David Weisz
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Joshua Schraiber
- Department of Biology, Temple University, Philadelphia, PA, USA
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA, USA
| | - Fernando Villanea
- Department of Biology, Temple University, Philadelphia, PA, USA
- Department of Anthropology, University of Colorado Boulder, Boulder, CO, USA
| | - William T Wcislo
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Robert J Paxton
- Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
| | - Brendan G Hunt
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
6
|
Starkey J, Tamborindeguy C. Family before work: task reversion in workers of the red imported fire ant, Solenopsis invicta in the presence of brood. Sci Rep 2023; 13:2379. [PMID: 36765120 PMCID: PMC9918486 DOI: 10.1038/s41598-023-29246-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Among social insects, task allocation within its group members remains as one of the paramount pillars of social functionality. Division of labor in many eusocial insects is maintained by behavioral flexibility that can shift according to the needs of the colony they reside in. Workers typically, over time as they age, shift from intranidal nurses to extranidal foragers. If the needs of the colony change, either from the needs of the adults or the brood therein, workers shift their behavior in order to compensate for the need of a particular task to be done. This shift, either accelerating towards a behavior associated with an older worker, or regressing back into the nest, is not clearly understood in social insects outside of honeybees. In this study, evaluated how brood type affected the red imported fire ant, Solenopsis invicta, worker task reversion and acceleration. Through observation of worker behaviors performed over multiple time-points per day, we discovered that worker task reversion and acceleration does occur within this ant species. Furthermore, the type of brood influenced the rate at which this occurred, with larvae having the strongest effect of all types. Finally, there was a propensity for workers to maintain their new behavior throughout the experiment. This study shows that the needs of brood within a social insect colony can influence the behavior workers perform, reversing the age polyethism that is common among social insect species.
Collapse
Affiliation(s)
- Jesse Starkey
- Department of Entomology, 412 Heep Center, Texas A&M University, College Station, TX, 77843, USA
| | - Cecilia Tamborindeguy
- Department of Entomology, 412 Heep Center, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
7
|
Das B, de Bekker C. Time-course RNASeq of Camponotus floridanus forager and nurse ant brains indicate links between plasticity in the biological clock and behavioral division of labor. BMC Genomics 2022; 23:57. [PMID: 35033027 PMCID: PMC8760764 DOI: 10.1186/s12864-021-08282-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
Background Circadian clocks allow organisms to anticipate daily fluctuations in their environment by driving rhythms in physiology and behavior. Inter-organismal differences in daily rhythms, called chronotypes, exist and can shift with age. In ants, age, caste-related behavior and chronotype appear to be linked. Brood-tending nurse ants are usually younger individuals and show “around-the-clock” activity. With age or in the absence of brood, nurses transition into foraging ants that show daily rhythms in activity. Ants can adaptively shift between these behavioral castes and caste-associated chronotypes depending on social context. We investigated how changes in daily gene expression could be contributing to such behavioral plasticity in Camponotus floridanus carpenter ants by combining time-course behavioral assays and RNA-Sequencing of forager and nurse brains. Results We found that nurse brains have three times fewer 24 h oscillating genes than foragers. However, several hundred genes that oscillated every 24 h in forager brains showed robust 8 h oscillations in nurses, including the core clock genes Period and Shaggy. These differentially rhythmic genes consisted of several components of the circadian entrainment and output pathway, including genes said to be involved in regulating insect locomotory behavior. We also found that Vitellogenin, known to regulate division of labor in social insects, showed robust 24 h oscillations in nurse brains but not in foragers. Finally, we found significant overlap between genes differentially expressed between the two ant castes and genes that show ultradian rhythms in daily expression. Conclusion This study provides a first look at the chronobiological differences in gene expression between forager and nurse ant brains. This endeavor allowed us to identify a putative molecular mechanism underlying plastic timekeeping: several components of the ant circadian clock and its output can seemingly oscillate at different harmonics of the circadian rhythm. We propose that such chronobiological plasticity has evolved to allow for distinct regulatory networks that underlie behavioral castes, while supporting swift caste transitions in response to colony demands. Behavioral division of labor is common among social insects. The links between chronobiological and behavioral plasticity that we found in C. floridanus, thus, likely represent a more general phenomenon that warrants further investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08282-x.
