1
|
An Y, Ni R, Zhuang L, Yang L, Ye Z, Li L, Parkkila S, Aspatwar A, Gong W. Tuberculosis vaccines and therapeutic drug: challenges and future directions. MOLECULAR BIOMEDICINE 2025; 6:4. [PMID: 39841361 PMCID: PMC11754781 DOI: 10.1186/s43556-024-00243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/06/2024] [Accepted: 12/24/2024] [Indexed: 01/23/2025] Open
Abstract
Tuberculosis (TB) remains a prominent global health challenge, with the World Health Organization documenting over 1 million annual fatalities. Despite the deployment of the Bacille Calmette-Guérin (BCG) vaccine and available therapeutic agents, the escalation of drug-resistant Mycobacterium tuberculosis strains underscores the pressing need for more efficacious vaccines and treatments. This review meticulously maps out the contemporary landscape of TB vaccine development, with a focus on antigen identification, clinical trial progress, and the obstacles and future trajectories in vaccine research. We spotlight innovative approaches, such as multi-antigen vaccines and mRNA technology platforms. Furthermore, the review delves into current TB therapeutics, particularly for multidrug-resistant tuberculosis (MDR-TB), exploring promising agents like bedaquiline (BDQ) and delamanid (DLM), as well as the potential of host-directed therapies. The hurdles in TB vaccine and therapeutic development encompass overcoming antigen diversity, enhancing vaccine effectiveness across diverse populations, and advancing novel vaccine platforms. Future initiatives emphasize combinatorial strategies, the development of anti-TB compounds targeting novel pathways, and personalized medicine for TB treatment and prevention. Despite notable advances, persistent challenges such as diagnostic failures and protracted treatment regimens continue to impede progress. This work aims to steer future research endeavors toward groundbreaking TB vaccines and therapeutic agents, providing crucial insights for enhancing TB prevention and treatment strategies.
Collapse
Affiliation(s)
- Yajing An
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Ruizi Ni
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Li Zhuang
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Ling Yang
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Zhaoyang Ye
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Linsheng Li
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories PLC, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland.
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China.
| |
Collapse
|
2
|
Junqueira-Kipnis AP, Leite LCDC, Croda J, Chimara E, Carvalho ACC, Arcêncio RA. Advances in the development of new vaccines for tuberculosis and Brazil's role in the effort forward the end TB strategy. Mem Inst Oswaldo Cruz 2024; 119:e240093. [PMID: 39383403 PMCID: PMC11452070 DOI: 10.1590/0074-02760240093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024] Open
Abstract
Tuberculosis (TB) continues to be the world's leading killer of infectious diseases. Despite global efforts to gradually reduce the number of annual deaths and the incidence of this disease, the coronavirus disease 19 (COVID-19) pandemic caused decreased in TB detection and affected the prompt treatment TB which led to a setback to the 2019 rates. However, the development and testing of new TB vaccines has not stopped and now presents the possibility of implanting in the next five years a new vaccine that is affordable and might be used in the various key vulnerable populations affected by TB. Then, this assay aimed to discuss the main vaccines developed against TB that shortly could be selected and used worldwide, and additionally, evidence the Brazilian potential candidates' vaccines in developing in Brazil that could be considered among those in level advanced to TB end.
