1
|
Zhang Z, Yang R, Gao L, Huang S, Jiang F, Chen Q, Liu P, Feng F. Dynamic transcriptome and metabolome analyses of two sweet corn lines under artificial aging treatment. BMC Genomics 2025; 26:375. [PMID: 40234743 PMCID: PMC11998237 DOI: 10.1186/s12864-025-11586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 04/09/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Strong tolerance to seed aging is an important agricultural trait for sweet corn production. Previous studies have primarily focused on the QTLs for the seed vigor. However, there were few researches involving in the metabolome and transcriptome of artificial aging seeds. RESULTS Using two inbred lines with significant differences in seed artificial aging tolerance, RNA sequencing and non-targeted metabolomic analysis were employed to extensively evaluate transcripts and metabolites in seeds that underwent artificial aging. Fourteen common transcripts and 16 common metabolites with sustained differential expression were identified in the two lines, suggesting their potential necessity in seed response to artificial aging. Enrichment analysis of differentially expressed genes (DEGs) in the transcriptome at different stages revealed significant enrichment KEGG pathways, "Oxidative phosphorylation" was the common pathway in the 0d vs 3d comparison for K107 and L155. The identical enriched KEGG pathways were observed in the 3d vs 6d comparison for K107 and 0d vs 6d comparison for L155, indicating a slower transcriptomic response in the aging-tolerance line. DEGs at 0 days between the two lines had been enriched in the "Terpenoid backbone biosynthesis" and "Ribosome" pathways, while at 6 days, the enrichment pathway were "Sulfur metabolism", "Linoleic acid metabolism", and "Plant hormone signal transduction". A total of 312 differentially expressed metabolites (DEMs) were found at 0, 3 and 6 days after seed aging treatment, and they shared enriched metabolic pathway of "ABC transporters". The KEGG enrichment of DEGs and DEMs shared the common pathway, namely "Linoleic acid metabolism". Among these, the most abundant metabolites were Glutathione, Adenosine, Trehalose, and 10E,12Z-Octadecadienoic acid. Focusing on the ascorbate-glutathione pathway revealed that the difference in ROS production and the ROS scavenging capability mediated by glutathione S-transferase (GST) genes were important factors contributing to the differing seed aging tolerance in the two lines. CONCLUSION In summary, these results contribute to a deeper understanding of the overall mechanisms underlying artificial aging tolerance in sweet corn seeds. The findings of this study are expected to provide valuable insights for the storage of sweet corn seeds.
Collapse
Affiliation(s)
- Zili Zhang
- College of Agriculture and Biology, Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering/Guangzhou Key, Guangzhou, 510225, China
| | - Ruichun Yang
- College of Agriculture, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Lei Gao
- Guangdong Agricultural Technology Extension Center, Guangzhou, 510145, Guangdong, China
| | - Shilin Huang
- College of Agriculture, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Feng Jiang
- College of Agriculture and Biology, Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering/Guangzhou Key, Guangzhou, 510225, China
| | - Qingchun Chen
- College of Agriculture and Biology, Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering/Guangzhou Key, Guangzhou, 510225, China
| | - Pengfei Liu
- College of Agriculture and Biology, Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering/Guangzhou Key, Guangzhou, 510225, China.
| | - Faqiang Feng
- College of Agriculture, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
2
|
Guo S, Ai J, Zheng N, Hu H, Xu Z, Chen Q, Li L, Liu Y, Zhang H, Li J, Pan Q, Chen F, Yuan L, Fu J, Gu R, Wang J, Du X. A genome-wide association study uncovers a ZmRap2.7-ZCN9/ZCN10 module to regulate ABA signalling and seed vigour in maize. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2472-2487. [PMID: 38761386 PMCID: PMC11331778 DOI: 10.1111/pbi.14362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 05/20/2024]
Abstract
Seed vigour, including rapid, uniform germination and robust seedling establishment under various field conditions, is becoming an increasingly essential agronomic trait for achieving high yield in crops. However, little is known about this important seed quality trait. In this study, we performed a genome-wide association study to identify a key transcription factor ZmRap2.7, which regulates seed vigour through transcriptionally repressing expressions of three ABA signalling genes ZmPYL3, ZmPP2C and ZmABI5 and two phosphatidylethanolamine-binding genes ZCN9 and ZCN10. In addition, ZCN9 and ZCN10 proteins could interact with ZmPYL3, ZmPP2C and ZmABI5 proteins, and loss-of-function of ZmRap2.7 and overexpression of ZCN9 and ZCN10 reduced ABA sensitivity and seed vigour, suggesting a complex regulatory network for regulation of ABA signalling mediated seed vigour. Finally, we showed that four SNPs in ZmRap2.7 coding region influenced its transcriptionally binding activity to the downstream gene promoters. Together with previously identified functional variants within and surrounding ZmRap2.7, we concluded that the distinct allelic variations of ZmRap2.7 were obtained independently during maize domestication and improvement, and responded separately for the diversities of seed vigour, flowering time and brace root development. These results provide novel genes, a new regulatory network and an evolutional mechanism for understanding the molecular mechanism of seed vigour.
