1
|
Raza A, Li L, Luo L, Asghar MA, Shoaib N, Yin C. Rational application of combined fertilizers improved tea growth and quality components. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3923-3930. [PMID: 39931865 DOI: 10.1002/jsfa.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 08/21/2024] [Accepted: 01/07/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND The excessive and sole use of chemical fertilizers has been found to deteriorate tea quality components. Therefore, to explore the effects of rational application of combined organic and chemical fertilizers on tea growth and quality, a pot experiment was conducted with six treatments of rational and combined organic fertilizer (OF) and chemical fertilizer (CF) which were as follows: control (no fertilizer was applied), 0OF/CF100 (only CF was applied), 25OF/75CF (25% OF + 75% CF), 50CF/50OF (50% OF + 50% CF), 75OF/25CF (75% OF + 25% CF), and 100OF/0CF (only OF was applied). The biomass of tea plant, net photosynthetic rate, chloroplast ultrastructure, and tea quality components including tea polyphenols (TPs), flavonoids, sugars, catechins, caffeine, total amino acids (TAAs), chlorophyll pigments and TP/TAA were measured. RESULTS Compared to control, all fertilization treatments significantly improved tea growth, biomass, and quality components including soluble sugars, TAAs, catechins, caffeine, polyphenols and flavonoids in tea leaves. Among all fertilization treatments, 75OF/25CF and 50OF/50CF treatments had higher plant shoot biomass; 75OF/25CF and 100OF/0CF treatments significantly improved chloroplast ultrastructure and increased net photosynthetic rate, and had higher TAAs, polyphenols, catechins and caffeine contents; while 75OF/25CF treatment had higher sugar content and lowest TP/TAA. The principal component analysis (PCA) further explored that 75OF/25CF and 100OF/0CF treatments improved quality components in tea leaves in comparison to the application of only chemical fertilizers. CONCLUSION The 75OF/25CF and 100OF/0CF treatments enhanced both tea growth and quality, which indicate that rational and combination of organic and chemical fertilization or organic management had high potential to improve tea growth and the production of high-yield and better-quality tea leaves. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ali Raza
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Liu Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Lin Luo
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | | | - Noman Shoaib
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Chunying Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
| |
Collapse
|
2
|
Bharadwaj P, Devi CJ, Thakur D. Unlocking Rhizosphere Dynamics: Exploring Mechanisms of Plant-Microbe Interactions for Enhanced Tea (Camellia sinensis (L.) O. Kuntze) Productivity. Curr Microbiol 2025; 82:257. [PMID: 40261358 DOI: 10.1007/s00284-025-04235-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
The rhizosphere, the interface between plant roots and soil, refers to the contact zone where plants and soil microbes engage in beneficial and parasitic interactions. The significant interactions and their importance form a dynamic interface between the roots of plants and the soil. Beneficial ones, especially plant growth-promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF), improve plant development and enhance stress resistance due to microbial secretions, exudates from roots, and edaphic factors. All these are very important in cultivating tea (Camellia sinensis (L.) O Kuntze) plants, boosting growth, yield, and leaf content of amino acids, proteins, caffeine, and polyphenols. Yet, the molecular mechanisms of such interactions necessitate high-end technologies like genome editing and proteomics to fine-tune rhizosphere dynamics for greater plant health and productivity. The root exudates, rich in nutrients, serve as a source of food for the soil microbes while facilitating communication and colonisation by beneficial organisms, such as AMF and bacteria, thus significantly impacting the performance of a tea plant. High nitrogen fertilisers are readily applied in tea farming, although environmental risks include soil acidification and increased emissions of nitrous oxide (N2O), a potent greenhouse gas. Understanding and manipulating plant root-soil microbe interactions are critical for developing sustainable farming systems that enhance productivity without causing environmental damage. This review describes the mechanisms by which beneficial microbes function in the rhizosphere, strategies for modifying root exudates to improve tea production, and the tea microbiome's underexplored potential in contributing towards sustainability. This review thus emerges as one that presents knowledge gaps and possible future directions in tea microbiome science predicated on the amelioration of tea farming by enhancing productivity and ensuring environmental sustainability.
Collapse
Affiliation(s)
- Pranami Bharadwaj
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chingakham Juliya Devi
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India.
| |
Collapse
|
3
|
Deng X, Liu W, Huang P, Zhang Y, Zhang S, Guo Y, Wu S, Jiao Z. Effects of Bacillus subtilis N24 combined with liquid water-soluble carbon fertilizer on soil chemical properties and microbial community of fresh maize. BMC Microbiol 2025; 25:205. [PMID: 40205354 PMCID: PMC11983975 DOI: 10.1186/s12866-025-03928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/24/2025] [Indexed: 04/11/2025] Open
Abstract
Recent years have witnessed increasingly extensive application of microbial fertilizers in agriculture. However, the effectiveness of microbial fertilizers remains inconsistent because of the significant effects of soil's physical and chemical properties on microbial colonization. Therefore, exploring the scientific application of microbial fertilizers is of great significance for improving their application effect on crops. This study aimed to investigate the effects of Bacillus subtilis combined with liquid water-soluble carbon fertilizer on soil chemical properties and the rhizosphere microbial community of fresh maize. It employed a pot experiment design, incorporating five distinct treatments: T1 (liquid water-soluble carbon fertilizer), T2 (B. subtilis N24 fermentation solution), T3 (B. subtilis + liquid water-soluble carbon fertilizer), CK0 (clean water), and CK1 (conventional fertilization). Illumina high-throughput sequencing was used to analyze corn potting soil. The results indicated that the fertilization treatments influenced the chemical properties of the rhizosphere soil of fresh maize in the following order: T3 > CK1 > T2 > T1 > CK0. The T3 treatment significantly increased the contents of total nitrogen, available nitrogen, total phosphorus, available phosphorus, potassium, and organic matter (P < 0.05). It enhanced nitrogen availability and effectively preserved phosphorus and organic matter within the soil. Furthermore, the treatment enriched the microbial community diversity in the corn rhizosphere, thereby significantly increasing the abundance of Firmicutes, Acidobacteriota, Bacteroidota, Mortierellomycota, and Basidiomycota (P < 0.05), demonstrating superior effects compared with the individual applications. The soil properties were strongly linked to microbial composition, as shown by the redundancy analysis (P < 0.05). In summary, the combined application of B. subtilis N24 and liquid water-soluble carbon fertilizer enhanced the chemical properties and fertility of the soil for fresh maize while also positively influencing the structure of the microbial community. This study provides a theoretical foundation for developing novel fertilizer application models for corn cultivation.
Collapse
Affiliation(s)
- Xia Deng
- College of Biological Science and Technology, Xinjiang Key Laboratory of Lavender Resources Conservation and Utilization, Yili Normal University, Yining, Xinjiang, 835000, China
| | - Wenwen Liu
- College of Biological Science and Technology, Xinjiang Key Laboratory of Lavender Resources Conservation and Utilization, Yili Normal University, Yining, Xinjiang, 835000, China
| | - Peng Huang
- Hebei Key Laboratory of Plant Nutrition and Biofertilizer Development, Xingtai, 054000, China
| | - Yunge Zhang
- Hebei Key Laboratory of Plant Nutrition and Biofertilizer Development, Xingtai, 054000, China
| | - Sasa Zhang
- College of Biological Science and Technology, Xinjiang Key Laboratory of Lavender Resources Conservation and Utilization, Yili Normal University, Yining, Xinjiang, 835000, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Shifang Wu
- College of Biological Science and Technology, Xinjiang Key Laboratory of Lavender Resources Conservation and Utilization, Yili Normal University, Yining, Xinjiang, 835000, China.
| | - Ziwei Jiao
- College of Biological Science and Technology, Xinjiang Key Laboratory of Lavender Resources Conservation and Utilization, Yili Normal University, Yining, Xinjiang, 835000, China.
| |
Collapse
|
4
|
Samant SB, Swain J, Yadav N, Yadav R, Singh P, Rai P, Sheri V, Sreeman S, Subramanyam R, Pareek A, Gupta KJ. Overexpression of Phytoglobin1 in Rice Leads to Enhanced Nitrogen Use Efficiency via Modulation of Nitric Oxide. PLANT, CELL & ENVIRONMENT 2025; 48:2755-2768. [PMID: 39569580 DOI: 10.1111/pce.15289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Nitric oxide (NO) is one of the byproducts of nitrogen metabolism. Excess amount of NO is scavenged by phytoglobins. The role of phytoglobin mediated NO homoeostasis in modulation of nitrate transporters was investigated using NO scavenger cPTIO, phytoglobin overexpressing rice and Arabidopsis. Growing plants under low nitrate leads to generation of reduced levels of NO accompanied by elevated expression of high affinity transporters (HATs) such as NRT2.1, NRT2.3 and NRT2.4. Scavenging of NO by cPTIO under optimal nitrate caused enhanced HATs expression. Phytoglobin overexpressing Arabidopsis showed improved growth and enhanced expression of HATs under low nitrogen in comparison to WT. Pretreatment of optimal nitrate grown plants with NO scavenger cPTIO enhanced HATs expression and shifting of these primed plants from optimal to low nitrate leads to further elevation of HATs expression accompanied by enhanced nitrogen uptake and its accumulation with positive effect on growth. Phytoglobin overexpression in rice leads to enhanced HATs expression, improved growth, nitrogen accumulation under low nitrate. Pgb OE lines showed enhanced accumulation of amino acids. Taken together our results suggest an important role of phytoglobins in nitrogen uptake and assimilation.
Collapse
Affiliation(s)
- Sanjib Bal Samant
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Jagannath Swain
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Nidhi Yadav
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Reena Yadav
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Pooja Singh
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Preeti Rai
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Vijay Sheri
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Sheshshayee Sreeman
- Department of Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Ashwani Pareek
- National Agri-Food and Bio Manufacturing Institute, Mohali, Punjab, India
| | | |
Collapse
|
5
|
Lee J, Jo NY, Shim SY, Le TYL, Jeong WY, Kwak KW, Choi HS, Lee BO, Kim SR, Lee MG, Hwang SG. Impact of organic liquid fertilizer on plant growth of Chinese cabbage and soil bacterial communities. Sci Rep 2025; 15:10439. [PMID: 40140494 PMCID: PMC11947161 DOI: 10.1038/s41598-025-95327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/20/2025] [Indexed: 03/28/2025] Open
Abstract
Organic liquid fertilizers from livestock manure are increasingly recognized as sustainable amendments influencing soil bacterial communities. Yet, their direct impacts on bacterial composition and crop functionality remain unclear. Addressing this gap, we developed a bio-liquid fertilizer (LBF) by culturing Chlorella fusca in a purified pig manure-based medium. We compared its effects with chemical (CLF) and fermented (FLM) liquid fertilizers on Chinese cabbage (Brassica rapa subsp. pekinensis). We aimed to determine how organic bio-liquid fertilizers enhance crop health and soil bacterial balance, contributing to sustainable agricultural practices. Although LBF did not surpass CLF in promoting growth, it significantly increased antioxidant compounds (polyphenols, flavonoids), sugars, and antioxidant activities, including nitrite-scavenging capacity and reducing power. Soil bacterial communities were strongly correlated with key chemical properties (Na, K, NO3--N, Ca, pH). Notably, Litorilinea decreased under CLF, and Sphingomonas and Nocardioides declined under FLM, whereas LBF treatment increased all three genera, suggesting improved bacterial conditions. These findings demonstrate that a well-designed organic bio-liquid fertilizer can bridge knowledge gaps by enhancing plant functionality and promoting beneficial soil bacteria. This approach supports more efficient nutrient recycling and may foster greater resilience and sustainability in modern farming systems.
Collapse
Affiliation(s)
- Junkyung Lee
- Department of Applied Plant Science, Sangji University, Wonju-si, 26339, Republic of Korea
| | - Na-Yeon Jo
- Department of Applied Plant Science, Sangji University, Wonju-si, 26339, Republic of Korea
| | - Su-Yeon Shim
- Department of Applied Plant Science, Sangji University, Wonju-si, 26339, Republic of Korea
| | - Tran Yen Linh Le
- Department of Smart-Farm Life, Science Sangji University, Wonju-si, 26339, Republic of Korea
| | - Woo Yong Jeong
- Hoengseong Agricultural Technology Extension Center, Hoengseong, 25208, Republic of Korea
| | - Ki Wung Kwak
- Hoengseong Agricultural Technology Extension Center, Hoengseong, 25208, Republic of Korea
| | - Hyun Sik Choi
- Hoengseong Agricultural Technology Extension Center, Hoengseong, 25208, Republic of Korea
| | - Byong-O Lee
- Hanbio Incorporated, Hoengseong, 25249, Republic of Korea
| | - Soo-Ryang Kim
- Industry-Academic Cooperation Foundation, Sangji University, Wonju-si, 26339, Republic of Korea
| | - Myung-Gyu Lee
- Department of Smart-Farm Life, Science Sangji University, Wonju-si, 26339, Republic of Korea
| | - Sun-Goo Hwang
- Department of Smart-Farm Life, Science Sangji University, Wonju-si, 26339, Republic of Korea.
| |
Collapse
|
6
|
Rafique M, Naveed M, Mumtaz MZ, Niaz A, Alamri S, Rehman SU, Siddiqui MH, Mustafa A. Tripartite microbial augmentation of Bradyrhizobium diazoefficiens, Bacillus sp. MN54, and Piriformospora indica on growth, yield, and nutrient profiling of soybean ( Glycine max L.). Front Microbiol 2025; 15:1437489. [PMID: 40124387 PMCID: PMC11925901 DOI: 10.3389/fmicb.2024.1437489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/27/2024] [Indexed: 03/25/2025] Open
Abstract
Introduction Enhancing productivity and nutrient content of soybean (Glycine max L.) is vital for sustainable agriculture. The utilization of beneficial bacterial and fungal strains has shown promising results in promoting plant growth and improving nutrient uptake. However, the effects of the individual and interactions of such microbes on soybean growth, yield, and nutrient profiling remain inadequately understood. Thus, there is a pressing need to comprehensively investigate the impact of tripartite microbial augmentation on soybean cultivation. Methods This field study aims to elucidate the synergistic mechanisms underlying the interactions between Bacillus sp. MN54, Bradyrhizobium diazoefficiens, and Piriformospora indica and their collective influence on soybean growth parameters, yield and nutritional quality. Results In vivo compatibility tests revealed that consortium applications led to a maximum of 90% soybean germination. The field study demonstrated a significant increase in plant height (17.01%), nodules plant-1 (17.35%), pods plant-1 (12.11%), and grain yield (20.50%) due to triple inoculation over untreated control. The triple inoculation also significantly increased chlorophyll a, b, and leghemoglobin contents by 19.38, 21.01, and 14.28%, respectively, compared to control. Triple inoculation promoted crude fiber, protein, and oil content by 14.92, 8.78, and 10.52%, respectively, compared to the untreated control. The increase in nitrogen content by 7.33% in grains and 6.26% in stover and phosphorus by 11.31% in grains and 12.72% in stover was observed through triple application over untreated control. Discussion Our findings highlight the potential of microbial inoculants as biofertilizers in sustainable soybean production. The triple inoculation with Bacillus sp. MN54, Bradyrhizobium diazoefficiens, and Piriformospora indica significantly improved soybean growth, yield, grain quality attributes, and nutrient uptake. This microbial consortium application could help to enhance agricultural productivity by boosting the nodulation in soybean and improving synergism between the microbial strains.