Collapse
Affiliation(s)
- Ana Paula Junqueira-Kipnis
- Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Rede Goiana de Pesquisa em Tuberculose, Goiânia, GO, Brasil
- Rede Brasileira de Pesquisas em Tuberculose - REDE TB, Parque Tecnológico da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Luciana Cesar de Cerqueira Leite
- Instituto Butantan, Laboratório de Desenvolvimento de Vacinas, São Paulo, SP, Brasil
- Rede Brasileira de Pesquisas em Tuberculose - REDE TB, Parque Tecnológico da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Júlio Croda
- Universidade Federal do Mato Grosso do Sul, Faculdade de Medicina, Mato Grosso do Sul, MS, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Mato Grosso do Sul, MS, Brasil
- Yale School of Public Health, New Haven, CT, USA
- Rede Brasileira de Pesquisas em Tuberculose - REDE TB, Parque Tecnológico da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Erica Chimara
- Instituto Adolfo Lutz, Núcleo de Tuberculose e Micobacterioses, São Paulo, SP, Brasil
- Rede Brasileira de Pesquisas em Tuberculose - REDE TB, Parque Tecnológico da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Anna Cristina C Carvalho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, RJ, Brasil
- Rede Brasileira de Pesquisas em Tuberculose - REDE TB, Parque Tecnológico da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Ricardo Alexandre Arcêncio
- Universidade de São Paulo, Escola de Enfermagem de Ribeirão Preto, Ribeirão Preto, SP, Brasil
- Rede Brasileira de Pesquisas em Tuberculose - REDE TB, Parque Tecnológico da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
3
|
Li F, Dang W, Du Y, Xu X, He P, Zhou Y, Zhu B. Tuberculosis Vaccines and T Cell Immune Memory. Vaccines (Basel) 2024; 12:483. [PMID: 38793734 PMCID: PMC11125691 DOI: 10.3390/vaccines12050483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Tuberculosis (TB) remains a major infectious disease partly due to the lack of an effective vaccine. Therefore, developing new and more effective TB vaccines is crucial for controlling TB. Mycobacterium tuberculosis (M. tuberculosis) usually parasitizes in macrophages; therefore, cell-mediated immunity plays an important role. The maintenance of memory T cells following M. tuberculosis infection or vaccination is a hallmark of immune protection. This review analyzes the development of memory T cells during M. tuberculosis infection and vaccine immunization, especially on immune memory induced by BCG and subunit vaccines. Furthermore, the factors affecting the development of memory T cells are discussed in detail. The understanding of the development of memory T cells should contribute to designing more effective TB vaccines and optimizing vaccination strategies.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Wenrui Dang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Yunjie Du
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Xiaonan Xu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Pu He
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Yuhe Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Bingdong Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
- College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Hoseinpour R, Hasani A, Baradaran B, Abdolalizadeh J, Salehi R, Hasani A, Nabizadeh E, Yekani M, Hasani R, Kafil HS, Azizian K, Memar MY. Tuberculosis vaccine developments and efficient delivery systems: A comprehensive appraisal. Heliyon 2024; 10:e26193. [PMID: 38404880 PMCID: PMC10884459 DOI: 10.1016/j.heliyon.2024.e26193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Despite the widespread use of the Bacillus Calmette-Guérin (BCG) vaccine, Mycobacterium tuberculosis (MTB) continues to be a global burden. Vaccination has been proposed to prevent and treat tuberculosis (TB) infection, and several of them are in different phases of clinical trials. Though vaccine production is in progress but requires more attention. There are several TB vaccines in the trial phase, most of which are based on a combination of proteins/adjuvants or recombinant viral vectors used for selected MTB antigens. In this review, we attempted to discuss different types of TB vaccines based on the vaccine composition, the immune responses generated, and their clinical trial phases. Furthermore, we have briefly overviewed the effective delivery systems used for the TB vaccine and their effectiveness in different vaccines.
Collapse
Affiliation(s)
- Rasoul Hoseinpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Laboratory sciences and Microbiology, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Alka Hasani
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit, Sina Educational, Research, and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Hasani
- Department of Clinical Biochemistry and Applied Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Edris Nabizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Hossein Samadi Kafil
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Azizian
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Science, Sanandaj, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Zhuang L, Ye Z, Li L, Yang L, Gong W. Next-Generation TB Vaccines: Progress, Challenges, and Prospects. Vaccines (Basel) 2023; 11:1304. [PMID: 37631874 PMCID: PMC10457792 DOI: 10.3390/vaccines11081304] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a prevalent global infectious disease and a leading cause of mortality worldwide. Currently, the only available vaccine for TB prevention is Bacillus Calmette-Guérin (BCG). However, BCG demonstrates limited efficacy, particularly in adults. Efforts to develop effective TB vaccines have been ongoing for nearly a century. In this review, we have examined the current obstacles in TB vaccine research and emphasized the significance of understanding the interaction mechanism between MTB and hosts in order to provide new avenues for research and establish a solid foundation for the development of novel vaccines. We have also assessed various TB vaccine candidates, including inactivated vaccines, attenuated live vaccines, subunit vaccines, viral vector vaccines, DNA vaccines, and the emerging mRNA vaccines as well as virus-like particle (VLP)-based vaccines, which are currently in preclinical stages or clinical trials. Furthermore, we have discussed the challenges and opportunities associated with developing different types of TB vaccines and outlined future directions for TB vaccine research, aiming to expedite the development of effective vaccines. This comprehensive review offers a summary of the progress made in the field of novel TB vaccines.