Collapse
Affiliation(s)
- Shasha Guo
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Junmin Ai
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Nannan Zheng
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Hairui Hu
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Zhuoyi Xu
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Quanquan Chen
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Li Li
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yunjun Liu
- Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijingChina
| | - Hongwei Zhang
- Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijingChina
| | - Jieping Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Qingchun Pan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Fanjun Chen
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Lixing Yuan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Junjie Fu
- Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijingChina
| | - Riliang Gu
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Joint Research Institute of China Agricultural University in AksuAksuChina
| | - Jianhua Wang
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xuemei Du
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
3
|
Wang B, Yang R, Zhang Z, Huang S, Ji Z, Zheng W, Zhang H, Zhang Y, Feng F. Integration of miRNA and mRNA analysis reveals the role of ribosome in to anti-artificial aging in sweetcorn. Int J Biol Macromol 2023; 240:124434. [PMID: 37062384 DOI: 10.1016/j.ijbiomac.2023.124434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/18/2023]
Abstract
Sweetcorn is a kind of maize with high sugar content and has poor seed aging tolerance, which seriously limits its production. However, few studies have explored the artificial aging (AA) tolerance by miRNA-mRNA integration analysis in sweetcorn. Here, we characterized the physiological, biochemical and transcriptomic changes of two contrasting lines K62 and K107 treated with AA during time series. Both the germination indexes and antioxidant enzymes showed significant difference between two lines. The MDA content of AA-tolerant genotype K62 was significantly lower than that of K107 on the fourth and sixth day. Subsequently, 157 differentially expressed miRNAs (DEMIs) and 8878 differentially expressed mRNAs (DEMs) were identified by RNA-seq analysis under aging stress. The "ribosome" and "peroxisome" pathways were enriched to respond to aging stress, genes for both large units and small ribosomal subunits were significantly upregulated expressed and higher translation efficiency might exist in K62. Thirteen pairs of miRNA-target genes were obtained, and 8 miRNA-mRNA pairs might involve in ribosome protein and translation process. Our results elucidate the mechanism of sweetcorn response to AA at miRNA-mRNA level, and provide a new insight into sweetcorn AA response to stress.
Collapse
Affiliation(s)
- Bo Wang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Ruichun Yang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Zili Zhang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Silin Huang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Zhaoqian Ji
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Wenbo Zheng
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Huaxing Zhang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yafeng Zhang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Faqiang Feng
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
4
|
Choudhary P, Pramitha L, Aggarwal PR, Rana S, Vetriventhan M, Muthamilarasan M. Biotechnological interventions for improving the seed longevity in cereal crops: progress and prospects. Crit Rev Biotechnol 2023; 43:309-325. [PMID: 35443842 DOI: 10.1080/07388551.2022.2027863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Seed longevity is a measure of the viability of seeds during long-term storage and is crucial for germplasm conservation and crop improvement programs. Also, longevity is an important trait for ensuring food and nutritional security. Thus, a better understanding of various factors regulating seed longevity is requisite to improve this trait and to minimize the genetic drift during the regeneration of germplasm. In particular, seed deterioration of cereal crops during storage adversely affects agricultural productivity and food security. The irreversible process of seed deterioration involves a complex interplay between different genes and regulatory pathways leading to: loss of DNA integrity, membrane damage, inactivation of storage enzymes and mitochondrial dysfunction. Identifying the genetic determinants of seed longevity and manipulating them using biotechnological tools hold the key to ensuring prolonged seed storage. Genetics and genomics approaches had identified several genomic regions regulating the longevity trait in major cereals such as: rice, wheat, maize and barley. However, very few studies are available in other Poaceae members, including millets. Deploying omics tools, including genomics, proteomics, metabolomics, and phenomics, and integrating the datasets will pinpoint the precise molecular determinants affecting the survivability of seeds. Given this, the present review enumerates the genetic factors regulating longevity and demonstrates the importance of integrated omics strategies to dissect the molecular machinery underlying seed deterioration. Further, the review provides a roadmap for deploying biotechnological approaches to manipulate the genes and genomic regions to develop improved cultivars with prolonged storage potential.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Lydia Pramitha
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Mani Vetriventhan
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | | |
Collapse
|
5
|