Collapse
Affiliation(s)
- Munazza Rafique
- Soil Bacteriology Section, Agricultural Biotechnology Research Institute, AARI, Faisalabad, Pakistan
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Zahid Mumtaz
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Abid Niaz
- Soil Bacteriology Section, Agricultural Biotechnology Research Institute, AARI, Faisalabad, Pakistan
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sajid ur Rehman
- Agricultural Biotechnology Research Institute, AARI, Faisalabad, Pakistan
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Adnan Mustafa
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
7
|
Yang B, Xiao Y, Li L, Shen M, Lei X, Zhu X, Fang W. The Physiological Responses of Tea to pH and Cd Conditions and the Effect of the CsHMA2 on Cd Transport. PLANTS (BASEL, SWITZERLAND) 2025; 14:570. [PMID: 40006829 PMCID: PMC11859789 DOI: 10.3390/plants14040570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/25/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Soil acidification in tea (Camellia sinensis L.) gardens leads to nutrient depletion, inhibits the growth of tea plants, reduces tea quality, and activates heavy metals such as cadmium (Cd) in the soil. To clarify the impact of soil pH under acidified conditions on tea plant growth physiology and the key genes involved in Cd2+ transport in tea plants, this study planted 'Longjing 43' under different pH levels (4.0, 4.5, and 5.5) and Cd concentrations (T1 = 0 mg L-1, T2 = 0.01 mg L-1, T3 = 0.05 mg L-1, and T4 = 0.2 mg L-1). The results showed that the concentration of Cd in tea plants from highest to lowest was root > stem > mature leaves > young leaves. Under T4, with decreasing pH, the total chlorophyll significantly decreased, the Fv/Fm significantly decreased, stomatal aperture reduced, and net photosynthetic rate and transpiration rate significantly decreased. In the T4 treatment at pH = 4.0, the contents of free proline and malondialdehyde were both the highest, while superoxide dismutase (SOD), peroxidase (POD), and catalase from micrococcus lysodeiktic (CAT) showed a significant negative correlation with pH. By screening the tea genome data, a total of nine CsHMAs involved in metal ion transport were identified. The qRT-PCR results indicated that the expression level of CsHMA2 was the highest in young leaves of tea, and CsHMA2 was localized on the cell membrane. Under T4 and pH = 4.0, transient overexpression of CsHMA2 enhanced the ability of tea to transport Cd2+, whereas transient silencing of CsHMA2 weakened this ability. These findings not only help understand how tea adapts and regulates its physiological processes in acidic environments but also provide an important theoretical basis and technical guidance for soil improvement in tea gardens, the control of heavy metal pollution, and the optimization of tea quality.
Collapse
Affiliation(s)
- Bin Yang
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China; (B.Y.); (L.L.); (M.S.)
| | - Yao Xiao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.X.); (X.L.)
| | - Lei Li
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China; (B.Y.); (L.L.); (M.S.)
| | - Min Shen
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China; (B.Y.); (L.L.); (M.S.)
| | - Xiaogang Lei
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.X.); (X.L.)
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.X.); (X.L.)
| | - Wanping Fang
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China; (B.Y.); (L.L.); (M.S.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.X.); (X.L.)
| |
Collapse
|
8
|
Park H, Kim K, Walitang DI, Sayyed R, Sa T. Shifts in Soil Bacterial Community Composition of Jujube Orchard Influenced by Organic Fertilizer Amendment. J Microbiol Biotechnol 2024; 34:2539-2546. [PMID: 39628327 PMCID: PMC11729348 DOI: 10.4014/jmb.2406.06037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 12/31/2024]
Abstract
Organic fertilizer application in agricultural land is known to improve soil microbial processes, fertility, and yield. In particular, the changes in soil chemical composition due to multi-year application of organic fertilizers are thought to alter the microbial community. Here, the effects of organic fertilization with oil-cake amendments (OC) on soil bacterial diversity, community profile, and enzyme activity were evaluated and compared to those amended with chemical fertilizer (NPK). Diversity indices show that the application of organic fertilizer potentially increases microbial diversity as well as the number of different microbial groups. The ordination plot distinguished and clustered both treatments, showing the differential effects of soil chemical factors on the microbial communities in each treatment. Proteobacteria, Verrucomicrobia, and Bacteriodetes were significantly more abundant in OC-amended soil than in the NPK soil, indicating alterations in community structure, composition, and diversity, concurrent to the changes in the pH, Ca, and Mg contents of the soil. These shifts in bacterial community structure and composition, partially explained by differences in soil chemical factors, could be observed from the phylum to the genus level in NPK- and OC-amended soils. The OC soil contained a significantly higher abundance of predicted genes corresponding to enzymes related to biogeochemical cycling, decomposition, and plant growth promotion. Collectively, these results support the use of an unconventional organic fertilizer positively altering bacterial populations in jujube orchards. The application of an unconventional organic fertilizer improved microbial diversity and enhanced ecosystem functions related to biogeochemical cycles, mineralization, and plant growth promotion.
Collapse
Affiliation(s)
- Heesoon Park
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
- Jujube Research Institute, Chungcheongbuk-do Agricultural Research and Extension Services, Boeun, Chungbuk 28902, Republic of Korea
| | - Kiyoon Kim
- National Forest Seed Variety Center, Chungju 27495, Republic of Korea
| | - Denver I. Walitang
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
- College of Agriculture, Forestry and Environmental Science, Romblon State University, Romblon 5505, Philippines
| | - Riyaz Sayyed
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
- The Korean Academy of Science and Technology, Seongnam 13630, Republic of Korea
| |
Collapse
|
9
|
Jamshidi-Kia F, Saeidi K, Lorigooini Z, Samani BH. Efficacy of foliar application of Chlorella vulgaris extract on chemical composition and biological activities of the essential oil of spearmint ( Mentha spicata L.). Heliyon 2024; 10:e40531. [PMID: 39660204 PMCID: PMC11629182 DOI: 10.1016/j.heliyon.2024.e40531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
The microalgal have an essential role in agriculture, where they are used as biofertilizers. This study aimed to determine the effect of C. vulgaris extract on the chemical composition and biological activities of the Essential Oil (EO) of Mentha spicata. The extract of C. vulgaris was prepared and applied at three different concentrations (50, 75, and 100 %). The EOs of M. spicata were analyzed by gas chromatography-mass spectrometry (GC-MS). The DPPH radical scavenging capability and Ferric Reducing Antioxidant Power (FRAP) techniques were used to assess the antioxidant activity of EOs. The antimicrobial activity of EO was evaluated using the microdilution method against Staphylococcus aureus. The results of GC-MS analysis of EOs identified 46 components, with Carvone (77.5-65.4 %), Limonene (10.31-6.9 %), β-elemene (1.56-0.98 %), and Caryophyllene (10.92-4.77 %) being the predominant constituents. From the highest concentration ranged from 100 % C. vulgaris extract to control respectively, yield and EO content ranged from 171.24 to 131.74 g/m2 and 0.34 to 0.18 %, respectively; Antioxidant activity by DPPH and FRAP methods varied from 1.56 to 4.45 mg/mL, and 405.63 to 68.68 μMFe2+/g, respectively; the Minimum Inhibitory Concentrations (MIC) ranged from 2.4 to 9.6 mg/mL in various treatments. The results indicated that the C. vulgaris extract significantly increased the yield, EO%, Carvone, Limonene, and antioxidant and antibacterial activities compared to the control. The extract of C. vulgaris showed promise as a biofertilizer to enhance the yield, chemical composition, and biological activities of M. spicata.
Collapse
Affiliation(s)
- Fatemeh Jamshidi-Kia
- Department of Horticulture Science, Faculty of Agriculture, Shahrekord University, Iran
| | - Keramatolah Saeidi
- Department of Horticulture Science, Faculty of Agriculture, Shahrekord University, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | |
Collapse
|
10
|
Kader S, Gratchev I, Michael RN. Recycled waste substrates: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176029. [PMID: 39244062 DOI: 10.1016/j.scitotenv.2024.176029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The growing interest in utilizing recycled waste substrates (RWS) in ecosystem services and environmental remediation aligns with the "waste to wealth" concept and the Sustainable Development Goals (SDGs). Despite the promising potential of RWS, research gaps remain due to a lack of comprehensive reviews on their production and applications. This systematic review attempts to synthesize and critically assess the scientific footprint of RWS through robust methodology and thorough investigation. Characterization of scientific literature, network analysis, and systematic review were conducted on articles indexed in the Web of Science and Scopus databases. Quantitative and qualitative analyses were performed on 140 articles selected by the rigorous article screening process executed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. The findings map the scientific literature and research themes in RWS. Around 66 % of studies in RWS used a multiple research approach, primarily experiments with case studies. Key research topics identified include (A) Technical domains - types of wastes and recycling techniques in RWS production and parameters influencing the substrate quality; (B) Application domains: environmental remediation of soil and agriculture and horticulture. The use of RWS in urban green infrastructure, particularly for green roofs and vegetative walls, and the potential for LCA studies on RWS production and applications emerge as promising areas for future research. This systematic review also presents a conceptual framework model (CFM) on RWS research, encapsulating the state-of-the-art themes, risks, limitations and constraints, and future research avenues.
Collapse
Affiliation(s)
- Shuraik Kader
- School of Engineering and Built Environment, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia; Green Infrastructure Research Labs (GIRLS), Cities Research Institute, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia.
| | - Ivan Gratchev
- School of Engineering and Built Environment, Griffith University, Parklands Drive, Gold Coast, Queensland 4222, Australia.
| | - Ruby N Michael
- School of Engineering and Built Environment, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia; Green Infrastructure Research Labs (GIRLS), Cities Research Institute, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia.
| |
Collapse
|
11
|
Nie M, Yue G, Wang L, Zhang Y. Short-term organic fertilizer substitution increases sorghum yield by improving soil physicochemical characteristics and regulating microbial community structure. FRONTIERS IN PLANT SCIENCE 2024; 15:1492797. [PMID: 39582622 PMCID: PMC11581943 DOI: 10.3389/fpls.2024.1492797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/17/2024] [Indexed: 11/26/2024]
Abstract
Introduction Chemical fertilizer reduction combined with organic fertilizer (organic fertilizer substitution) has a positive impact on crop productivity and sustainable development. However, the effects of short-term organic fertilizer substitution on microbial community structure and functions of sorghum rhizosphere soil and on sorghum yield remain unclear. Herein, this study investigated the short-term effects of organic fertilizer substitution on sorghum soil physicochemical properties, microbial community structure and enzyme activities using Metagenomic sequencing technology. Methods The fertilization treatment included no fertilization (CK), pure chemical fertilizer N (CF), substitution of 25% chemical fertilizer N with organic N (NF25), substitution of 50% chemical fertilizer N with organic N (NF50), substitution of 75% chemical fertilizer N with organic N (NF75), and pure organic fertilizer N (NF100); soil samples were collected and analyzed in the flowering period of sorghum. Results and Discussion The results showed that the suitable organic fertilizer substitution rate of sorghum field was 50%, and its yield was the highest among all treatments (9789.9 kg/hm2). Compared with the CF treatment, a medium ratio (50%) of organic fertilizer substitution significantly reduced soil alkalization (by 3.05%), improved soil nutrients, enhanced soil enzyme activities, and increased sorghum yield (P < 0.05). After organic fertilizer substitution treatment, higher protein, fat, and total starch levels accumulated in sorghum grains, and the tannin content of grains decreased. The effect of organic fertilizer substitution on bacterial diversity was greater than that on fungal diversity. Among the dominant bacterial phyla, the medium ratio of organic substitution treatment significantly increased the relative abundances of Proteobacteria (by 3.57%) and Actinomycetes (by 14.94%), and decreased the relative abundances of Acidobacteria (by 5.18%) and Planctomycetes (by 7.76%) compared with no fertilization, while the dominant fungal phyla did not respond significantly to the addition of organic fertilizer. Organic fertilizer substitution also improved soil microbial metabolic pathways, biosynthesis of secondary metabolites, and carbon metabolism. The biomarkers enriched in inorganic fertilizer treatment and organic fertilizer substitution treatments had similar relevant environmental elements but reversed correlation trends. Moreover, soil Alkali-hydrolyzable nitrogen and L-leucine aminopeptidase were important environmental factors influencing the structure of bacterial and fungal communities in sorghum soils, respectively. Soil nutrient levels and microbial communities together explained the variation in annual sorghum yield. The results of this study provide evidence that short-term organic fertilizer substitution increases sorghum yield by improving soil properties and regulating microbial community structure.