Collapse
Affiliation(s)
- Li Zhuang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
- Hebei North University, Zhangjiakou 075000, China
| | - Zhaoyang Ye
- Hebei North University, Zhangjiakou 075000, China
| | - Linsheng Li
- Hebei North University, Zhangjiakou 075000, China
| | - Ling Yang
- Hebei North University, Zhangjiakou 075000, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| |
Collapse
|
6
|
Khandelia P, Yadav S, Singh P. An overview of the BCG vaccine and its future scope. Indian J Tuberc 2023; 70 Suppl 1:S14-S23. [PMID: 38110255 DOI: 10.1016/j.ijtb.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/15/2023] [Indexed: 12/20/2023]
Abstract
Despite intense elimination efforts, tuberculosis (TB) still poses a threat to world health, disproportionately affecting less developed and poorer countries. The Bacillus Calmette-Guérin (BCG) vaccine, the only anti-TB authorized vaccine can partially stop TB infection and transmission, however, its effectiveness ranges from 0 to 80%. As a result, there is an urgent need for a more potent TB vaccination given the widespread incidence of the disease. Enhancing BCG's effectiveness is also important due to the lack of other licensed vaccinations. Recently, fascinating research into BCG revaccination techniques by modulating its mode of action i.e., intravenous (IV) BCG delivery has yielded good clinical outcomes showing it still has a place in current vaccination regimens. We must thus go over the recent evidence that suggests trained immunity, and BCG vaccination techniques and describe how the vaccination confers protection against bacteria that cause both TB and non-tuberculosis. This review of the literature offers an updated summary and viewpoints on BCG-based TB immunization regimens (how it affects granulocytes at the epigenetic and hematopoietic stem cell levels which may be related to its efficacy), and also examines how the existing vaccine is being modified to be more effective, which may serve as an inspiration for future studies on the development of TB vaccines.
Collapse
Affiliation(s)
- Pallavi Khandelia
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pratichi Singh
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
7
|
Rawat BS, Kumar D, Soni V, Rosenn EH. Therapeutic Potentials of Immunometabolomic Modulations Induced by Tuberculosis Vaccination. Vaccines (Basel) 2022; 10:vaccines10122127. [PMID: 36560537 PMCID: PMC9781011 DOI: 10.3390/vaccines10122127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Metabolomics is emerging as a promising tool to understand the effect of immunometabolism for the development of novel host-directed alternative therapies. Immunometabolism can modulate both innate and adaptive immunity in response to pathogens and vaccinations. For instance, infections can affect lipid and amino acid metabolism while vaccines can trigger bile acid and carbohydrate pathways. Metabolomics as a vaccinomics tool, can provide a broader picture of vaccine-induced biochemical changes and pave a path to potentiate the vaccine efficacy. Its integration with other systems biology tools or treatment modes can enhance the cure, response rate, and control over the emergence of drug-resistant strains. Mycobacterium tuberculosis (Mtb) infection can remodel the host metabolism for its survival, while there are many biochemical pathways that the host adjusts to combat the infection. Similarly, the anti-TB vaccine, Bacillus Calmette-Guerin (BCG), was also found to affect the host metabolic pathways thus modulating immune responses. In this review, we highlight the metabolomic schema of the anti-TB vaccine and its therapeutic applications. Rewiring of immune metabolism upon BCG vaccination induces different signaling pathways which lead to epigenetic modifications underlying trained immunity. Metabolic pathways such as glycolysis, central carbon metabolism, and cholesterol synthesis play an important role in these aspects of immunity. Trained immunity and its applications are increasing day by day and it can be used to develop the next generation of vaccines to treat various other infections and orphan diseases. Our goal is to provide fresh insight into this direction and connect various dots to develop a conceptual framework.