Collapse
Affiliation(s)
- Biplabendu Das
- Department of Biology, College of Sciences, University of Central Florida, Orlando, FL, 32816, USA. .,Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, 32816, USA.
| | - Charissa de Bekker
- Department of Biology, College of Sciences, University of Central Florida, Orlando, FL, 32816, USA. .,Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
8
|
Vieira J, Freitas FCP, Cristino AS, Moda LMR, Martins JR, Bitondi MMG, Simões ZLP, Barchuk AR. miRNA-34 and miRNA-210 target hexamerin genes enhancing their differential expression during early brain development of honeybee (Apis mellifera) castes. INSECT MOLECULAR BIOLOGY 2021; 30:594-604. [PMID: 34309096 DOI: 10.1111/imb.12728] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
During the honeybee larval stage, queens develop larger brains than workers, with morphological differentiation appearing at the fourth larval phase (L4), just after a boost in nutritional difference both prospective females experience. The molecular promoters of this caste-specific brain development are already ongoing in previous larval phases. Transcriptomic analyses revealed a set of differentially expressed genes in the L3 brains of queens and workers, which represents the early molecular response to differential feeding females receive during larval development. Three genes of this set, hex70b, hex70c and hex110, are more highly transcribed in the brain of workers than in queens. The microRNAs miR-34, miR-210 and miR-317 are in higher levels in the queens' brain at the same phase of larval development. Here, we tested the hypothesis that the brain of workers expresses higher levels of hexamerins than that of queens during key phases of larval development and that this differential hexamerin genes expression is further enhanced by the repressing activity of miR-34, miR-210 and miR-317. Our transcriptional analyses showed that hex70b, hex70c and hex110 genes are differentially expressed in the brain of L3 and L4 larval phases of honeybee queens and workers. In silico reconstructed miRNA-mRNA interaction networks were validated using luciferase assays, which showed miR-34 and miR-210 negatively regulate hex70b and hex110 genes by directly and redundantly binding their 3'UTR (untranslated region) sequences. Taken together, our results suggest that miR-34 and miR-210 act together promoting differential brain development in honeybee castes by downregulating the expression of the putative antineurogenic hexamerin genes hex70b and hex110.
Collapse
Affiliation(s)
- J Vieira
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - F C P Freitas
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - A S Cristino
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - L M R Moda
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - J R Martins
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - M M G Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Z L P Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - A R Barchuk
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
9
|
Identification and comparative analysis of long non-coding RNAs in the brain of fire ant queens in two different reproductive states. BMC Genomics 2021; 22:917. [PMID: 35418014 PMCID: PMC9006410 DOI: 10.1186/s12864-022-08539-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Many long non-coding RNAs (lncRNAs) have been extensively identified in higher eukaryotic species. The function of lncRNAs has been reported to play important roles in diverse biological processes, including developmental regulation and behavioral plasticity. However, there are no reports of systematic characterization of long non-coding RNAs in the fire ant Solenopsis invicta.
Results
In this study, we performed a genome-wide analysis of lncRNAs in the brains of S. invicta from RNA-seq. In total, 1,393 novel lncRNA transcripts were identified in the fire ant. In contrast to the annotated lncRNA transcripts having at least two exons, novel lncRNAs are monoexonic transcripts with a shorter length. Besides, the transcriptome from virgin alate and dealate mated queens were analyzed and compared. The results showed 295 differentially expressed mRNA genes (DEGs) and 65 differentially expressed lncRNA genes (DELs) between virgin and mated queens, of which 17 lncRNAs were highly expressed in the virgin alates and 47 lncRNAs were highly expressed in the mated dealates. By identifying the DEL:DEG pairs with a high association in their expression (Spearman’s |rho|> 0.8 and p-value < 0.01), many DELs were co-regulated with DEGs after mating. Furthermore, several remarkable lncRNAs (MSTRG.6523, MSTRG.588, and nc909) that were found to associate with particular coding genes may play important roles in the regulation of brain gene expression in reproductive transition in fire ants.
Conclusion
This study provides the first genome-wide identification of S. invicta lncRNAs in the brains in different reproductive states. It will contribute to a fuller understanding of the transcriptional regulation underpinning reproductive changes.
Collapse
|
10
|
Tian Y, Qu Y, Dong K, He S, Jie W, Huang J. Characterization and Developmental Expression Patterns of Four Hexamerin Genes in the Bumble Bee, Bombus terrestris (Hymenoptera: Apidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6391129. [PMID: 34636890 PMCID: PMC8507971 DOI: 10.1093/jisesa/ieab078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 06/13/2023]
Abstract
Hexamerins are members of the hemocyanin superfamily and play essential roles in providing amino acids and energy for the nonfeeding stages of insects. In this study, we cloned and analyzed the expression patterns of four hexamerin genes (hex 70a, hex 70b, hex 70c, and hex 110) at different worker development stages and queen diapause statuses in the bumble bee, Bombus terrestris. The results of this study showed that hex 110 has the longest open reading frame (ORF; 3,297 bp) compared to the ORFs of hex 70a (2,034 bp), hex 70b (2,067 bp), and hex 70c (2,055 bp). The putative translation product of Hex 70a, Hex 70b, Hex70c, and Hex 110 has 677, 688, 684, and 1,098aa with predicted molecular mass of 81.13, 79.69, 81.58, and 119 kDa. In the development stages of workers, the expression levels of hex 70a, hex 70b, and hex 70c increased gradually from the larval stage and exhibited high expression levels at the pink eyed and brown eyed pupae stage, whereas hex 110 exhibited the highest expression level at the larval period. Four hexamerin genes were highly expressed at the prediapause status of queen (P < 0.05), and compared to the eclosion queen, the lowest upregulation was 3.7-fold, and the highest upregulation was 1,742-fold. The expression levels of hex 70b, hex 70c, and hex 110 at diapause were significantly higher than those at postdiapause (P < 0.05). In conclusion, hexamerins may play important roles in queen diapause and metamorphosis of larval and pupal stages.