Collapse
Affiliation(s)
- Mengen Nie
- Center for Agricultural Gene Resources Research, Shanxi Agricultural University, Taiyuan, China
| | - Guangqian Yue
- College of Agronomy, Shanxi Agricultural University, Taiyuan, China
| | - Lei Wang
- College of Agronomy, Shanxi Agricultural University, Taiyuan, China
| | - Yizhong Zhang
- Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
12
|
Kumar S, Sindhu SS. Drought stress mitigation through bioengineering of microbes and crop varieties for sustainable agriculture and food security. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100285. [PMID: 39512260 PMCID: PMC11542684 DOI: 10.1016/j.crmicr.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Climate change and agriculture are intrinsically connected and sudden changes in climatic conditions adversely impact global food production and security. The climate change-linked abiotic stressors like drought and high temperatures are resulting in crop failure. The most severe abiotic stress drought significantly affect the stomatal closure, production of reactive oxygen species, transpiration, photosynthesis or other physiological processes and plant morphology, and adversely affect plant growth and crop yield. Therefore, there is an exigent need for cost effective and eco-friendly modern technologies to induce drought tolerance in crop plants leading to climate-adapted sustainable agricultural practices for sustained food production. Among many options being pursued in this regard, the use of plant growth promoting microbes (PGPMs) is the most sustainable approach to promote drought stress resilience in crop plants leading to better plant growth and crop productivity. These PGPMs confer drought resistance via various direct or indirect mechanisms including production of antioxidants, enzymes, exopolysaccharides, modulation of phytohormones level, osmotic adjustment by inducing the accumulation of sugars, along with increases in nutrients, water uptake and photosynthetic pigments. However, several technological and ecological challenges limit their use in agriculture and sometimes treatment with plant beneficial microbes fails to produce desired results under field conditions. Thus, development of synthetic microbial communities or host mediated microbiome engineering or development of transgenic plants with the capacity to express desired traits may promote plant survival and growth under drought stress conditions. The present review critically assesses research evidence on the plant growth and stress resilience promoting potentials of PGPMs and their genes as an approach to develop drought resilient plants leading to increased crop productivity. Effective collaboration among scientific communities, policymakers and regulatory agencies is needed to create strong frameworks that both promote and regulate the utilization of synthetic microbial communities and transgenic plants in agriculture.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
13
|
Meskelu T, Senbeta AF, Keneni YG, Sime G. Heavy metal accumulation and food safety of lettuce ( Lactuca sativa L.) amended by bioslurry and chemical fertilizer application. Food Sci Nutr 2024; 12:7449-7460. [PMID: 39479694 PMCID: PMC11521628 DOI: 10.1002/fsn3.4363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/16/2024] [Accepted: 07/11/2024] [Indexed: 11/02/2024] Open
Abstract
The accumulation of heavy metals in soil and plant tissue is a serious concern since it impacts both soil quality and food safety. This study evaluated the accumulation of heavy metals and the food quality of lettuce as a result of the application of chemical fertilizer (CF) and bioslurry (BS). The treatments were CF (158 kg ha-1 NPS and 200 kg ha-1 urea), BS (5 ton ha-1), and control with no fertilizer, laid out in a randomized complete block design with three replications. Soil samples were analyzed for their physico-chemical characteristics. The concentrations of 10 heavy metals (As, Pb, Zn, Cd, Cu, Ni, Co, Fe, Mn, and Cr) in the agricultural soil, bioslurry, and lettuce tissue were determined. Both the BS and CF reduced the concentrations of most heavy metals in the agricultural soil, particularly As, Pb, and Cd. Only the mean concentration of Cd in the agricultural soils exceeded the threshold level set by WHO/FAO (2011) for agricultural soils. Similarly, the concentration of As, Pb, and Cd in lettuce tissue grown in BS-treated soils and the concentration of As in agricultural soils surpassed the limit set for vegetables. Given the toxicities of As, Cd, and Pb, as well as the effect on food safety, human health, and the environment, it is unsafe to cultivate lettuce using either the agricultural soil or BS in the study area.
Collapse
Affiliation(s)
| | | | | | - Getachew Sime
- Department of BiologyHawassa UniversityHawassaEthiopia
- Center for Ethiopian Rift Valley StudiesHawassa UniversityHawassaEthiopia
| |
Collapse
|
14
|
Joseph B, Babu S. Effect of Organic and Chemical Fertilizer on the Diversity of Rhizosphere and Leaf Microbial Composition in Sunflower Plant. Curr Microbiol 2024; 81:331. [PMID: 39198293 DOI: 10.1007/s00284-024-03856-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Applying organic manure to crops positively impacts the soil microbial community which is negatively impacted when chemical fertilizers are used. Organic manures also add new microbes to the soil in addition to influencing the growth of native ones. Metagenomic analysis of different organic manures, soil, and pot culture experiments conducted under various fertilizer conditions constitute the primary methodologies employed in this study. We compared the effect of two organic manure combinations and an inorganic fertilizer combination on microbial community of rhizosphere soil and leaves of sunflower plants. Metagenomic sequencing data analysis revealed that the diversity of bacteria and fungi is higher in organic manure than in chemical fertilizers. Each organic manure combination selectively increased population of some specific microbes and supported new microbes. Application of chemical fertilizer hurts many plant beneficial fungi and bacteria. In summary, our study points out the superiority of organic manure combinations in enhancing microbial diversity and supporting beneficial microbes. These findings enhance the profound influence of fertilizer types on sunflower microbial communities, shedding light on the intricate dynamics within the rhizosphere and leaf microbiome. Bacterial genera such as Bacillus, Serratia, Sphingomonas, Pseudomonas, Methylobacterium, Acinetobacter, Stenotrophomonas, and fungal genera such as Wallemia, Aspergillus, Cladosporium, and Penicillium constitute the key microbes of sunflower plants.
Collapse
Affiliation(s)
- Babitha Joseph
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Subramanian Babu
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL), Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
15
|
Enagbonma BJ, Fadiji AE, Babalola OO. Anthropogenic fertilization influences a shift in barley rhizosphere microbial communities. PeerJ 2024; 12:e17303. [PMID: 39006020 PMCID: PMC11246026 DOI: 10.7717/peerj.17303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/04/2024] [Indexed: 07/16/2024] Open
Abstract
Background Anthropogenic mediations contribute a significant role in stimulating positive reactions in soil-plant interactions; however, methodical reports on how anthropogenic activities impact soil microorganism-induced properties and soil health are still inadequate. In this study, we evaluated the influence of anthropogenic fertilization of farmland soil on barley rhizosphere microbial community structure and diversity, and the significant impacts on agro-ecosystem productivity. This will help validate the premise that soil amendment with prolonged synthetic fertilizers can lead to a significant reduction in bacterial abundance and diversity, while soils amended with organic fertilizers elicit the succession of the native soil microbial community and favor the growth of copiotrophic bacteria. Methods The total metagenomic DNA was extracted from soils obtained from the barley rhizosphere under chemical fertilization (CB), organic fertilization (OB), and bulk soil (NB). Subsequently, these samples were sequenced using an amplicon-based sequencing approach, and the raw sequence dataset was examined using a metagenomic rast server (MG-RAST). Results Our findings showed that all environments (CB, OB, and NB) shared numerous soil bacterial phyla but with different compositions. However, Bacteroidetes, Proteobacteria, and Actinobacteria predominated in the barley rhizosphere under chemical fertilization, organic fertilization, and bulk soils, respectively. Alpha and beta diversity analysis showed that the diversity of bacteria under organic barley rhizosphere was significantly higher and more evenly distributed than bacteria under chemical fertilization and bulk soil. Conclusion Understanding the impact of conventional and organic fertilizers on the structure, composition, and diversity of the rhizosphere microbiome will assist in soil engineering to enhance microbial diversity in the agroecosystem.
Collapse
Affiliation(s)
- Ben Jesuorsemwen Enagbonma
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, North-West Province, South Africa
| | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, North-West Province, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, North-West Province, South Africa
| |
Collapse
|
16
|
Saravana Kumari P, Ramkumar S, Seethalaxmi M, Rekha T, Abiyoga M, Baskar V, Sureshkumar S. Biofortification of crops with nutrients by the application of nanofertilizers for effective agriculture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108772. [PMID: 38801788 DOI: 10.1016/j.plaphy.2024.108772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/26/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
The agricultural industry is rapidly accepting daily changes and updates, and expanding to meet the basic demands of humanity. The main objective of modern agricultural practices is high profits with minimal investment, without upsetting any other form of life or abiotic factors. According to this principle, nanofertilizers are recommended for use in agriculture and are classified in different ways based on their nutritive value, functional role in the environment, chemical composition, and form of application to ensure their persistent availability in the required quantities. These nanofertilizers meet the global crop nutrient requirement of 191.8 million metric tons along with multitudes of added value, and which are highly endorsed in the agricultural field compared to other chemical fertilizers, or their usage can be reduced to less than 50% by the use of nanofertilizers. In this review, we discuss different types of nanofertilizers, their effects on crop yield, stress tolerance, and their impact on the environment. Furthermore, the different types of nanofertilizer delivery, modes of action, and toxic impacts of nanofertilizers have been discussed. Although a large number of commercially successful effects of nanofertilizers have been demonstrated, the effects of biomagnification and cellular transformation are still disputed. The effect of the biomagnification of nanofertilizers remains unclear. A suitable strategy must be developed to easily recycle nanofertilizers. It is the need of the hour to accept the use of nanofertilizers in parallel to addressing this issue.
Collapse
Affiliation(s)
- P Saravana Kumari
- Department of Microbiology, RVS College of Arts and Science, Coimbatore, India
| | - S Ramkumar
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - M Seethalaxmi
- Department of Microbiology, RVS College of Arts and Science, Coimbatore, India; Department of Biotechnology, Surana College, Bangalore, India
| | - T Rekha
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India.
| | - M Abiyoga
- Department of Microbiology, RVS College of Arts and Science, Coimbatore, India
| | - V Baskar
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India.
| | - S Sureshkumar
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, 641021, India
| |
Collapse
|
17
|
Sánchez S, Baragaño D, Gallego JR, López-Antón MA, Forján R, González A. Valorization of steelmaking slag and coal fly ash as amendments in combination with Betula pubescens for the remediation of a highly As- and Hg-polluted mining soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172297. [PMID: 38588736 DOI: 10.1016/j.scitotenv.2024.172297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/23/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Soil pollution by As and Hg is a pressing environmental issue given their persistence. The intricate removal processes and subsequent accumulation of these elements in soil adversely impact plant growth and pose risks to other organisms in the food chain and to underground aquifers. Here we assessed the effectiveness of non-toxic industrial byproducts, namely coal fly ash and steelmaking slag, as soil amendments, both independently and in conjunction with an organic fertilizer. This approach was coupled with a phytoremediation technique involving Betula pubescens to tackle soil highly contaminated. Greenhouse experiments were conducted to evaluate amendments' impact on the growth, physiology, and biochemistry of the plant. Additionally, a permeable barrier made of byproducts was placed beneath the soil to treat leachates. The application of the byproducts reduced pollutant availability, the production of contaminated leachates, and pollutant accumulation in plants, thereby promoting plant development and survival. Conversely, the addition of the fertilizer alone led to an increase in As accumulation in plants and induced the production of antioxidant compounds such as carotenoids and free proline. Notably, all amendments led to increased thiolic compound production without affecting chlorophyll synthesis. While fertilizer application significantly decreased parameters associated with oxidative stress, such as hydrogen peroxide and malondialdehyde, no substantial reduction was observed after byproduct application. Thermal desorption analysis of the byproducts revealed Hg immobilization mechanisms, thereby indicating retention of this metalloid in the form of Hg chloride. In summary, the revalorization of industrial byproducts in the context of the circular economy holds promise for effectively immobilizing metal(loid)s in heavily polluted soils. Additionally, this approach can be enhanced through synergies with phytoremediation.
Collapse
Affiliation(s)
- S Sánchez
- Department of Organisms and Systems Biology, Area of Plant Physiology IUBA, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Asturias, Spain; Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Campus de Mieres, Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Asturias, Spain
| | - D Baragaño
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe, 26, 33011 Oviedo, Spain.
| | - J R Gallego
- Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Campus de Mieres, Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Asturias, Spain
| | - M A López-Antón
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe, 26, 33011 Oviedo, Spain
| | - R Forján
- Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Campus de Mieres, Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Asturias, Spain; Plant Production Area, Department of Biology of Organisms and Systems Biology, University of Oviedo, 33600 Mieres, Spain
| | - A González
- Department of Organisms and Systems Biology, Area of Plant Physiology IUBA, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
18
|
Lei Y, Ding D, Duan J, Luo Y, Huang F, Kang Y, Chen Y, Li S. Soil Microbial Community Characteristics and Their Effect on Tea Quality under Different Fertilization Treatments in Two Tea Plantations. Genes (Basel) 2024; 15:610. [PMID: 38790239 PMCID: PMC11121415 DOI: 10.3390/genes15050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Fertilization is an essential aspect of tea plantation management that supports a sustainable tea production and drastically influences soil microbial communities. However, few research studies have focused on the differences of microbial communities and the variation in tea quality in response to different fertilization treatments. In this work, the soil fertility, tea quality, and soil microbial communities were investigated in two domestic tea plantations following the application of chemical and organic fertilizers. We determined the content of mineral elements in the soil, including nitrogen, phosphorus, and potassium, and found that the supplementation of chemical fertilizer directly increased the content of mineral elements. However, the application of organic fertilizer significantly improved the accumulation of tea polyphenols and reduced the content of caffeine. Furthermore, amplicon sequencing results showed that the different ways of applying fertilizer have limited effect on the alpha diversity of the microbial community in the soil while the beta diversity was remarkably influenced. This work also suggests that the bacterial community structure and abundance were also relatively constant while the fungal community structure and abundance were dramatically influenced; for example, Chaetomiaceae at the family level, Hypocreaceae at the order level, Trichoderma at the genus level, and Fusarium oxysporum at the species level were predominantly enriched in the tea plantation applying organic fertilizer. Moreover, the bacterial and fungal biomarkers were also analyzed and it was found that Proteobacteria and Gammaproteobacteria (bacteria) and Tremellomycetes (fungi) were potentially characterized as biomarkers in the plantation under organic fertilization. These results provide a valuable basis for the application of organic fertilizer to improve the soil of tea plantations in the future.
Collapse
Affiliation(s)
- Yu Lei
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| | - Ding Ding
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| | - Jihua Duan
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| | - Yi Luo
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| | - Feiyi Huang
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| | - Yankai Kang
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| | - Yingyu Chen
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| | - Saijun Li
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| |
Collapse
|
19
|
Jibola-Shittu MY, Heng Z, Keyhani NO, Dang Y, Chen R, Liu S, Lin Y, Lai P, Chen J, Yang C, Zhang W, Lv H, Wu Z, Huang S, Cao P, Tian L, Qiu Z, Zhang X, Guan X, Qiu J. Understanding and exploring the diversity of soil microorganisms in tea ( Camellia sinensis) gardens: toward sustainable tea production. Front Microbiol 2024; 15:1379879. [PMID: 38680916 PMCID: PMC11046421 DOI: 10.3389/fmicb.2024.1379879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Leaves of Camellia sinensis plants are used to produce tea, one of the most consumed beverages worldwide, containing a wide variety of bioactive compounds that help to promote human health. Tea cultivation is economically important, and its sustainable production can have significant consequences in providing agricultural opportunities and lowering extreme poverty. Soil parameters are well known to affect the quality of the resultant leaves and consequently, the understanding of the diversity and functions of soil microorganisms in tea gardens will provide insight to harnessing soil microbial communities to improve tea yield and quality. Current analyses indicate that tea garden soils possess a rich composition of diverse microorganisms (bacteria and fungi) of which the bacterial Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes and Chloroflexi and fungal Ascomycota, Basidiomycota, Glomeromycota are the prominent groups. When optimized, these microbes' function in keeping garden soil ecosystems balanced by acting on nutrient cycling processes, biofertilizers, biocontrol of pests and pathogens, and bioremediation of persistent organic chemicals. Here, we summarize research on the activities of (tea garden) soil microorganisms as biofertilizers, biological control agents and as bioremediators to improve soil health and consequently, tea yield and quality, focusing mainly on bacterial and fungal members. Recent advances in molecular techniques that characterize the diverse microorganisms in tea gardens are examined. In terms of viruses there is a paucity of information regarding any beneficial functions of soil viruses in tea gardens, although in some instances insect pathogenic viruses have been used to control tea pests. The potential of soil microorganisms is reported here, as well as recent techniques used to study microbial diversity and their genetic manipulation, aimed at improving the yield and quality of tea plants for sustainable production.