Collapse
Affiliation(s)
- Bhupendra Singh Rawat
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Deepak Kumar
- Department of Zoology, University of Rajasthan, Jaipur 302004, Rajasthan, India
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence:
| | - Eric H. Rosenn
- School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
8
|
Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022; 13:840225. [PMID: 35359957 PMCID: PMC8960931 DOI: 10.3389/fimmu.2022.840225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| |
Collapse
|
9
|
Qu M, Zhou X, Li H. BCG vaccination strategies against tuberculosis: updates and perspectives. Hum Vaccin Immunother 2021; 17:5284-5295. [PMID: 34856853 DOI: 10.1080/21645515.2021.2007711] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Bacillus Calmette-Guérin (BCG) is the only licensed vaccine against tuberculosis (TB). However, BCG has variable efficacy and cannot completely prevent TB infection and transmission. Therefore, the worldwide prevalence of TB calls for urgent development of a more effective TB vaccine. In the absence of other approved vaccines, it is also necessary to improve the efficacy of BCG itself. Intravenous (IV) BCG administration and BCG revaccination strategies have recently shown promising results for clinical usage. Therefore, it is necessary for us to revisit the BCG vaccination strategies and summarize the current research updates related to BCG vaccination. This literature review provides an updated overview and perspectives of the immunization strategies against TB using BCG, which may inspire the following research on TB vaccine development.
Collapse
Affiliation(s)
- Mengjin Qu
- College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, China Agricultural University, Beijing, China
| | - Hao Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China.,Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Saramago S, Magalhães J, Pinheiro M. Tuberculosis Vaccines: An Update of Recent and Ongoing Clinical Trials. APPLIED SCIENCES 2021; 11:9250. [DOI: 10.3390/app11199250] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
TB remains a global health challenge and, until now, only one licensed vaccine (the BCG vaccine) is available. The main goal of this work is to assess the progress in the development of new TB vaccines and highlight the research in nanovaccines. A review was conducted using a methodology with the appropriate keywords and inclusion and exclusion criteria. The search revealed 37 clinical trials that were further reviewed. The results available have reported good immunogenicity and safety profiles for the vaccines under investigation. Over the last five years, the vaccines, VPM1002 and Vaccae, have moved ahead to phase III clinical trials, with the remaining candidate vaccines progressing in phase I and II clinical trials. RUTI and ID93+GLA-SE involve the use of nanoparticles. This strategy seems promising to improve the delivery, efficacy, cost, and storage conditions of the existing TB vaccines. In conclusion, the use of nanovaccines may be an option for both prevention and treatment. However, further studies are necessary for the development of novel TB vaccines.
Collapse
Affiliation(s)
- Sean Saramago
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Joana Magalhães
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marina Pinheiro
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Centro Hospitalar Universitário do Porto (CHUP), Largo do Prof. Abel Salazar, 4099-001 Porto, Portugal
| |
Collapse
|
11
|
Cho T, Khatchadourian C, Nguyen H, Dara Y, Jung S, Venketaraman V. A review of the BCG vaccine and other approaches toward tuberculosis eradication. Hum Vaccin Immunother 2021; 17:2454-2470. [PMID: 33769193 PMCID: PMC8475575 DOI: 10.1080/21645515.2021.1885280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/29/2021] [Indexed: 02/02/2023] Open
Abstract
Despite aggressive eradication efforts, Tuberculosis (TB) remains a global health burden, one that disproportionally affects poorer, less developed nations. The only vaccine approved for TB, the Bacillus of Calmette and Guérin (BCG) vaccine remains controversial because it's stated efficacy has been cited as anywhere from 0 to 80%. Nevertheless, there have been exciting discoveries about the mechanism of action of the BCG vaccine that suggests it has a role in immunization schedules today. We review recent data suggesting the vaccine imparts protection against both tuberculosis and non-tuberculosis pathogens via a newly discovered immune system called trained immunity. BCG's efficacy also appears to be tied to its affect on granulocytes at the epigenetic and hematopoietic stem cell levels, which we discuss in this article at length. We also write about how the different strains of the BCG vaccine elicit different immune responses, suggesting that certain BCG strains are more immunogenic than others. Finally, our review delves into how the current vaccine is being reformulated to be more efficacious, and track the development of the next generation vaccines against TB.
