1
|
Bui AH, Rowlands NB, Fernando Pulle AD, Gibbs Medina SA, Rohrsheim TJ, Tuten BT. High-Shear Enhancement of Biginelli Reactions in Macromolecular Viscous Media. Macromol Rapid Commun 2024; 45:e2400490. [PMID: 39319676 PMCID: PMC11583297 DOI: 10.1002/marc.202400490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Chemical reactions and transformations in non-traditional vessels have gained significant interest in recent years. Flow chemistry, with its advantages in mixing, mass transfer, scalability, and automation, is a driving force behind this paradigm shift. In particular, the Vortex Fluidic Device (VFD) has emerged as a versatile tool across various applications, from organic synthesis to materials science. In this study, the role of the VFD in performing the Biginelli reaction, a multicomponent reaction widely used in pharmaceutical and polymer science, for a post-polymerization modification is explored. By conducting the Biginelli reaction in the VFD, rapid product formation with low catalyst loading and without the need for high temperatures is achieved. However, the critical need to understand and know solution viscosity, especially within the context of modifying macromolecules is highlighted.
Collapse
Affiliation(s)
- Aaron Hung Bui
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Naomi Beth Rowlands
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Anne Dilpashani Fernando Pulle
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Sam Andrés Gibbs Medina
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Tullia Jade Rohrsheim
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Bryan Tyler Tuten
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- Department of Chemistry and BiochemistryUniversity of Texas at Tyler3900 University BoulevardTylerTexas75799USA
| |
Collapse
|
2
|
Sridhar A, Kapoor A, Kumar PS, Ponnuchamy M, Sivasamy B, Vo DVN. Lab-on-a-chip technologies for food safety, processing, and packaging applications: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 20:901-927. [PMID: 34803553 PMCID: PMC8590809 DOI: 10.1007/s10311-021-01342-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The advent of microfluidic systems has led to significant developments in lab-on-a-chip devices integrating several functions onto a single platform. Over the years, these miniature devices have become a promising tool for faster analytical testing, displaying high precision and efficiency. Nonetheless, most microfluidic systems are not commercially available. Research is actually undergoing on the application of these devices in environmental, food, biomedical, and healthcare industries. The lab-on-a-chip industry is predicted to grow annually by 20%. Here, we review the use of lab-on-a-chip devices in the food sector. We present fabrication technologies and materials to developing lab-on-a-chip devices. We compare electrochemical, optical, colorimetric, chemiluminescence and biological methods for the detection of pathogens and microorganisms. We emphasize emulsion processing, food formulation, nutraceutical development due to their promising characteristics. Last, smart packaging technologies like radio frequency identification and indicators are highlighted because they allow better product identification and traceability.
Collapse
Affiliation(s)
- Adithya Sridhar
- School of Food Science and Nutrition, Faculty of Environment, The University of Leeds, Leeds, LS2 9JT UK
| | - Ashish Kapoor
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110 India
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Balasubramanian Sivasamy
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu 641407 India
| | - Dai-Viet Nguyen Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
3
|
He S, Joseph N, Feng S, Jellicoe M, Raston CL. Application of microfluidic technology in food processing. Food Funct 2021; 11:5726-5737. [PMID: 32584365 DOI: 10.1039/d0fo01278e] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microfluidic technology is interdisciplinary with a diversity of applications including in food processing. The rapidly growing global population demands more advanced technologies in food processing to produce more functional and safer food, and for such processing microfluidic devices are a popular choice. This review critically critiques the state-of-the-art designs of microfluidic devices and their applications in food processing, and identifies the key research trends and future research directions for maximizing the value of microfluidic technology. Capillary, planar, and terrace droplet generation systems are currently used in the design of microfluidic devices, each with their strengths and weaknesses as applied in food processing, for emulsification, food safety measurements, and bioactive compound extraction. Conventional channel-based microfluidic devices are prone to clogging, and have high labor costs and low productivity, and their "directional pressure" restricts scaling-up capabilities. These disadvantages can be overcome by using "inside-out centrifugal force" and the new generation continuous flow thin-film microfluidic Vortex Fluidic Device (VFD) which facilitates translating laboratory processing into commercial products. Also highlighted is controlling protein-polysaccharide interactions and the applications of the produced ingredients in food formulations as targets for future development in the field.