Collapse
Affiliation(s)
- Motunrayo Y. Jibola-Shittu
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiang Heng
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL, United States
| | - Yuxiao Dang
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruiya Chen
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sen Liu
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongsheng Lin
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengyu Lai
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinhui Chen
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenjie Yang
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weibin Zhang
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huajun Lv
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ziyi Wu
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuaishuai Huang
- School of Ecology and Environment, Tibet University, Lhasa, China
| | - Pengxi Cao
- School of Ecology and Environment, Tibet University, Lhasa, China
| | - Lin Tian
- Tibet Plateau Institute of Biology, Lhasa, China
| | - Zhenxing Qiu
- Fuzhou Technology and Business University, Fuzhou, Fujian, China
| | - Xiaoyan Zhang
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiayu Guan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Junzhi Qiu
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
20
|
Gaidar S, Kazak A, Barchukova A, Kozlov A. Effects of Complex Fertilizers on the Properties of Grey Forest Heavy Loamy Soil. SCIENTIFICA 2024; 2024:2763147. [PMID: 38487733 PMCID: PMC10940026 DOI: 10.1155/2024/2763147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 03/17/2024]
Abstract
The study's main aim was to evaluate the effects of complex mineral fertilizers on the complex properties of heavy loam soils in the grey forests of Russia in terms of applying individual soil nutrition components from experiments with fodder beets. This study employed a rigorous and systematic approach to accomplish the defined goal. Specifically, the research was conducted within a seven-field crop rotation system, with fodder beets serving as the primary experimental crop. In addition, a model experiment resembling a vegetation trial was undertaken, incorporating seven distinct schemes involving various types of fertilizers. This design facilitated the evaluation of the effectiveness of each fertilizer type. The study results demonstrate that complex fertilizers impact the soil's chemical and biophysical parameters. Soil acidity decreases through the use of complex, high-nitrogen fertilizers. Major chemical nutrients (nitrogen, phosphorus, and potassium) in plant biomass and soil also have a high degree of transition. It is explained by the effects of combining elements on the destruction intensity of the crystalline lattice in the basic structures of potassium, phosphorus, and nitrogen. There is also evidence that complex fertilizers can improve humus quality and replenish its reserves. All the aforementioned impacts of complex fertilizers on the crop contribute to the high productivity and yield of forage beet. The results of the study may help optimize the fertilization process, improve the quality and quantity of agricultural products, as well as increase soil fertility, and reduce the negative impact of agrochemicals on the environment.
Collapse
Affiliation(s)
- Sergey Gaidar
- Department of Materials Science and Engineering Technology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - Anastasia Kazak
- Department of Biotechnology and Breeding in Crop Production, Federal State Budgetary Educational Institution of Higher Education Northern Trans-Ural State Agricultural University, Tyumen, Russia
| | - Alina Barchukova
- Department of Materials Science and Engineering Technology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - Andrey Kozlov
- Department of Microbiology and Immunology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
| |
Collapse
|
21
|
Xu X, Yang J, Zhang Y, Sui X, Gong Z, Liu S, Chen X, Li X, Wang Y. Ecological risk assessment of heavy metals in tea plantation soil around Tai Lake region in Suzhou, China. STRESS BIOLOGY 2024; 4:15. [PMID: 38363398 PMCID: PMC10873261 DOI: 10.1007/s44154-024-00149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/06/2024] [Indexed: 02/17/2024]
Abstract
Tea plant [Camellia sinensis (L.) O. Kuntze] is one of the important foliar cash crops in China, and its root system absorbs heavy metal (HM) elements enriched in the soil and transports them to the over ground part. In order to ensure the safety of the soil ecological environment and tea raw materials in the tea production area, the HM contents of soil and tea plant leaves in Suzhou tea plantations were detected, the relationship between HMs and soil physicochemical properties was analyzed, and the ecological risk of HMs in tea plantation soils was evaluated by using relevant detection techniques and evaluation models. The results showed that the average pH of tea plantation soils around Tai Lake in Suzhou was within the range suitable for the growth of tea plants. The pH, soil organic matter, total nitrogen, available phosphorus and available potassium of tea plantation soil satisfying the requirements of high quality, high efficiency and high yield ('3H') tea plantation accounted for 47.06%, 26.47%, 8.82%, 79.41% and 67.65%, respectively. Site 2 fully met the requirements of '3H' tea plantation. In addition, the contents of cadmium (Cd) and mercury (Hg) were extremely variable, and the average contents exceeded the background value of soil in Jiangsu Province, but the HM contents of tea leaves all met the pollution-free standard, and the HM contents of tea leaves around Tai Lake in Suzhou were generally at a safe level. The composite ecological risk index ranged from 0.05 to 0.60, and 32 of the 34 sample sites (except site 21 and site 23) are the most suitable agricultural land for tea plantations.
Collapse
Affiliation(s)
- Xiaohan Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiahui Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Zhang
- Jiangsu Land Consolidation and Rehabilitation Center, Nanjing, 210017, China
| | - Xueyan Sui
- Jiangsu Land Consolidation and Rehabilitation Center, Nanjing, 210017, China
- Jiangsu Donghai and Yixing Land Consolidation and Ecological Protection Field Scientific Observation and Research Station, Ministry of Natural Resources, Yixing, 214200, China
| | - Zelong Gong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shujing Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
22
|
Manzoor, Ma L, Ni K, Ruan J. Influence of Organic and Inorganic Fertilizers on Tea Growth and Quality and Soil Properties of Tea Orchards' Top Rhizosphere Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:207. [PMID: 38256759 PMCID: PMC10820999 DOI: 10.3390/plants13020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Organic-based fertilizers have been ratified to be effective in ameliorating tea growth and the fertility of soil. However, the effect of integrated fertilization on tea growth and quality and the chemical properties of the soil in tea gardens are unclear. To address this, from 2020 to 2021, five different treatments were carried out in the greenhouse of the Tea Research Institute, Hangzhou, CAAS, including CK (control), NPK (chemical fertilizers), RC (rapeseed cake), NPK+B (chemical fertilizer + biochar), and NPK+RC, to investigate the effects of different fertilizations on soil chemistry and tea growth and quality. The results indicated that NPK+B and NPK+RC significantly improved the different amino acid and catechin concentrations in the young shoots, stems, and roots of the tea compared to the CK. The plant growth parameters, e.g., the plant height, no. of leaves, mid-stem girth, and fresh weights of stems and leaves, were significantly increased with integrated fertilization (NPK+B and NPK+RC) compared to the CK and solo organic and inorganic fertilizers. The chlorophyll contents (Chl a, Chl b, and Chl a+b) were generally higher with NPK+RC than with the CK (37%, 35%, and 36%), RC (14%, 26%, and 18%), and NPK (9%, 13%, and 11%) treatments. Integrated fertilization buffered the acidic soil of the tea garden and decreased the soil C:N ratio. NPK+RC also significantly increased the soil's total C (31% and 16%), N (43% and 31%), P (65% and 40%), available P (31% and 58%), K (70% and 25%), nitrate (504% and 188%), and ammonium (267% and 146%) concentrations compared to the CK and RC. The soil macro- (Mg and Ca) and micronutrients (Mn, Fe, Zn, and Cu) were significantly improved by the RC (100% and 72%) (49%, 161%, 112%, and 40%) and NPK+RC (88% and 48%) (47%, 75%, 45%, and 14%) compared to the CK. The chlorophyll contents and soil macro- and micronutrients were all significantly positively correlated with tea quality (amino acids and catechin contents) and growth. These results indicated that integrated fertilization improved the soil nutrient status, which is associated with the improvement of tea growth and quality. Thus, integrated nutrient management is a feasible tool for improving tea growth, quality, and low nutrient levels in the soil.
Collapse
Affiliation(s)
- Manzoor
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- Key Laboratory of Tea Biology and Resource Utilization of Tea, Tea Research Institute, Chinese Academy of Agriculture Sciences, The Ministry of Agriculture, Hangzhou 310008, China
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna 666303, China
| | - Lifeng Ma
- Key Laboratory of Tea Biology and Resource Utilization of Tea, Tea Research Institute, Chinese Academy of Agriculture Sciences, The Ministry of Agriculture, Hangzhou 310008, China
| | - Kang Ni
- Key Laboratory of Tea Biology and Resource Utilization of Tea, Tea Research Institute, Chinese Academy of Agriculture Sciences, The Ministry of Agriculture, Hangzhou 310008, China
| | - Jianyun Ruan
- Key Laboratory of Tea Biology and Resource Utilization of Tea, Tea Research Institute, Chinese Academy of Agriculture Sciences, The Ministry of Agriculture, Hangzhou 310008, China
| |
Collapse
|
23
|
Zhan Y, Zhu Q, Li X, Tao C, Su H, Wu Y, Lin J, Zhang Y, Huang Y, Jiang F. The Distribution Characteristics and Potential Risk Assessment of Lead in the Soil of Tieguanyin Tea Plantations in Anxi County, China. TOXICS 2023; 12:22. [PMID: 38250978 PMCID: PMC10820665 DOI: 10.3390/toxics12010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Assessing the distribution and risks associated with the soil lead content in the Tieguanyin tea plantations of Anxi County is critical, given the county's significance as the primary Tieguanyin tea production area in Fujian Province. This study examined the distribution characteristics of soil lead in Anxi County's tea plantations according to the Kriging spatial interpolation of the parameters of the semivariance function of the exponential model. Moreover, the sources of lead content were analyzed, considering geological backgrounds and anthropogenic influences. Ecological risks and the issuance of early warnings were also assessed. The soil lead content in the rocks of the Tieguanyin tea plantations in Anxi County followed the order: andesite > dacite > rhyolite > granite. The soil lead content gradually decreased from the center toward the east and west, forming four distinct north-south parallel zones. High-lead-content areas were identified at the border of Jiandou, Bailai, and Hushang; in the central part of Lutian; and in the southern part of Huqiu. The high levels of soil lead in the tea plantations possibly originated from industrial and mining activities, automobile exhaust, and agricultural activities. The distribution of single-factor pollution indices and potential risk evaluation based on the Soil Environmental Quality Standard, Environmental Technical Conditions for Tea Production Area, and Environmental Technical Conditions for Organic Tea Production Area indicated that the soil in Tieguanyin tea plantations in Anxi County was clean and safe for tea cultivation.
Collapse
Affiliation(s)
- Yuanyuan Zhan
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Q.Z.); (X.L.); (C.T.); (J.L.); (Y.Z.); (Y.H.)
| | - Qin Zhu
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Q.Z.); (X.L.); (C.T.); (J.L.); (Y.Z.); (Y.H.)
| | - Xiaolin Li
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Q.Z.); (X.L.); (C.T.); (J.L.); (Y.Z.); (Y.H.)
| | - Changwu Tao
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Q.Z.); (X.L.); (C.T.); (J.L.); (Y.Z.); (Y.H.)
| | - Huogui Su
- Anxi County Soil Fertilizer Technology Extension Station, Quanzhou 362400, China; (H.S.); (Y.W.)
| | - Yuede Wu
- Anxi County Soil Fertilizer Technology Extension Station, Quanzhou 362400, China; (H.S.); (Y.W.)
| | - Jinshi Lin
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Q.Z.); (X.L.); (C.T.); (J.L.); (Y.Z.); (Y.H.)
| | - Yue Zhang
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Q.Z.); (X.L.); (C.T.); (J.L.); (Y.Z.); (Y.H.)
| | - Yanhe Huang
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Q.Z.); (X.L.); (C.T.); (J.L.); (Y.Z.); (Y.H.)
| | - Fangshi Jiang
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Q.Z.); (X.L.); (C.T.); (J.L.); (Y.Z.); (Y.H.)
| |
Collapse
|
24
|
Chen Y, Fu W, Xiao H, Zhai Y, Luo Y, Wang Y, Liu Z, Li Q, Huang J. A Review on Rhizosphere Microbiota of Tea Plant ( Camellia sinensis L): Recent Insights and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19165-19188. [PMID: 38019642 DOI: 10.1021/acs.jafc.3c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Rhizosphere microbial colonization of the tea plant provides many beneficial functions for the host, But the factors that influence the composition of these rhizosphere microbes and their functions are still unknown. In order to explore the interaction between tea plants and rhizosphere microorganisms, we summarized the current studies. First, the review integrated the known rhizosphere microbial communities of tea tree, including bacteria, fungi, and arbuscular mycorrhizal fungi. Then, various factors affecting tea rhizosphere microorganisms were studied, including: endogenous factors, environmental factors, and agronomic practices. Finally, the functions of rhizosphere microorganisms were analyzed, including (a) promoting the growth and quality of tea trees, (b) alleviating biotic and abiotic stresses, and (c) improving soil fertility. Finally, we highlight the gaps in knowledge of tea rhizosphere microorganisms and the future direction of development. In summary, understanding rhizosphere microbial interactions with tea plants is key to promoting the growth, development, and sustainable productivity of tea plants.
Collapse
Affiliation(s)
- Yixin Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wenjie Fu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Han Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yuke Zhai
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Yu Luo
- Institute of Soil and Water Resources and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 3100058, P.R. China
| | - Yingzi Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Qin Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
- Institute of Soil and Water Resources and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 3100058, P.R. China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| |
Collapse
|
25
|
Zhang M, Zhou C, Zhang C, Xu K, Lu L, Huang L, Zhang L, Li H, Zhu X, Lai Z, Guo Y. Analysis of Characteristics in the Macro-Composition and Volatile Compounds of Understory Xiaobai White Tea. PLANTS (BASEL, SWITZERLAND) 2023; 12:4102. [PMID: 38140429 PMCID: PMC10747399 DOI: 10.3390/plants12244102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Understory planting affects the growth environment of tea plants, regulating the tea plant growth and the formation of secondary metabolites, which in turn affects the flavor of Xiaobai white tea. The present research adopted biochemical composition determination, widely targeted volatilities (WTV) analysis, multivariate statistical analysis, and odor activity value (OAV) analysis to analyze the characteristics in the macro-composition and volatile compounds of understory white tea. The sensory evaluation results indicated that understory Xiaobai white tea (LWTs) was stronger than ordinary Xiaobai white tea (PWTs) in terms of the taste of smoothness, sweetness, and thickness as well as the aromas of the flower and sweet. Understory planting reduced light intensity and air temperature, increased air humidity, organic matter, total nitrogen, and available nitrogen contents, which improved the growth environment of tea plants. The phytochemical analysis showed that the water-extractable substances, caffeine, flavonoids, and soluble sugar contents of understory tea fresh-leaf (LF) were higher than those of ordinary fresh-leaf (PF). The phytochemical analysis showed that the free amino acids, theaflavins, thearubigins, water-extractable substances, and tea polyphenols contents of LWTs were significantly higher than those of PWTs, which may explain the higher smoothness, sweetness, and thickness scores of LWTs than those of PWTs. The 2-heptanol, 2-decane, damasone, and cedar alcohol contents were significantly higher in LWTs than in PWTs, which may result in stronger flowery and sweet aromas in LWTs than in PWTs. These results provide a firm experimental basis for the observed differences in the flavor of LWTs and PWTs.