Collapse
Affiliation(s)
- Thomas Cho
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | | | - Huy Nguyen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Yash Dara
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Shuna Jung
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
12
|
Blanchett S, Tsai CJ, Sandford S, Loh JM, Huang L, Kirman JR, Proft T. Intranasal immunization with Ag85B peptide 25 displayed on Lactococcus lactis using the PilVax platform induces antigen-specific B- and T-cell responses. Immunol Cell Biol 2021; 99:767-781. [PMID: 33866609 DOI: 10.1111/imcb.12462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/27/2021] [Accepted: 04/15/2021] [Indexed: 12/19/2022]
Abstract
Mycobacterium tuberculosis (Mtb) remains a global epidemic despite the widespread use of Bacillus Calmette-Guérin (BCG). Consequently, novel vaccines are required to facilitate a reduction in Mtb morbidity and mortality. PilVax is a peptide delivery strategy for the generation of highly specific mucosal immune responses and is based on the food-grade bacterium Lactococcus lactis that is used to express selected peptides engineered within the Streptococcus pyogenes M1T1 pilus, allowing for peptide amplification, stabilization and enhanced immunogenicity. In the present study, the dominant T-cell epitope from the Mtb protein Ag85B was genetically engineered into the pilus backbone subunit and expressed on the surface of L. lactis. Western blot and flow cytometry confirmed formation of pilus containing the peptide DNA sequence. B-cell responses in intranasally vaccinated mice were analyzed by ELISA while T-cell responses were analyzed by flow cytometry. Serum titers of peptide-specific immunoglobulin (Ig) G and IgA were detected, confirming that vaccination produced antibodies against the cognate peptide. Peptide-specific IgA was also detected across several mucosal sites sampled. Peptide-specific CD4+ T cells were detected at levels similar to those of mice immunized with BCG. PilVax immunization resulted in an unexpected increase in the numbers of CD3+ CD4- CD8- [double negative (DN)] T cells in the lungs of vaccinated mice. Analysis of cytokine production following stimulation with the cognate peptide showed the major cytokine producing cells to be CD4+ T cells and DN T cells. This study provides insight into the antibody and peptide-specific cellular immune responses generated by PilVax vaccination and demonstrates the suitability of this vaccine for conducting a protection study.
Collapse
Affiliation(s)
- Samuel Blanchett
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Catherine Jy Tsai
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland, New Zealand
| | - Sarah Sandford
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand
| | - Jacelyn Ms Loh
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland, New Zealand
| | - Lucy Huang
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand
| | - Joanna R Kirman
- Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland, New Zealand.,Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Safar HA, Mustafa AS, McHugh TD. COVID-19 vaccine development: What lessons can we learn from TB? Ann Clin Microbiol Antimicrob 2020; 19:56. [PMID: 33256750 PMCID: PMC7702199 DOI: 10.1186/s12941-020-00402-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
At the time of writing, the SARS-CoV-2 virus has infected more than 49 million people causing more than 1.2 million deaths worldwide since its emergence from Wuhan, China in December 2019. Vaccine development against SARS-CoV-2 has drawn the global attention in order to stop the spread of the virus, with more than 10 vaccines being tested in phase III clinical trials, as of November 2020. However, critical to vaccine development is consideration of the immunological response elicited as well as biological features of the vaccine and both need to be evaluated thoroughly. Tuberculosis is also a major infectious respiratory disease of worldwide prevalence and the vaccine development for tuberculosis has been ongoing for decades. In this review, we highlight some of the common features, challenges and complications in tuberculosis vaccine development, which may also be relevant for, and inform, COVID-19 vaccine development.
Collapse
Affiliation(s)
- Hussain A Safar
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK.