Colombo F, Pagano A, Sangiorgio S, Macovei A, Balestrazzi A, Araniti F, Pilu R. Study of Seed Ageing in lpa1-1 Maize Mutant and Two Possible Approaches to Restore Seed Germination. Int J Mol Sci 2023; 24:ijms24010732. [PMID: 36614175 PMCID: PMC9820859 DOI: 10.3390/ijms24010732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 01/03/2023] Open
Abstract
Phytic acid (PA) is a strong anti-nutritional factor with a key antioxidant role in countering reactive oxygen species. Despite the potential benefits of low phytic acid (lpa) mutants, the reduction of PA causes pleiotropic effects, e.g., reduced seed germination and viability loss related to seed ageing. The current study evaluated a historical series of naturally aged seeds and showed that lpa1-1 seeds aged faster as compared to wildtype. To mimic natural ageing, the present study set up accelerated ageing treatments at different temperatures. It was found that incubating the seeds at 57 °C for 24 h, the wildtype germinated at 82.4% and lpa1-1 at 40%. The current study also hypothesized two possible solutions to overcome these problems: (1) Classical breeding was used to constitute synthetic populations carrying the lpa1-1 mutation, with genes pushing anthocyanin accumulation in the embryo (R-navajo allele). The outcome showed that the presence of R-navajo in the lpa1-1 genotype was not able to improve the germinability (-20%), but this approach could be useful to improve the germinability in non-mutant genotypes (+17%). (2) In addition, hydropriming was tested on lpa1-1 and wildtype seeds, and germination was improved by 20% in lpa1-1, suggesting a positive role of seed priming in restoring germination. Moreover, the data highlighted metabolic differences in the metabolome before and after hydropriming treatment, suggesting that the differences in germination could also be mediated by differences in the metabolic composition induced by the mutation.
Collapse
Affiliation(s)
- Federico Colombo
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Stefano Sangiorgio
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
- Correspondence:
| |
Collapse
|
6
|
Pereira Neto LG, Rossini BC, Marino CL, Toorop PE, Silva EAA. Comparative Seeds Storage Transcriptome Analysis of Astronium fraxinifolium Schott, a Threatened Tree Species from Brazil. Int J Mol Sci 2022; 23:ijms232213852. [PMID: 36430327 PMCID: PMC9696909 DOI: 10.3390/ijms232213852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2022] Open
Abstract
Astronium fraxinifolium Schott (Anacardiaceae), also known as a 'gonçalo-alves', is a tree of the American tropics, with distribution in Mexico, part of Central America, Argentina, Bolivia, Brazil and Paraguay. In Brazil it is an endangered species that occurs in the Cerrado, Caatinga and in the Amazon biomes. In support of ex situ conservation, this work aimed to study two accessions with different longevity (p50) of A. fraxinifolium collected from two different geographic regions, and to evaluate the transcriptome during aging of the seeds in order to identify genes related to seed longevity. Artificial ageing was performed at a constant temperature of 45 °C and 60% relative humidity. RNA was extracted from 100 embryonic axes exposed to control and aging conditions for 21 days. The transcriptome analysis revealed differentially expressed genes such as Late Embryogenesis Abundant (LEA) genes, genes involved in the photosystem, glycine rich protein (GRP) genes, and several transcription factors associated with embryo development and ubiquitin-conjugating enzymes. Thus, these results contribute to understanding which genes play a role in seed ageing, and may serve as a basis for future functional characterization of the seed aging process in A. fraxinifolium.
Collapse
Affiliation(s)
| | - Bruno Cesar Rossini
- Biotechnology Institute, São Paulo State University “Júlio de Mesquita Filho”, Botucatu 18607-440, Brazil
- Correspondence:
| | - Celso Luis Marino
- Biotechnology Institute, São Paulo State University “Júlio de Mesquita Filho”, Botucatu 18607-440, Brazil
- Departament of Biological and Chemical Sciences, Biosciences Institute, São Paulo State University “Júlio de Mesquita Filho”, Botucatu 18618-689, Brazil
| | - Peter E. Toorop
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK
| | - Edvaldo Aparecido Amaral Silva
- Departamento de Produção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu 18610-034, Brazil
| |
Collapse
|
7
|
Arif MAR, Afzal I, Börner A. Genetic Aspects and Molecular Causes of Seed Longevity in Plants-A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:598. [PMID: 35270067 PMCID: PMC8912819 DOI: 10.3390/plants11050598] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022]
Abstract
Seed longevity is the most important trait related to the management of gene banks because it governs the regeneration cycle of seeds. Thus, seed longevity is a quantitative trait. Prior to the discovery of molecular markers, classical genetic studies have been performed to identify the genetic determinants of this trait. Post-2000 saw the use of DNA-based molecular markers and modern biotechnological tools, including RNA sequence (RNA-seq) analysis, to understand the genetic factors determining seed longevity. This review summarizes the most important and relevant genetic studies performed in Arabidopsis (24 reports), rice (25 reports), barley (4 reports), wheat (9 reports), maize (8 reports), soybean (10 reports), tobacco (2 reports), lettuce (1 report) and tomato (3 reports), in chronological order, after discussing some classical studies. The major genes identified and their probable roles, where available, are debated in each case. We conclude by providing information about many different collections of various crops available worldwide for advanced research on seed longevity. Finally, the use of new emerging technologies, including RNA-seq, in seed longevity research is emphasized by providing relevant examples.