Collapse
Affiliation(s)
- Mengcong Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cheng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
| | - Kai Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
| | - Li Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
| | - Linjie Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
| | - Lixuan Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
| | - Huang Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
| | - Xuefang Zhu
- Nanping Jianyang District Tea Development Center, Nanping 353000, China;
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- Anxi College of Tea Science (College of Digital Economy), Fujian Agriculture and Forestry University, Quanzhou 362400, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
26
|
Siddiqui SA, Erol Z, Rugji J, Taşçı F, Kahraman HA, Toppi V, Musa L, Di Giacinto G, Bahmid NA, Mehdizadeh M, Castro-Muñoz R. An overview of fermentation in the food industry - looking back from a new perspective. BIORESOUR BIOPROCESS 2023; 10:85. [PMID: 38647968 PMCID: PMC10991178 DOI: 10.1186/s40643-023-00702-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/25/2023] [Indexed: 04/25/2024] Open
Abstract
Fermentation is thought to be born in the Fertile Crescent, and since then, almost every culture has integrated fermented foods into their dietary habits. Originally used to preserve foods, fermentation is now applied to improve their physicochemical, sensory, nutritional, and safety attributes. Fermented dairy, alcoholic beverages like wine and beer, fermented vegetables, fruits, and meats are all highly valuable due to their increased storage stability, reduced risk of food poisoning, and enhanced flavor. Over the years, scientific research has associated the consumption of fermented products with improved health status. The fermentation process helps to break down compounds into more easily digestible forms. It also helps to reduce the amount of toxins and pathogens in food. Additionally, fermented foods contain probiotics, which are beneficial bacteria that help the body to digest food and absorb nutrients. In today's world, non-communicable diseases such as cardiovascular disease, type 2 diabetes, cancer, and allergies have increased. In this regard, scientific investigations have demonstrated that shifting to a diet that contains fermented foods can reduce the risk of non-communicable diseases. Moreover, in the last decade, there has been a growing interest in fermentation technology to valorize food waste into valuable by-products. Fermentation of various food wastes has resulted in the successful production of valuable by-products, including enzymes, pigments, and biofuels.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany.
- German Institute of Food Technologies (DIL E.V.), Prof.-Von-Klitzing Str. 7, 49610, Quakenbrück, Germany.
| | - Zeki Erol
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Jerina Rugji
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Fulya Taşçı
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Hatice Ahu Kahraman
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Valeria Toppi
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Giacomo Di Giacinto
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861, Yogyakarta, Indonesia
| | - Mohammad Mehdizadeh
- Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- Ilam Science and Technology Park, Ilam, Iran
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, 50110, Toluca de Lerdo, Mexico.
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdansk, Poland.
| |
Collapse
|
27
|
Bhatnagar S, Kumari R, Kaur I. Seaweed and a biocontrol agent and their effects on the growth and production of Brassica juncea: a sustainable approach. World J Microbiol Biotechnol 2023; 40:16. [PMID: 37978090 DOI: 10.1007/s11274-023-03835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Chemical fertilizers are crucial for increasing agricultural growth and productivity, but inorganic fertilizers can negatively impact agricultural systems. To address this issue, sustainable techniques like organic farming are being developed, which improve soil quality and nutritional status while preserving human safety. In the Botanical Garden, of Department of Botany at the University of Delhi, India, experiments on Brassica juncea were carried out over a three-year period in six micro plots, each measuring 10 square meters. Vermicompost (V), Sargassum johnstoni (S), NPK (N), Trichoderma viride (T), and Sargassum + Trichoderma viride were five distinct organic combinations that were used to replenish the garden soil (ST). The aim of the study was to assess the effects of organic fertilizers and compare the results with commercially available chemical fertilizers (NPK) on Brassica growth and yield. The study found that soil modified with seaweed fertilizers significantly improved the morphological, reproductive, and biochemical properties of plants. Sargassum + Trichoderma soil amendment led to early flowering and fruiting, better-quality produce, and a low incidence of fungal infection and aphid infestation. This study reveals a new cost-effective method for crop development and production sustainability, benefiting both farmers and environmentalists.
Collapse
Affiliation(s)
- Sonal Bhatnagar
- Department of Environmental Studies, Shyama Prasad Mukherji College for Women, University of Delhi, New Delhi, 110026, India
- Department of Botany, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, 110078, India
- Department of Botany, Sri Guru Tegh Bahadur Khalsa College, University of Delhi, New Delhi, 110007, India
| | - Reeta Kumari
- Department of Environmental Studies, Shyama Prasad Mukherji College for Women, University of Delhi, New Delhi, 110026, India.
- Department of Botany, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, 110078, India.
- Department of Botany, Sri Guru Tegh Bahadur Khalsa College, University of Delhi, New Delhi, 110007, India.
| | - Inderdeep Kaur
- Department of Environmental Studies, Shyama Prasad Mukherji College for Women, University of Delhi, New Delhi, 110026, India
- Department of Botany, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, 110078, India
- Department of Botany, Sri Guru Tegh Bahadur Khalsa College, University of Delhi, New Delhi, 110007, India
| |
Collapse
|
28
|
Tran DM, Nguyen TH. Rice ( Oryza sativa L.) cultivated in the Central Highlands of Vietnam: Dataset on the endophytic microbiome. Data Brief 2023; 50:109551. [PMID: 37743884 PMCID: PMC10514416 DOI: 10.1016/j.dib.2023.109551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023] Open
Abstract
Rice (Oryza sativa L.) is the main annual crop cultivated in the Central Highlands region of Vietnam. Understanding the endophytic bacterial community of this plant, a new technique for sustainable production can be developed. In this work, a representative sample was obtained by combining rice (RVT variety) root samples collected from five different fields in Dray Sap Commune, Krong Ana District, Dak Lak Province, the Central Highlands of Vietnam. Using the Illumina MiSeq technology, the 16S rRNA metagenomics was applied to the sequencing amplicons library. The QIIME2 matched with the SILVA SSURef reference database was employed to analyze the taxonomic profile, and the PICRUSt2 and MetaCyc databases were used to predict the functional profile of rice endophytic prokaryotes. Results revealed that Enterobacterales was the most predominant class (57.7%) in the bacterial community, and biosynthesis was the primary function of the rice endophytic microbiome (75.95%). Raw sequences obtained in this work are available from the National Center for Biotechnology Information (NCBI) (Bioproject ID: PRJNA994482) and Mendeley Data [1]. Data in this work provide insight into the endophytic microbiome of rice (RVT variety) cultivated in the Central Highlands of Vietnam. These data are valuable for developing a new method for producing locally sustainable rice employing endophytic bacteria. This is the first report on the endophytic microbiome of rice cultivated in this region.
Collapse
Affiliation(s)
- Dinh Minh Tran
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot, Dak Lak 630000, Vietnam
| | - Thi Huyen Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot, Dak Lak 630000, Vietnam
| |
Collapse
|
29
|
Khatri S, Chaudhary P, Shivay YS, Sharma S. Role of Fungi in Imparting General Disease Suppressiveness in Soil from Organic Field. MICROBIAL ECOLOGY 2023; 86:2047-2059. [PMID: 37010558 DOI: 10.1007/s00248-023-02211-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Soil microbial communities are key players responsible for imparting suppressive potential to the soil against soil-borne phytopathogens. Fungi have an immense potential to inhibit soil-borne phytopathogens, but the fungal counterpart has been less explored in this context. We assessed the composition of fungal communities in soil under long-term organic and conventional farming practice, and control soil. The disease-suppressive potential of organic field was already established. A comparative analysis of the disease suppressiveness contributed by the fungal component of soil from conventional and organic farms was assessed using dual culture assays. The quantification of biocontrol markers and total fungi was done; the characterization of fungal community was carried out using ITS-based amplicon sequencing. Soil from organic field exhibited higher disease-suppressive potential than that from conventional farming, against the pathogens selected for the study. Higher levels of hydrolytic enzymes such as chitinase and cellulase, and siderophore production were observed in soil from the organic field compared to the conventional field. Differences in community composition were observed under conventional and organic farming, with soil from organic field exhibiting specific enrichment of key biocontrol fungal genera. The fungal alpha diversity was lower in soil from the organic field compared to the conventional field. Our results highlight the role of fungi in contributing to general disease-suppressive ability of the soil against phytopathogens. The identification of fungal taxa specifically associated with organic farming can aid in understanding the mechanism of disease suppression under such a practice, and can be exploited to induce general disease suppressiveness in otherwise conducive soil.
Collapse
Affiliation(s)
- Shivani Khatri
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Priya Chaudhary
- UQ-IITD Academy of Research, IIT Delhi, New Delhi, 110016, India
| | - Yashbir S Shivay
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
- UQ-IITD Academy of Research, IIT Delhi, New Delhi, 110016, India.
| |
Collapse
|
30
|
Anand U, Pal T, Yadav N, Singh VK, Tripathi V, Choudhary KK, Shukla AK, Sunita K, Kumar A, Bontempi E, Ma Y, Kolton M, Singh AK. Current Scenario and Future Prospects of Endophytic Microbes: Promising Candidates for Abiotic and Biotic Stress Management for Agricultural and Environmental Sustainability. MICROBIAL ECOLOGY 2023; 86:1455-1486. [PMID: 36917283 PMCID: PMC10497456 DOI: 10.1007/s00248-023-02190-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Globally, substantial research into endophytic microbes is being conducted to increase agricultural and environmental sustainability. Endophytic microbes such as bacteria, actinomycetes, and fungi inhabit ubiquitously within the tissues of all plant species without causing any harm or disease. Endophytes form symbiotic relationships with diverse plant species and can regulate numerous host functions, including resistance to abiotic and biotic stresses, growth and development, and stimulating immune systems. Moreover, plant endophytes play a dominant role in nutrient cycling, biodegradation, and bioremediation, and are widely used in many industries. Endophytes have a stronger predisposition for enhancing mineral and metal solubility by cells through the secretion of organic acids with low molecular weight and metal-specific ligands (such as siderophores) that alter soil pH and boost binding activity. Finally, endophytes synthesize various bioactive compounds with high competence that are promising candidates for new drugs, antibiotics, and medicines. Bioprospecting of endophytic novel secondary metabolites has given momentum to sustainable agriculture for combating environmental stresses. Biotechnological interventions with the aid of endophytes played a pivotal role in crop improvement to mitigate biotic and abiotic stress conditions like drought, salinity, xenobiotic compounds, and heavy metals. Identification of putative genes from endophytes conferring resistance and tolerance to crop diseases, apart from those involved in the accumulation and degradation of contaminants, could open new avenues in agricultural research and development. Furthermore, a detailed molecular and biochemical understanding of endophyte entry and colonization strategy in the host would better help in manipulating crop productivity under changing climatic conditions. Therefore, the present review highlights current research trends based on the SCOPUS database, potential biotechnological interventions of endophytic microorganisms in combating environmental stresses influencing crop productivity, future opportunities of endophytes in improving plant stress tolerance, and their contribution to sustainable remediation of hazardous environmental contaminants.
Collapse
Affiliation(s)
- Uttpal Anand
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreshet Ben-Gurion, Israel.
| | - Tarun Pal
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreshet Ben-Gurion, Israel
| | - Niraj Yadav
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8499000, Midreshet Ben-Gurion, Israel
| | - Vipin Kumar Singh
- Department of Botany, K.S. Saket P.G. College, Ayodhya affiliated to Dr. Rammanohar Lohia Avadh University, Ayodhya, 224123, Uttar Pradesh, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India
| | - Krishna Kumar Choudhary
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Awadhesh Kumar Shukla
- Department of Botany, K.S. Saket P.G. College, Ayodhya affiliated to Dr. Rammanohar Lohia Avadh University, Ayodhya, 224123, Uttar Pradesh, India
| | - Kumari Sunita
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Ajay Kumar
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, 7505101, Rishon, Lezion, Israel
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, Via Branze 38, 25123, Brescia, Italy.
| | - Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Max Kolton
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8499000, Midreshet Ben-Gurion, Israel
| | - Amit Kishore Singh
- Department of Botany, Bhagalpur National College (A constituent unit of Tilka Manjhi Bhagalpur University), Bhagalpur, 812007, Bihar, India.
| |
Collapse
|
31
|
Ghotbi-Ravandi AA, Shariatmadari Z, Riahi H, Hassani SB, Heidari F, Ghorbani Nohooji M. Enhancement of Essential Oil Production and Expression of Some Menthol Biosynthesis-Related Genes in Mentha piperita Using Cyanobacteria. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3550. [PMID: 38269195 PMCID: PMC10804067 DOI: 10.30498/ijb.2023.368377.3550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/19/2023] [Indexed: 01/26/2024]
Abstract
Background Mentha piperita L. is one of the most important aromatic crops and is cultivated worldwide for essential oils (EOs). Objectives The aim of the present study was to investigate the potential of two cyanobacteria, Anabaena vaginicola ISB42 and Nostoc spongiaeforme var. tenue ISB65, as biological-elicitors to improve the growth and essential oil production of M. piperita. Materials and Methods In this experiment, inoculation of M. piperita with cyanobacteria was performed by adding 1% cyanobacterial suspension to the soil of treated pots on the first time of planting and every 20 days thereafter. The experiment was performed in a randomized complete block design in an experimental greenhouse condition. After 90 days planting, the vegetative growth factors, the content of photosynthetic pigments, as well as the quantity and quality of EOs of treated and control plants were evaluated. Also, quantitative changes in the expression of some menthol biosynthesis-related genes were investigated. Results Cyanobacterial application led to significant increases in M. piperita growth indices including root and shoot biomass, leaf number, leaf area, node number and ramification, as well as photosynthetic pigments content. The statistical analysis showed a 41-75 % increase in some of these growth indices, especially in Nostoc-treated plants. A. vaginicola and N. spongiaeforme var. tenue inoculation led to a 13% and 25% increase in the EOs content of M. piperita, respectively. The EOs components were also affected by cyanobacterial treatments. According to the statistical analysis, Nostoc-treated plants showed the highest amount of (-)-menthone and (-)-limonene, with a 2.36 and 1.87-fold increase compared to the control. A. vaginicola and N. spongiaeforme var. tenue inoculation also led to 40% and 98% increase in transcript level of (-)-limonene synthase gene, respectively. The expression of the (-)-menthone reductase gene, was also increased by 65% and 55% in response to A. vaginicola and N. spongiaeforme var. tenue application, respectively. Conclusions Our data demonstrated that in addition to growth enhancement, these two heterocystous cyanobacteria improved the quantity and quality of EOs by up-regulating the key genes involved in the menthol biosynthetic pathway. Based on our results, these cyanobacteria can be considered valuable candidates in the formulation of low-cost and environmentally friendly biofertilizers in sustainable peppermint production.