Collapse
Affiliation(s)
- Yakai Tian
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650000, China
| | - Yingping Qu
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Kun Dong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650000, China
| | - Shaoyu He
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650000, China
| | - Wu Jie
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Jiaxing Huang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
11
|
Collins DH, Wirén A, Labédan M, Smith M, Prince DC, Mohorianu I, Dalmay T, Bourke AFG. Gene expression during larval caste determination and differentiation in intermediately eusocial bumblebees, and a comparative analysis with advanced eusocial honeybees. Mol Ecol 2021; 30:718-735. [PMID: 33238067 PMCID: PMC7898649 DOI: 10.1111/mec.15752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022]
Abstract
The queen‐worker caste system of eusocial insects represents a prime example of developmental polyphenism (environmentally‐induced phenotypic polymorphism) and is intrinsic to the evolution of advanced eusociality. However, the comparative molecular basis of larval caste determination and subsequent differentiation in the eusocial Hymenoptera remains poorly known. To address this issue within bees, we profiled caste‐associated gene expression in female larvae of the intermediately eusocial bumblebee Bombus terrestris. In B. terrestris, female larvae experience a queen‐dependent period during which their caste fate as adults is determined followed by a nutrition‐sensitive period also potentially affecting caste fate but for which the evidence is weaker. We used mRNA‐seq and qRT‐PCR validation to isolate genes differentially expressed between each caste pathway in larvae at developmental stages before and after each of these periods. We show that differences in gene expression between caste pathways are small in totipotent larvae, then peak after the queen‐dependent period. Relatively few novel (i.e., taxonomically‐restricted) genes were differentially expressed between castes, though novel genes were significantly enriched in late‐instar larvae in the worker pathway. We compared sets of caste‐associated genes in B. terrestris with those reported from the advanced eusocial honeybee, Apis mellifera, and found significant but relatively low levels of overlap of gene lists between the two species. These results suggest both the existence of low numbers of shared toolkit genes and substantial divergence in caste‐associated genes between Bombus and the advanced eusocial Apis since their last common eusocial ancestor.
Collapse
Affiliation(s)
- David H Collins
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Anders Wirén
- School of Biological Sciences, University of East Anglia, Norwich, UK.,School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Marjorie Labédan
- School of Biological Sciences, University of East Anglia, Norwich, UK.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Michael Smith
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - David C Prince
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Irina Mohorianu
- School of Biological Sciences, University of East Anglia, Norwich, UK.,Jeffrey Cheah Biomedical Centre, WT-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Andrew F G Bourke
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
12
|
Liu C, Zhu J, Ma J, Zhang J, Wang X, Zhang R. A novel hexamerin with an unexpected contribution to the prophenoloxidase activation system of the Chinese oak silkworm, Antheraea pernyi. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21648. [PMID: 31808198 DOI: 10.1002/arch.21648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Hexamerin was originally identified as a storage protein but later confirmed to be involved in many physiological processes. In the present study, we cloned and characterized a novel hexamerin complementary DNA sequence from the Chinese oak silkworm, Antheraea pernyi (Ap-hexamerin), which shows high homology with reported insect methionine-rich hexamerins. The tissue distribution and time course of expression demonstrated that Ap-hexamerin was predominantly synthesized in the fat body and the expression level was significantly increased in response to the microbial challenge, suggesting the relevance of Ap-hexamerin to immune responses. In further immune functional studies, Ap-hexamerin was confirmed to take part in the upregulation of prophenoloxidase (PPO) activation in A. pernyi haemolymph triggered by pathogen-associated molecular patterns (PAMPs). Additional molecular interaction analysis revealed that Ap-hexamerin is capable of binding the PAMPs used in the phenoloxidase assay, suggesting hexamerin in A. pernyi may positively regulate haemolymph PPO activation, acting as a pattern recognition protein.
Collapse
Affiliation(s)
- Chengbao Liu
- Department of Biopharmaceutics, School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Jinye Zhu
- Department of Biopharmaceutics, School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Jingjing Ma
- Department of Biopharmaceutics, School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Jinghai Zhang
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Xialu Wang
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Rong Zhang
- Department of Biopharmaceutics, School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|