Collapse
Affiliation(s)
- Shan He
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China. and Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Nikita Joseph
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Shilun Feng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Matt Jellicoe
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| |
Collapse
|
4
|
Li GY, Chen QH, Su CR, Wang H, He S, Liu J, Nag A, Yuan Y. Soy protein-polysaccharide complex coacervate under physical treatment: Effects of pH, ionic strength and polysaccharide type. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Cao X, Joseph N, Jellicoe M, Al-Antaki AHM, Luo X, Su D, He S, Raston C. Vortex fluidics mediated non-covalent physical entanglement of tannic acid and gelatin for entrapment of nutrients. Food Funct 2021; 12:1087-1096. [PMID: 33416819 DOI: 10.1039/d0fo02230f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a simple process for the entrapment of nutrients in shear stress induced non-covalent physically entangled tannic acid-gelatin gel in a thin film vortex fluidic device (VFD) operating under continuous flow. This allows control of the porosity and surface area of the pores in order to improve the nutrient entrapment capacity. The VFD microfluidic platform simplifies the processing procedure of physically entangled biopolymers, as a time and cost saving one-step process devoid of any organic solvents, in contrast to the conventional homogenization process, which is also inherently complex, involving multiple-step processing. Moreover, the use of homogenization (as a benchmark to entrap nutrients) afforded much larger porosity and surface area of pores, with lower entrapment capacity of nutrients. Overall, the VFD processing provides a new alternative, bottom-up approach for easy, scalable processing for materials with a high nutrient entrapment capacity.
Collapse
Affiliation(s)
- Xuejiao Cao
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China.
| | - Nikita Joseph
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Matt Jellicoe
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Ahmed Hussein Mohammed Al-Antaki
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Xuan Luo
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Dongxiao Su
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China.
| | - Shan He
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China. and Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Colin Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| |
Collapse
|
6
|
He S, Joseph N, Mirzamani M, Pye SJ, Al-anataki AHM, Whitten AE, Chen Y, Kumari H, Raston CL. Vortex fluidic mediated encapsulation of functional fish oil featuring in situ probed small angle neutron scattering. NPJ Sci Food 2020; 4:12. [PMID: 32964127 PMCID: PMC7481235 DOI: 10.1038/s41538-020-00072-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Major challenges for optimizing the benefits of fish oil on human health are improved bioavailability while overcoming the strong odor and avoiding significant oxidation of the omega-3 polyunsaturated fatty acids (PUFAs). The scalable continuous flow thin film vortex fluidic device (VFD) improves the Tween 20 encapsulation of fish oil relative to conventional homogenization processing, with the fish oil particles significantly smaller and the content of the valuable omega-3 fatty acids higher. In addition, after 14 days storage the remaining omega-3 fatty acids content was higher, from ca 31.0% for raw fish oil to ca 62.0% of freeze-dried encapsulated fish oil. The VFD mediated encapsulated fish oil was used to enrich the omega-3 fatty acid content of apple juice, as a model water-based food product, without changing its sensory values. The versatility of the VFD was further demonstrated in forming homogenous suspensions of fish oil containing water-insoluble bioactive molecules, curcumin and quercetin. We have also captured, for the first time, real-time structural changes in nanoencapsulation by installing a VFD with in in situ small angle neutron scattering. Real-time measurements afford valuable insights about self-assembly in solution.
Collapse
|
7
|
Tavakoli J, Raston CL, Tang Y. Tuning Surface Morphology of Fluorescent Hydrogels Using a Vortex Fluidic Device. Molecules 2020; 25:E3445. [PMID: 32751141 PMCID: PMC7435964 DOI: 10.3390/molecules25153445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022] Open
Abstract
In recent decades, microfluidic techniques have been extensively used to advance hydrogel design and control the architectural features on the micro- and nanoscale. The major challenges with the microfluidic approach are clogging and limited architectural features: notably, the creation of the sphere, core-shell, and fibers. Implementation of batch production is almost impossible with the relatively lengthy time of production, which is another disadvantage. This minireview aims to introduce a new microfluidic platform, a vortex fluidic device (VFD), for one-step fabrication of hydrogels with different architectural features and properties. The application of a VFD in the fabrication of physically crosslinked hydrogels with different surface morphologies, the creation of fluorescent hydrogels with excellent photostability and fluorescence properties, and tuning of the structure-property relationship in hydrogels are discussed. We conceive, on the basis of this minireview, that future studies will provide new opportunities to develop hydrogel nanocomposites with superior properties for different biomedical and engineering applications.
Collapse
Affiliation(s)
- Javad Tavakoli
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo NSW 2007, Australia;
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia;
| | - Colin L. Raston
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia;
| | - Youhong Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia;
| |
Collapse
|