Collapse
Affiliation(s)
- Ali Akbar Ghotbi-Ravandi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zeinab Shariatmadari
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hossein Riahi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyedeh Batool Hassani
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Heidari
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
32
|
Liu X, Yang W, Li W, Ali A, Chen J, Sun M, Gao Z, Yang Z. Moderate organic fertilizer substitution for partial chemical fertilizer improved soil microbial carbon source utilization and bacterial community composition in rain-fed wheat fields: current year. Front Microbiol 2023; 14:1190052. [PMID: 37396386 PMCID: PMC10307974 DOI: 10.3389/fmicb.2023.1190052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023] Open
Abstract
Organic fertilizers can partially replace chemical fertilizers to improve agricultural production and reduce negative environmental impacts. To study the effect of organic fertilizer on soil microbial carbon source utilization and bacterial community composition in the field of rain-fed wheat, we conducted a field experiment from 2016 to 2017 in a completely randomized block design with four treatments: the control with 100% NPK compound fertilizer (N: P2O5: K2O = 20:10:10) of 750 kg/ha (CK), a combination of 60% NPK compound fertilizer with organic fertilizer of 150 kg/ha (FO1), 300 kg/ha (FO2), and 450 kg/ha (FO3), respectively. We investigated the yield, soil property, the utilization of 31 carbon sources by soil microbes, soil bacterial community composition, and function prediction at the maturation stage. The results showed that (1) compared with CK, organic fertilizer substitution treatments improved ear number per hectare (13%-26%), grain numbers per spike (8%-14%), 1000-grain weight (7%-9%), and yield (3%-7%). Organic fertilizer substitution treatments increased the total nitrogen, available nitrogen, available phosphorus, and soil organic matter contents by 26%, 102%, 12%, and 26%, respectively, compared with CK treatments. Organic fertilizer substitution treatments significantly advanced the partial productivity of fertilizers. (2) Carbohydrates and amino acids were found to be the most sensitive carbon sources for soil microorganisms in different treatments. Particularly for FO3 treatment, the utilization of β-Methyl D-Glucoside, L-Asparagine acid, and glycogen by soil microorganisms was higher than other treatments and positively correlated with soil nutrients and wheat yield. (3) Compared with CK, organic fertilizer substitution treatments increased the relative abundance of Proteobacteria, Acidobacteria, and Gemmatimonadetes and decreased the relative abundance of Actinobacteria and Firmicutes. Interestingly, FO3 treatment improved the relative abundance of Nitrosovibrio, Kaistobacter, Balneimonas, Skermanella, Pseudomonas, and Burkholderia belonging to Proteobacteria and significantly boosted the relative abundance of function gene K02433 [the aspartyl-tRNA (Asn)/glutamyl-tRNA (Gln)]. Based on the abovementioned findings, we suggest FO3 as the most appropriate organic substitution method in rain-fed wheat fields.
Collapse
Affiliation(s)
- Xiaoli Liu
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Wenping Yang
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Wenguang Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Aamir Ali
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jie Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Min Sun
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhenping Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
33
|
Chromkaew Y, Kaeomuangmoon T, Mawan N, Mukjang N, Khongdee N. Is coconut coir dust an efficient biofertilizer carrier for promoting coffee seedling growth and nutrient uptake? PeerJ 2023; 11:e15530. [PMID: 37334129 PMCID: PMC10276558 DOI: 10.7717/peerj.15530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Background As a method for sustainable agriculture, biofertilizers containing plant growth-promoting bacteria (PGPB) have been recommended as an alternative to chemical fertilizers. However, the short shelf-life of inoculants remains a limiting factor in the development of biofertilizer technology. The present study aimed to (i) evaluate the effectiveness of four different carriers (perlite, vermiculite, diatomite and coconut coir dust) on the shelf-life of S2-4a1 and R2-3b1 isolates over 60 days after inoculation and (ii) evaluate isolated bacteria as growth-promoting agents for coffee seedlings. Methods The rhizosphere soil-isolated S2-4a1 and plant-tissue-isolated R2-3b1 were chosen based on their P and K-solubilizing capacities and their ability to produce IAA. To evaluate the alternative carriers, two selected isolates were inoculated with the four different carriers and incubated at 25 °C for 60 days. The bacterial survival, pH, and EC in each carrier were investigated. In addition, coconut coir dust inoculated with the selected isolates was applied to the soil in pots planted with coffee (Coffea arabica). At 90 days following application, variables such as biomass and total N, P, K, Ca, and Mg uptakes of coffee seedlings were examined. Results The results showed that after 60 days of inoculation at 25 °C, the population of S2-4a1 and R2-3b1 in coconut coir dust carriers was 1.3 and 2.15 × 108 CFU g-1, respectively. However, there were no significant differences among carriers (P > 0.05). The results of the present study suggested that coconut coir dust can be used as an alternative carrier for S2-4a1 and R2-3b1 isolates. The significant differences in pH and EC were observed by different carriers (P < 0.01) after inoculation with both bacterial isolates. However, pH and EC declined significantly only with coconut coir dust during the incubation period. In addition, coconut coir dust-based bioformulations of both S2-4a1 and R2-3b1 enhanced plant growth and nutrient uptake (P, K, Ca, Mg), providing evidence that isolated bacteria possess additional growth-promoting properties.
Collapse
Affiliation(s)
- Yupa Chromkaew
- Department of Plant and Soil Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Thewin Kaeomuangmoon
- Department of Plant and Soil Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Mawan
- Department of Highland Agriculture and Natural Resources, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nilita Mukjang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttapon Khongdee
- Department of Highland Agriculture and Natural Resources, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
34
|
Mahongnao S, Sharma P, Singh D, Ahamad A, Kumar PV, Kumar P, Nanda S. Formation and characterization of leaf waste into organic compost. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27768-7. [PMID: 37227644 DOI: 10.1007/s11356-023-27768-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
In solid waste management, pollution-free disposal of leaf waste in urban areas is still not standardized and adopted. According to the World Bank report, 57% of wastes generated in South East Asia are consisted of food and green waste, which can be recycled into valuable bio-compost. The present study shows a method of leaf litter waste management by composting it using essential microbe (EM) method. Different parameters, such as pH, electrical conductivity, macronutrients, micronutrients, and potentially toxic elements (PTE) were measured at zero to 50 days of composting using appropriate methods. The microbial composting was shown to mature within 20 to 40 days, and its maturity could be evaluated by the attainment of stable pH (8), electrical conductivity (0.9 mS/cm), and C:N ratio ≥ 20. The analysis was also performed on other bio-composts viz. kitchen waste compost, vermicompost, cow dung manure, municipal organic waste compost, and neem cake compost. The fertility index (FI) was evaluated based on six parameters viz. total carbon, total nitrogen, N ratio, phosphorus, potassium, and sulphur contents. The PTE values were used to calculate their clean index (CI). The results showed that leaf waste compost has a higher fertility index (FI = 4.06) than other bio-composts, except the neem cake compost (FI = 4.44). The clean index of the leaf waste compost (CI = 4.38) was also higher than other bio-composts. This indicates that leaf waste compost is a valuable bio-resource with high nutritive value and low PTE contamination, with a favourable prospective to be used in organic farming.
Collapse
Affiliation(s)
- Sophayo Mahongnao
- Department of Biochemistry, Daulat Ram College, University of Delhi, 4, Patel Marg, Maurice Nagar, Delhi, 110007, India
| | - Pooja Sharma
- Department of Biochemistry, Daulat Ram College, University of Delhi, 4, Patel Marg, Maurice Nagar, Delhi, 110007, India
| | - Darshan Singh
- Department of Chemistry, Daulat Ram College, University of Delhi, Delhi, 110007, India
| | - Arif Ahamad
- Department of Environmental Science, Jamia Millia Islamia University, New Delhi, 110025, India
| | - Pavitra V Kumar
- Inter University Accelerator Centre, Aruna Asaf Ali Marg, Vasant Kunj, New Delhi, 110067, India
| | - Pankaj Kumar
- Inter University Accelerator Centre, Aruna Asaf Ali Marg, Vasant Kunj, New Delhi, 110067, India
| | - Sarita Nanda
- Department of Biochemistry, Daulat Ram College, University of Delhi, 4, Patel Marg, Maurice Nagar, Delhi, 110007, India.
| |
Collapse
|
35
|
Upadhayay VK, Chitara MK, Mishra D, Jha MN, Jaiswal A, Kumari G, Ghosh S, Patel VK, Naitam MG, Singh AK, Pareek N, Taj G, Maithani D, Kumar A, Dasila H, Sharma A. Synergistic impact of nanomaterials and plant probiotics in agriculture: A tale of two-way strategy for long-term sustainability. Front Microbiol 2023; 14:1133968. [PMID: 37206335 PMCID: PMC10189066 DOI: 10.3389/fmicb.2023.1133968] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/06/2023] [Indexed: 05/21/2023] Open
Abstract
Modern agriculture is primarily focused on the massive production of cereals and other food-based crops in a sustainable manner in order to fulfill the food demands of an ever-increasing global population. However, intensive agricultural practices, rampant use of agrochemicals, and other environmental factors result in soil fertility degradation, environmental pollution, disruption of soil biodiversity, pest resistance, and a decline in crop yields. Thus, experts are shifting their focus to other eco-friendly and safer methods of fertilization in order to ensure agricultural sustainability. Indeed, the importance of plant growth-promoting microorganisms, also determined as "plant probiotics (PPs)," has gained widespread recognition, and their usage as biofertilizers is being actively promoted as a means of mitigating the harmful effects of agrochemicals. As bio-elicitors, PPs promote plant growth and colonize soil or plant tissues when administered in soil, seeds, or plant surface and are used as an alternative means to avoid heavy use of agrochemicals. In the past few years, the use of nanotechnology has also brought a revolution in agriculture due to the application of various nanomaterials (NMs) or nano-based fertilizers to increase crop productivity. Given the beneficial properties of PPs and NMs, these two can be used in tandem to maximize benefits. However, the use of combinations of NMs and PPs, or their synergistic use, is in its infancy but has exhibited better crop-modulating effects in terms of improvement in crop productivity, mitigation of environmental stress (drought, salinity, etc.), restoration of soil fertility, and strengthening of the bioeconomy. In addition, a proper assessment of nanomaterials is necessary before their application, and a safer dose of NMs should be applicable without showing any toxic impact on the environment and soil microbial communities. The combo of NMs and PPs can also be encapsulated within a suitable carrier, and this method aids in the controlled and targeted delivery of entrapped components and also increases the shelf life of PPs. However, this review highlights the functional annotation of the combined impact of NMs and PPs on sustainable agricultural production in an eco-friendly manner.
Collapse
Affiliation(s)
- Viabhav Kumar Upadhayay
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Manoj Kumar Chitara
- Department of Plant Pathology, College of Agriculture, A.N.D University of Agriculture and Technology, Ayodhya, Uttar Pradesh, India
| | - Dhruv Mishra
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Manindra Nath Jha
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Aman Jaiswal
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Geeta Kumari
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Saipayan Ghosh
- Department of Horticulture, PGCA, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Vivek Kumar Patel
- Department of Plant Pathology, PGCA, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Mayur G. Naitam
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Ashish Kumar Singh
- Department of Biotechnology and Synthetic Biology, Center of Innovative and Applied Bioprocessing, Sector 81, Mohali, India
| | - Navneet Pareek
- Department of Soil Science, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Gohar Taj
- Department of Molecular Biology & Genetic Engineering, College of Basic Sciences and Humanities, GBPUA&; T, Pantnagar, Uttarakhand, India
| | | | - Ankit Kumar
- Department of Horticulture, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Hemant Dasila
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Sirmaur, Himachal Pradesh, India
| | - Adita Sharma
- College of Fisheries, Dholi, Dr. Rajendra Prasad Central Agricultural University, Muzaffarpur, Bihar, India
| |
Collapse
|
36
|
Santiago JM, Kadyampakeni DM, Fox JP, Wright AL, Guzmán SM, Ferrarezi RS, Rossi L. Grapefruit Root and Rhizosphere Responses to Varying Planting Densities, Fertilizer Concentrations and Application Methods. PLANTS (BASEL, SWITZERLAND) 2023; 12:1659. [PMID: 37111884 PMCID: PMC10144146 DOI: 10.3390/plants12081659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Huanglongbing (HLB) disease has caused a severe decline in citrus production globally over the past decade. There is a need for improved nutrient regimens to better manage the productivity of HLB-affected trees, as current guidelines are based on healthy trees. The aim of this study was to evaluate the effects of different fertilizer application methods and rates with different planting densities on HLB-affected citrus root and soil health. Plant material consisted of 'Ray Ruby' (Citrus × paradisi) grapefruit trees grafted on 'Kuharske' citrange (Citrus × sinensis × Citrus trifoliata). The study consisted of 4 foliar fertilizer treatments, which included 0×, 1.5×, 3× and 6× the University of Florida Institute of Food and Agriculture (UF/IFAS) recommended guidelines for B, Mn and Zn. Additionally, 2 ground-applied fertilizer treatments were used, specifically controlled-release fertilizer (CRF1): 12-3-14 + B, Fe, Mn and Zn micronutrients at 1× UF/IFAS recommendation, and (CRF2): 12-3-14 + 2× Mg + 3× B, Fe, Mn and Zn micronutrients, with micronutrients applied as sulfur-coated products. The planting densities implemented were low (300 trees ha-1), medium (440 trees ha-1) and high (975 trees ha-1). The CRF fertilizer resulted in greater soil nutrient concentrations through all of the time sampling points, with significant differences in soil Zn and Mn. Grapefruit treated with ground-applied CRF2 and 3× foliar fertilizers resulted in the greatest bacterial alpha and beta diversity in the rhizosphere. Significantly greater abundances of Rhizobiales and Vicinamibacterales were found in the grapefruit rhizosphere of trees treated with 0× UF/IFAS foliar fertilizer compared to higher doses of foliar fertilizers.