Collapse
Affiliation(s)
- Mian Abdur Rehman Arif
- Wheat Breeding Group, Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad 38000, Pakistan
| | - Irfan Afzal
- Seed Physiology Lab, Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Andreas Börner
- Leibniz-Institute für Pflanzengenetik und Kulturpflanzenforschung (IPK), OT Gatersleben, D-06466 Seeland, Germany
| |
Collapse
|
8
|
Fan K, Peng Y, Ren Z, Li D, Zhen S, Hey S, Cui Y, Fu J, Gu R, Wang J, Wang G, Li L. Maize Defective Kernel605 Encodes a Canonical DYW-Type PPR Protein that Edits a Conserved Site of nad1 and Is Essential for Seed Nutritional Quality. PLANT & CELL PHYSIOLOGY 2020; 61:1954-1966. [PMID: 32818255 DOI: 10.1093/pcp/pcaa110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins involved in mitochondrial RNA cytidine (C)-to-uridine (U) editing mostly result in stagnant embryo and endosperm development upon loss of function. However, less is known about PPRs that are involved in farinaceous endosperm formation and maize quality. Here, we cloned a maize DYW-type PPR Defective Kernel605 (Dek605). Mutation of Dek605 delayed seed and seedling development. Mitochondrial transcript analysis of dek605 revealed that loss of DEK605 impaired C-to-U editing at the nad1-608 site and fails to alter Ser203 to Phe203 in NAD1 (dehydrogenase complex I), disrupting complex I assembly and reducing NADH dehydrogenase activity. Meanwhile, complexes III and IV in the cytochrome pathway, as well as AOX2 in the alternative respiratory pathway, are dramatically increased. Interestingly, the dek605 mutation resulted in opaque endosperm and increased levels of the free amino acids alanine, aspartic acid and phenylalanine. The down- and upregulated genes mainly involved in stress response-related and seed dormancy-related pathways, respectively, were observed after transcriptome analysis of dek605 at 12 d after pollination. Collectively, these results indicate that Dek605 specifically affects the single nad1-608 site and is required for normal seed development and resulted in nutritional quality relevant amino acid accumulation.
Collapse
Affiliation(s)
- Kaijian Fan
- Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yixuan Peng
- Institute of Crop Sciences, Chinese Academy of Agricultural iences, Beijing 100081, China
| | - Zhenjing Ren
- Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural iences, Beijing 100081, China
| | - Delin Li
- Institute of Crop Sciences, Chinese Academy of Agricultural iences, Beijing 100081, China
| | - Sihan Zhen
- Institute of Crop Sciences, Chinese Academy of Agricultural iences, Beijing 100081, China
| | - Stefan Hey
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Yu Cui
- Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Junjie Fu
- Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Riliang Gu
- Institute of Crop Sciences, Chinese Academy of Agricultural iences, Beijing 100081, China
| | - Jianhua Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural iences, Beijing 100081, China
| | - Guoying Wang
- Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Li Li
- Institute of Crop Sciences, Chinese Academy of Agricultural iences, Beijing 100081, China
| |
Collapse
|
9
|
Lost in Translation: Physiological Roles of Stored mRNAs in Seed Germination. PLANTS 2020; 9:plants9030347. [PMID: 32164149 PMCID: PMC7154877 DOI: 10.3390/plants9030347] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Seeds characteristics such as germination ability, dormancy, and storability/longevity are important traits in agriculture, and various genes have been identified that are involved in its regulation at the transcriptional and post-transcriptional level. A particularity of mature dry seeds is a special mechanism that allows them to accumulate more than 10,000 mRNAs during seed maturation and use them as templates to synthesize proteins during germination. Some of these stored mRNAs are also referred to as long-lived mRNAs because they remain translatable even after seeds have been exposed to long-term stressful conditions. Mature seeds can germinate even in the presence of transcriptional inhibitors, and this ability is acquired in mid-seed development. The type of mRNA that accumulates in seeds is affected by the plant hormone abscisic acid and environmental factors, and most of them accumulate in seeds in the form of monosomes. Release of seed dormancy during after-ripening involves the selective oxidation of stored mRNAs and this prevents translation of proteins that function in the suppression of germination after imbibition. Non-selective oxidation and degradation of stored mRNAs occurs during long-term storage of seeds so that the quality of stored RNAs is linked to the degree of seed deterioration. After seed imbibition, a population of stored mRNAs are selectively loaded into polysomes and the mRNAs, involved in processes such as redox, glycolysis, and protein synthesis, are actively translated for germination.
Collapse
|