Collapse
Affiliation(s)
- John M. Santiago
- Indian River Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - Davie M. Kadyampakeni
- Citrus Research and Education Center, Soil, Water and Ecosystem Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| | - John-Paul Fox
- Indian River Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - Alan L. Wright
- Indian River Research and Education Center, Soil, Water and Ecosystem Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - Sandra M. Guzmán
- Indian River Research and Education Center, Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | | | - Lorenzo Rossi
- Indian River Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| |
Collapse
|
37
|
Lei J, Wu H, Li X, Guo W, Duan A, Zhang J. Response of Rhizosphere Bacterial Communities to Near-Natural Forest Management and Tree Species within Chinese Fir Plantations. Microbiol Spectr 2023; 11:e0232822. [PMID: 36688690 PMCID: PMC9927156 DOI: 10.1128/spectrum.02328-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Near-natural forest management plays an important role in the maintenance of the long-term productivity and soil fertility of plantations. We conducted high-throughput absolute quantitative sequencing of 16S rRNA genes to compare the structures and diversity of rhizosphere soil bacterial communities among a pure Chinese fir (Cunninghamia lanceolata) plantation (S), a Cunninghamia lanceolata-Castanopsis hystrix-Michelia hedyosperma mixed plantation (SHX), and a Cunninghamia lanceolata-Castanopsis fissa mixed plantation (SD). The results revealed that near-natural forest management improved the rhizosphere soil properties of Chinese fir, especially the phosphorus content. Rhizosphere soil bacterial communities of Chinese fir in SHX and SD contained higher total absolute abundances and more unique operational taxonomic units (OTUs) than the pure plantation forest. Planctomycetes and Actinobacteria were abundant in SD, and Actinobacteria were enriched in SHX. The tree species also had an impact on the rhizosphere soil bacterial communities. For the rhizosphere soils of different tree species of SHX, the available phosphorus (AP) content of the rhizosphere of Chinese fir significantly surpassed those of Castanopsis hystrix and Michelia hedyosperma. Bacteria related to nitrogen fixing, such as Burkholderiales and Rhizobiales, were more abundant in Chinese fir in SD than in Castanopsis fissa. Acdiobacteria and Proteobacteria underpinned the differences found in the compositions of soil bacteria. The pH and soil organic matter were key variables influencing the rhizosphere soil bacterial communities. Our results demonstrated that in Chinese fir plantations, 12 years of near-natural management of introduced broad-leaved tree species can drive alterations of the physicochemical characteristics, bacterial community structure, and composition of rhizosphere soil, with tree species identity further influencing the rhizosphere soil bacterial community. IMPORTANCE Near-natural forest management is an important way to change the soil fertility decline and productivity reduction of pure Chinese fir plantations. At present, many detailed studies have been carried out on the impact of near-natural forest management on Chinese fir plantations at home and abroad. However, there are still few studies on the response of rhizosphere bacterial communities to near-natural forest management. Our study determined absolute quantities of Chinese fir rhizosphere bacterial communities in different mixed patterns. The results underscore the importance of near-natural forest management for Chinese fir plantation rhizosphere bacterial communities and provide new information on soil factors that affect rhizosphere bacterial communities in South China.
Collapse
Affiliation(s)
- Jie Lei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People's Republic of China
| | - Hanbin Wu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People's Republic of China
| | - Xiaoyan Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People's Republic of China
| | - Wenfu Guo
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, People's Republic of China
| | - Aiguo Duan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People's Republic of China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People's Republic of China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
38
|
Li S, Fan W, Xu G, Cao Y, Zhao X, Hao S, Deng B, Ren S, Hu S. Bio-organic fertilizers improve Dendrocalamus farinosus growth by remolding the soil microbiome and metabolome. Front Microbiol 2023; 14:1117355. [PMID: 36876063 PMCID: PMC9975161 DOI: 10.3389/fmicb.2023.1117355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/24/2023] [Indexed: 02/17/2023] Open
Abstract
Organic and microbial fertilizers have potential advantages over inorganic fertilizers in improving soil fertility and crop yield without harmful side-effects. However, the effects of these bio-organic fertilizers on the soil microbiome and metabolome remain largely unknown, especially in the context of bamboo cultivation. In this study, we cultivated Dendrocalamus farinosus (D. farinosus) plants under five different fertilization conditions: organic fertilizer (OF), Bacillus amyloliquefaciens bio-fertilizer (Ba), Bacillus mucilaginosus Krassilnikov bio-fertilizer (BmK), organic fertilizer plus Bacillus amyloliquefaciens bio-fertilizer (OFBa), and organic fertilizer plus Bacillus mucilaginosus Krassilnikov bio-fertilizer (OFBmK). We conducted 16S rRNA sequencing and liquid chromatography/mass spectrometry (LC-MS) to evaluate the soil bacterial composition and soil metabolic activity in the different treatment groups. The results demonstrate that all the fertilization conditions altered the soil bacterial community composition. Moreover, the combination of organic and microbial fertilizers (i.e., in the OFBa and OFBmK groups) significantly affected the relative abundance of soil bacterial species; the largest number of dominant microbial communities were found in the OFBa group, which were strongly correlated with each other. Additionally, non-targeted metabolomics revealed that the levels of soil lipids and lipid-like molecules, and organic acids and their derivatives, were greatly altered under all treatment conditions. The levels of galactitol, guanine, and deoxycytidine were also markedly decreased in the OFBa and OFBmK groups. Moreover, we constructed a regulatory network to delineated the relationships between bamboo phenotype, soil enzymatic activity, soil differential metabolites, and dominant microbial. The network revealed that bio-organic fertilizers promoted bamboo growth by modifying the soil microbiome and metabolome. Accordingly, we concluded that the use of organic fertilizers, microbial fertilizers, or their combination regulated bacterial composition and soil metabolic processes. These findings provide new insights into how D. farinosus-bacterial interactions are affected by different fertilization regiments, which are directly applicable to the agricultural cultivation of bamboo.
Collapse
Affiliation(s)
- Shangmeng Li
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Wei Fan
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Gang Xu
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Ying Cao
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Xin Zhao
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Suwei Hao
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Bin Deng
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Siyuan Ren
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Shanglian Hu
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| |
Collapse
|
39
|
Ye J, Wang Y, Wang Y, Hong L, Jia X, Kang J, Lin S, Wu Z, Wang H. Improvement of soil acidification in tea plantations by long-term use of organic fertilizers and its effect on tea yield and quality. FRONTIERS IN PLANT SCIENCE 2022; 13:1055900. [PMID: 36618668 PMCID: PMC9822707 DOI: 10.3389/fpls.2022.1055900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/12/2022] [Indexed: 05/27/2023]
Abstract
Soil acidification in tea plantation seriously reduced the yield and quality of tea. It was an effective method to use organic fertilizer for acidified soil remediation to ensure tea yield and quality. In this study, different fertilizers were used to treat the acidified tea plantation soils for 4 consecutive years to analyze the remediation effect of different fertilizers on acidified soil and their effects on tea yield and quality. The results showed that during the period of 2017-2021, the soil pH value of tea plantation (S1) with long-term use of chemical fertilizer decreased continuously, from 3.07 to 2.82. In the tea plantation (S2), the soil pH value was stable between 4.26 and 4.65 in the combination of organic fertilizer and chemical fertilizer for a long time. The tea plantation (S3) with long-term use of organic fertilizer has a stable soil pH value between 5.13 and 5.33, which is most suitable for the growth of tea trees. The analysis results of tea yield and quality indicators (tea polyphenols, theanine, amino acids, caffeine, catechin components) showed that after long-term use of chemical fertilizer in S1 tea plantation, soil pH value decreased continuously, soil acidification intensified, tea tree growth was hindered, and tea yield and quality decreased continuously. S2 tea plantation used some organic fertilizer in combination with chemical fertilizer for a long time, the soil pH value gradually improved, soil acidification weakened, and tea yield and quality improved steadily. After long-term use of organic fertilizer in S3 tea plantation, soil acidification was significantly improved, which was conducive to the normal growth of tea trees and the yield and quality of tea reached the maximum. The results of interaction analysis showed that the long-term use of chemical fertilizer had a negative effect on the growth of tea trees, and the combination of organic fertilizer and chemical fertilizer improved the growth of tea trees to some extent, but the effect was poor, while the long-term use of organic fertilizer was the most beneficial to the growth of tea trees and most conducive to ensuring the yield and quality of tea. This study provides important practical significance for the remediation and fertilizer regulation of acidified tea plantation soils. In the process of field experiment, climate is a variable factor, and attention should be paid to the effect of climate change on fertilization efficiency in subsequent experiment.
Collapse
Affiliation(s)
- Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhua Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuchao Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lei Hong
- College of Life Science, Longyan University, Longyan, China
| | - Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Jiaqian Kang
- College of Life Science, Longyan University, Longyan, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Zeyan Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibin Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Longyan University, Longyan, China
| |
Collapse
|
40
|
Pavlicevic M, Abdelraheem W, Zuverza-Mena N, O’Keefe T, Mukhtar S, Ridge G, Ranciato J, Haynes C, Elmer W, Pignatello J, Pagano L, Caldara M, Marmiroli M, Maestri E, Marmiroli N, White JC. Engineered Nanoparticles, Natural Nanoclay and Biochar, as Carriers of Plant-Growth Promoting Bacteria. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4474. [PMID: 36558327 PMCID: PMC9783841 DOI: 10.3390/nano12244474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The potential of biochar and nanoparticles to serve as effective delivery agents for beneficial bacteria to crops was investigated. Application of nanoparticles and biochar as carriers for beneficial bacteria improved not only the amount of nitrogen-fixing and phosphorus-solubilizing bacteria in soil, but also improved chlorophyll content (1.2-1.3 times), cell viability (1.1-1.5 times), and antioxidative properties (1.1-1.4 times) compared to control plants. Treatments also improved content of phosphorus (P) (1.1-1.6 times) and nitrogen (N) (1.1-1.4 times higher) in both tomato and watermelon plants. However, the effect of biochars and nanoparticles were species-specific. For example, chitosan-coated mesoporous silica nanoparticles with adsorbed bacteria increased the phosphorus content in tomato by 1.2 times compared to a 1.1-fold increase when nanoclay with adsorbed bacteria was applied. In watermelon, the situation was reversed: 1.1-fold increase in the case of chitosan-coated mesoporous silica nanoparticles and 1.2 times in case of nanoclay with adsorbed bacteria. Our findings demonstrate that use of nanoparticles and biochar as carriers for beneficial bacteria significantly improved plant growth and health. These findings are useful for design and synthesis of novel and sustainable biofertilizer formulations.
Collapse
Affiliation(s)
- Milica Pavlicevic
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Wael Abdelraheem
- Connecticut Agricultural Experimental Station, New Haven, CT 06511, USA
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | | | - Tana O’Keefe
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Salma Mukhtar
- Connecticut Agricultural Experimental Station, New Haven, CT 06511, USA
| | - Gale Ridge
- Connecticut Agricultural Experimental Station, New Haven, CT 06511, USA
| | - John Ranciato
- Connecticut Agricultural Experimental Station, New Haven, CT 06511, USA
| | - Christy Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wade Elmer
- Connecticut Agricultural Experimental Station, New Haven, CT 06511, USA
| | - Joseph Pignatello
- Connecticut Agricultural Experimental Station, New Haven, CT 06511, USA
| | - Luca Pagano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Marina Caldara
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Elena Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
- Interdepartmental Center SITEIA.PARMA, University of Parma, 43124 Parma, Italy
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
- Interdepartmental Center SITEIA.PARMA, University of Parma, 43124 Parma, Italy
- National Interuniversity Consortium for Environmental Sciences (CINSA), 43124 Parma, Italy
| | - Jason C. White
- Connecticut Agricultural Experimental Station, New Haven, CT 06511, USA
| |
Collapse
|
41
|
Soil microbiome disruption reveals specific and general plant-bacterial relationships in three agroecosystem soils. PLoS One 2022; 17:e0277529. [PMID: 36383522 PMCID: PMC9668122 DOI: 10.1371/journal.pone.0277529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Soil microbiome disruption methods are regularly used to reduce populations of microbial pathogens, often resulting in increased crop growth. However, little is known about the effect of soil microbiome disruption on non-pathogenic members of the soil microbiome. Here, we applied soil microbiome disruption in the form of moist-heat sterilization (autoclaving) to reduce populations of naturally occurring soil microbiota. The disruption was applied to analyze bacterial community rearrangement mediated by four crops (corn, beet, lettuce, and tomato) grown in three historically distinct agroecosystem soils (conventional, organic, and diseased). Applying the soil disruption enhanced plant influence on rhizosphere bacterial colonization, and significantly different bacterial communities were detected between the tested crops. Furthermore, bacterial genera showed significant abundance increases in ways both unique-to and shared-by each tested crop. As an example, corn uniquely promoted abundances of Pseudomonas and Sporocytophaga, regardless of the disrupted soil in which it was grown. Whereas the promotion of Bosea, Dyadobacter and Luteoliobacter was shared by all four crops when grown in disrupted soils. In summary, soil disruption followed by crop introduction amplified the plant colonization of potential beneficial bacterial genera in the rhizosphere.
Collapse
|
42
|
Hazarika SN, Saikia K, Thakur D. Characterization and selection of endophytic actinobacteria for growth and disease management of Tea ( Camellia sinensis L.). FRONTIERS IN PLANT SCIENCE 2022; 13:989794. [PMID: 36438109 PMCID: PMC9681920 DOI: 10.3389/fpls.2022.989794] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/24/2022] [Indexed: 06/13/2023]
Abstract
Endophytic microbes are vital for nutrient solubilization and uptake, growth, and survival of plants. Here, 88 endophytic actinobacteria (EnA) associated with five tea clones were isolated, assessed for their diversity, plant growth promoting (PGP), and biocontrol traits, and then used as an inoculant for PGP and disease control in host and non-host plants. Polyphasic methods, including phenotypic and genotypic characteristics led to their identification as Streptomyces, Microbacterium, Curtobacterium, Janibacter, Rhodococcus, Nocardia, Gordonia, Nocardiopsis, and Kribbella. Out of 88 isolates, 35 (39.77%) showed antagonistic activity in vitro against major fungal pathogens, viz. Fusarium oxysporum, Rhizoctonia solani, Exobasidium vexans, Poria hypobrunnea, Phellinus lamaensis, and Nigrospora sphaerica. Regarding PGP activities, the percentage of isolates that produced indole acetic acid, siderophore, and ammonia, as well as P-solubilisation and nitrogen fixation, were 67.05, 75, 80.68, 27.27, 57.95, respectively. A total of 51 and 42 isolates showed chitinase and 1-aminocyclopropane-1-carboxylic acid deaminase activity, respectively. Further, two potent Streptomyces strains KA12 and MA34, selected based on the bonitur scale, were screened for biofilm formation ability and tested in vivo under nursery conditions. Confocal laser scanning microscopy and the crystal violet staining technique revealed that these Streptomyces strains can form biofilms, indicating the potential for plant colonization. In the nursery experiment, they significantly enhanced the shoot and root biomass, shoot and root length, and leaf number in host tea plants. Additionally, treatment of tomato seeds by KA12 suppressed the growth of fungal pathogen Fusarium oxysporum, increased seed germination, and improved root architecture, demonstrating its ability to be used as a seed biopriming agent. Our results confirm the potential of tea endophytic actinobacterial strains with multifarious beneficial traits to enhance plant growth and suppress fungal pathogens, which may be used as bioinoculant for sustainable agriculture.
Collapse
Affiliation(s)
- Shabiha Nudrat Hazarika
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, India
| | - Kangkon Saikia
- Bioinformatics Infrastructure Facility, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| |
Collapse
|
43
|
Bayanati M, Al-Tawaha AR, Al-Taey D, Al-Ghzawi AL, Abu-Zaitoon YM, Shawaqfeh S, Al-Zoubi O, Al-Ramamneh EAD, Alomari L, Al-Tawaha AR, Dey A. Interaction between zinc and selenium bio-fortification and toxic metals (loid) accumulation in food crops. FRONTIERS IN PLANT SCIENCE 2022; 13:1001992. [PMID: 36388536 PMCID: PMC9659969 DOI: 10.3389/fpls.2022.1001992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Biofortification is the supply of micronutrients required for humans and livestock by various methods in the field, which include both farming and breeding methods and are referred to as short-term and long-term solutions, respectively. The presence of essential and non-essential elements in the atmosphere, soil, and water in large quantities can cause serious problems for living organisms. Knowledge about plant interactions with toxic metals such as cadmium (Cd), mercury (Hg), nickel (Ni), and lead (Pb), is not only important for a healthy environment, but also for reducing the risks of metals entering the food chain. Biofortification of zinc (Zn) and selenium (Se) is very significant in reducing the effects of toxic metals, especially on major food chain products such as wheat and rice. The findings show that Zn- biofortification by transgenic technique has reduced the accumulation of Cd in shoots and grains of rice, and also increased Se levels lead to the formation of insoluble complexes with Hg and Cd. We have highlighted the role of Se and Zn in the reaction to toxic metals and the importance of modifying their levels in improving dietary micronutrients. In addition, cultivar selection is an essential step that should be considered not only to maintain but also to improve the efficiency of Zn and Se use, which should be considered more climate, soil type, organic matter content, and inherent soil fertility. Also, in this review, the role of medicinal plants in the accumulation of heavy metals has been mentioned, and these plants can be considered in line with programs to improve biological enrichment, on the other hand, metallothioneins genes can be used in the program biofortification as grantors of resistance to heavy metals.
Collapse
Affiliation(s)
- Mina Bayanati
- Department of Horticultural Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Duraid Al-Taey
- Department of Horticulture, University of Al-Qasim Green, Babylon, Iraq
| | - Abdul Latief Al-Ghzawi
- Department of Biology and Biotechnology, Faculty of Science, the Hashemite University, Zarqa, Jordan
| | | | - Samar Shawaqfeh
- Department Of Plant Production & Protection, College of Agriculture. Jerash University, Jerash, Jordan
| | - Omar Al-Zoubi
- Biology Department, Faculty of Science Yanbu, Taibah University, Yanbu El-Bahr, Saudi Arabia
| | | | - Laith Alomari
- Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Abdel Razzaq Al-Tawaha
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
44
|
Doran NM, Bădîrcea RM, Doran MD. Financing the Agri-Environmental Policy: Consequences on the Economic Growth and Environmental Quality in Romania. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13908. [PMID: 36360792 PMCID: PMC9658853 DOI: 10.3390/ijerph192113908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The aim of this research is to point out the impact that the application of the agri-environmental policy has on the economic growth and on the quality of the environment, these being the main aspects targeted by the practice of a sustainable agriculture. The research is conducted based on the agri-environment indicators for Romania for the period of time between 1997 and 2019. In order to answer the objectives of this whole research, we performed stationarity tests, a cointegration test and used the Fully Modified Least Squares (FMOLS) method to estimate the relationships between the variables included in the three proposed models. The obtained results highlighted the positive influence exerted by the area that was arranged for irrigation and the agricultural area that was arranged with drainage works on the GDP, but also the negative influence of the amount of natural fertilizers used in agriculture. The use of chemical fertilizers and pesticides generates an increase in environmental degradation, meaning CO2 emissions, while an increase in the agricultural area arranged with erosion control and land improvement works, leads to reducing environmental degradations. The limitations of this research lie in the fact that the agri-environmental indicators are specific to each country in the European Union and, therefore, it is difficult to make comparisons with other member states or to apply the measures recommended for Romania to other states with similar agricultural and economic systems.
Collapse
Affiliation(s)
- Nicoleta Mihaela Doran
- Faculty of Economics and Business Administration, University of Craiova, 13 A.I. Cuza, 200585 Craiova, Romania
| | - Roxana Maria Bădîrcea
- Faculty of Economics and Business Administration, University of Craiova, 13 A.I. Cuza, 200585 Craiova, Romania
| | - Marius Dalian Doran
- Doctoral School of Economics and Business Administration, West University of Timisoara, 300223 Timisoara, Romania
| |
Collapse
|
45
|
Liu Z, Zhao J, Huo J, Ma H, Chen Z. Influence of planting yellowhorn ( Xanthoceras sorbifolium Bunge) on the bacterial and fungal diversity of fly ash. PeerJ 2022; 10:e14015. [PMID: 36172497 PMCID: PMC9512002 DOI: 10.7717/peerj.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/15/2022] [Indexed: 01/19/2023] Open
Abstract
Phytoremediation is a low-cost solution to fly ash pollution and the rhizosphere interactions between plant roots and the fly ash microbiome were important for the phytoremediation. To analyze the dynamic changes of the rhizosphere microbiome during yellowhorn cultivation in fly ash, the bacterial 16S rRNA gene V3-V4 region and the fungal ITS region of the rhizosphere microbiome were sequenced using Illumina MiSeq technology. The changes in fly ash physicochemical properties and the heavy metal content of different yellowhorn tissues were also analyzed. The results showed that both the bacterial and fungal communities were noticeably different after yellowhorn cultivation compared with the control sample. Proteobacteria and Acidobacteria levels increased (p < 0.05) and Firmicutes and Actinobacteria decreased (p < 0.05) in the bacterial community after yellowhorn cultivation. In the fungal community, Ascomycota and Mortierellomycota decreased (p < 0.05), while Chytridiomycota increased (p < 0.05). The levels of four heavy metals (Cr, Cd, Hg, Pb and As) decreased in the fly ash after yellowhorn cultivation. These metals were absorbed by the yellowhorn plants and accumulated in the fibrous root, taproot, stem and leaf tissues of these plants. Accordingly, the abundance of bacteria that could solubilize heavy metals increased (p < 0.05). In summary, the cultivation of yellowhorn affected the composition of the rhizosphere microbial communities in fly ash, which is of great significance for the biological remediation of fly ash.
Collapse
Affiliation(s)
- Zehui Liu
- Institute of Carbon Materials Science, School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi, China
| | - Jianguo Zhao
- Institute of Carbon Materials Science, School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi, China
| | - Jinxian Huo
- Institute of Carbon Materials Science, School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi, China
| | - Hongfang Ma
- Institute of Carbon Materials Science, School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi, China
| | - Zhiwen Chen
- Institute of Carbon Materials Science, School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi, China,Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| |
Collapse
|
46
|
Abdullah NS, Doni F, Ooi CK, Mispan MS, Saiman MZ, Mohd Yusuf Y, Mohd Suhaimi NS. The diversity of rhizospheric bacterial communities associated with Trichoderma-treated rice fields. Lett Appl Microbiol 2022; 75:1645-1650. [PMID: 36073093 DOI: 10.1111/lam.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022]
Abstract
Microbial-based fertilizer has been widely used as a healthier and better alternative to agrochemical products. However, the effects of biofertilizers on the rhizospheric microbiota has rarely been investigated. Thus, the aim of this study was to investigate the effects of symbiotic fungus Trichoderma asperellum SL2-based inoculant on the soil bacterial population through next generation sequencing using a metabarcoding approach. The treatments plots were treated with T. asperellum SL2 spore suspension, while the control plots were treated with sterilized distilled water. The results showed similar bacterial microbiome profiles in the soil of control and T. asperellum SL2-treated plots. In conclusion, the application of the T. asperellum SL2 inoculant had not exerted negative impact towards the bacterial population as similar observation was reflected in control plots. Nonetheless, future research should be conducted to investigate the effects of repeated application of T. asperellum SL2 over a longer period on the rice microbiota communities.
Collapse
Affiliation(s)
| | - Febri Doni
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia
| | - Chua Kah Ooi
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Muhamad Shakirin Mispan
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, 50603, Malaysia.,Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Mohd Zuwairi Saiman
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, 50603, Malaysia.,Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yusmin Mohd Yusuf
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, 50603, Malaysia.,Centre for Foundation Studies in Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nurul Shamsinah Mohd Suhaimi
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, 50603, Malaysia.,Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
47
|
Effects of Fermented Seaweed Fertilizer Treatment on Paddy Amino Acid Content and Rhizosphere Microbiome Community. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Seaweed has often been reported on for it potential bioresources for fertilizers to improve crop productivity and reduce the use of chemical fertilizers (CF). However, little is known about the nutritional status of the crop grown with the implementation of seaweed fertilizers (SF). In this study, the amino acid content of rice produced by SF implementation was evaluated. Furthermore, the rhizosphere bacterial community was also investigated. The paddy seedlings were divided into five groups, control (C0), chemical fertilizer (CF), seaweed fertilizer (SF), chemical and seaweed fertilizer combination 25:75 (CFSF1), and chemical and fertilizer combination 50:50 (CFSF2). The CFSF2 group shown significantly better growth characteristics compared to other groups. Based on the concentration of macronutrients (N, P, K) in paddy leaf, CFSF2 also shown the best results. This also correlates with the abundant amino acid composition in CFSF2 in almost all tested amino acids, namely, serine, phenylalanine, isoleucine, valine, glycine, tyrosine, proline, threonine, histidine, and arginine. Interestingly, beneficial bacteria Rhizobiales were significantly higher in CFSF2-treated soil (58%) compared to CF (29%). Another important group, Vicinamibacterales, was also significantly higher in CFSF2 (58%) compared to CF (7%). Hence, these potentially contributed to the high rice amino acid content and yield in the CFSF2-treated paddy. However, further field-scale studies are needed to confirm the bioindustrial application of seaweed in agricultural systems.
Collapse
|
48
|
Zheng B, Song N, Wu H, Tong J, Sun N. Syringe purification with UPLC-MS/MS for detection of antibiotics in tea garden soil after long-term application of manure. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2976-2981. [PMID: 35913112 DOI: 10.1039/d2ay00885h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The residue of antibiotics in the soil is becoming more and more common, which may affect the normal growth of plants and organisms. The aim of this study was to investigate the residues of antibiotics in tea gardens' soil after a long-term application of manure. An ultra-high performance liquid chromatography-tandem mass spectrometry method was developed to simultaneously determine the residues of 32 antibiotics in the soil of tea gardens after fertilization. The samples were extracted with methanol-acetonitrile and purified with C18 at the same time. Then, mixed dispersive sorbents dispersed in a syringe were used for the second purification. The results showed that the antibiotics have a good linear relationship within the range. The recovery rate is 70.1-120.3%. The applicability of the method was demonstrated by analyzing 30 real samples (with a detection rate of 43.3%). The method is a simple and environmentally friendly method for the analysis of multiple antibiotics in soils, and it could provide a basis for the risk assessment of antibiotics in agricultural environments and the standard application of organic fertilizers in tea gardens.
Collapse
Affiliation(s)
- Binyu Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Ningying Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Huizhen Wu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Jianying Tong
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Nabo Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
49
|
Gavelienė V, Jurkonienė S. Probiotics Enhance Cereal Yield and Quality and Modify Agrochemical Soil Properties. Microorganisms 2022; 10:microorganisms10071277. [PMID: 35888996 PMCID: PMC9318650 DOI: 10.3390/microorganisms10071277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to determine the influence of microbial biostimulants on wheat and oat growth, grain yield, and grain quality and to evaluate the influence of these probiotics on some soil agrochemical traits in the open field. Active concentrations of ProbioHumus and NaturGel and their mixtures were selected under laboratory conditions using winter wheat as a reference plant. Probiotics had a biostimulating effect on the development of the underground and aboveground part of winter wheat when 2 µL/g was used for seed priming and 2 mL/100 mL for seedling spraying. Under field conditions, after treatment of soil (2 L/ha), wheat and oat seeds (2 L/t), and plants (2 L/ha) with ProbioHumus and NaturGel, it was found that the yield of the studied cereals increased, on average, by 0.50 t/ha to 1.09 t/ha. ProbioHumus promoted protein accumulation in the investigated cereal grains. The level of microelements in wheat and oat grains increased after treatment of plants with NaturGel. Probiotics improved soil agrochemical properties, such as total and nitrate nitrogen, total and available phosphorus, organic carbon, humic acid, and humus content. In conclusion, plant probiotics can be used as an ecological alternative for growing cereals and improving the agrochemical properties of the soil.
Collapse
|
50
|
Mosa WFA, Abd EL-Megeed NA, Ali MM, Abada HS, Ali HM, Siddiqui MH, Sas-Paszt L. Preharvest Foliar Applications of Citric Acid, Gibberellic Acid and Humic Acid Improve Growth and Fruit Quality of ‘Le Conte’ Pear (Pyrus communis L.). HORTICULTURAE 2022; 8:507. [DOI: 10.3390/horticulturae8060507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
A two-year (2020-21) study was conducted to investigate the possibility of relying of ten-years old pear trees grown on sandy loam soil irrigated by drip on citric acid (CA), gibberellic acid (GA3) and humic acid (HA). The CA was applied at the concentrations of 500, 1000 and 1500 ppm, GA3 at 50, 100 and 150 ppm and HA at 3, 4 and 5%, whereas water spray was used as the control. The results of our study proved that CA, GA3 and HA improved the shoot length, shoot thickness, leaf area and leaf chlorophyll of pear as compared with the control. Moreover, they also positively increased the fruit set percentage and final yield of ‘Le Conte’ pear. The fruit weight, size and firmness were also improved under the influence of aforementioned treatments. The fruit soluble solids, total sugars, leaf nitrogen, leaf phosphorus and leaf potassium of pear were also enhanced as compared with the control. Additionally, spraying of GA3 at 150 ppm, as well as, HA at 5 and 4% were the superior treatments and showed the most significant impact on plant growth, yield, fruit quality and leaf mineral content of pear. This study provides a basis for the future elucidation of HA-, GA3- and CA-modulated molecular mechanisms in pear, which can make a significant contribution in the scientific community.
Collapse
|