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Timothy D McHugh
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
14
|
DAR-901 vaccine for the prevention of infection with Mycobacterium tuberculosis among BCG-immunized adolescents in Tanzania: A randomized controlled, double-blind phase 2b trial. Vaccine 2020; 38:7239-7245. [DOI: 10.1016/j.vaccine.2020.09.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022]
|
15
|
Li J, Zhao A, Tang J, Wang G, Shi Y, Zhan L, Qin C. Tuberculosis vaccine development: from classic to clinical candidates. Eur J Clin Microbiol Infect Dis 2020; 39:1405-1425. [PMID: 32060754 PMCID: PMC7223099 DOI: 10.1007/s10096-020-03843-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
Bacillus Calmette-Guérin (BCG) has been in use for nearly 100 years and is the only licensed TB vaccine. While BCG provides protection against disseminated TB in infants, its protection against adult pulmonary tuberculosis (PTB) is variable. To achieve the ambitious goal of eradicating TB worldwide by 2050, there is an urgent need to develop novel TB vaccines. Currently, there are more than a dozen novel TB vaccines including prophylactic and therapeutic at different stages of clinical research. This literature review provides an overview of the clinical status of candidate TB vaccines and discusses the challenges and future development trends of novel TB vaccine research in combination with the efficacy of evaluation of TB vaccines, provides insight for the development of safer and more efficient vaccines, and may inspire new ideas for the prevention of TB.
Collapse
Affiliation(s)
- Junli Li
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, People's Republic of China
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, People's Republic of China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, People's Republic of China
- Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, 100021, People's Republic of China
| | - Aihua Zhao
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, People's Republic of China
| | - Jun Tang
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, People's Republic of China
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, People's Republic of China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, People's Republic of China
- Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, 100021, People's Republic of China
| | - Guozhi Wang
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, People's Republic of China
| | - Yanan Shi
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, People's Republic of China
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, People's Republic of China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, People's Republic of China
- Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, 100021, People's Republic of China
| | - Lingjun Zhan
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, People's Republic of China.
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, People's Republic of China.
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, People's Republic of China.
- Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, 100021, People's Republic of China.
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, People's Republic of China.
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, People's Republic of China.
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, People's Republic of China.
- Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, 100021, People's Republic of China.
| |
Collapse
|
16
|
Scriba TJ, Netea MG, Ginsberg AM. Key recent advances in TB vaccine development and understanding of protective immune responses against Mycobacterium tuberculosis. Semin Immunol 2020; 50:101431. [PMID: 33279383 PMCID: PMC7786643 DOI: 10.1016/j.smim.2020.101431] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/02/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
Tuberculosis is the leading infectious disease killer globally due to a single pathogen. Despite wide deployment of standard drug regimens, modern diagnostics and a vaccine (bacille Calmette Guerin, BCG), the global tuberculosis epidemic is inadequately controlled. Novel, effective vaccine(s) are a crucial element of the World Health Organization End TB Strategy. TB vaccine research and development has recently been catalysed by several factors, including a revised strategy focused first on preventing pulmonary TB in adolescents and adults who are the main source of transmission, and encouraging evaluations of novel efficacy endpoints. Renewed enthusiasm for TB vaccine research has also been stimulated by recent preclinical and clinical advancements. These include new insights into underlying protective immune responses, including potential roles for 'trained' innate immunity and Th1/Th17 CD4+ (and CD8+) T cells. The field has been further reinvigorated by two positive proof of concept efficacy trials: one evaluating a potential new use of BCG in preventing high risk populations from sustained Mycobacterium tuberculosis infection and the second evaluating a novel, adjuvanted, recombinant protein vaccine candidate (M72/AS01E) for prevention of disease in adults already infected. Fourteen additional candidates are currently in various phases of clinical evaluation and multiple approaches to next generation vaccines are in discovery and preclinical development. The two positive efficacy trials and recent studies in nonhuman primates have enabled the first opportunities to discover candidate vaccine-induced correlates of protection, an effort being undertaken by a broad research consortium.
Collapse
Affiliation(s)
- Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Geert Grooteplein 8, 6525 GA Nijmegen, the Netherlands; Department of Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany.
| | - Ann M Ginsberg
- Bill & Melinda Gates Foundation, Division of Global Health, Washington DC, United States.
| |
Collapse
|
17
|
Phase III, placebo-controlled, randomized, double-blind trial of tableted, therapeutic TB vaccine (V7) containing heat-killed M. vaccae administered daily for one month. J Clin Tuberc Other Mycobact Dis 2019; 18:100141. [PMID: 31890902 PMCID: PMC6933248 DOI: 10.1016/j.jctube.2019.100141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective Immunotherapy of tuberculosis (TB) to shorten treatment duration represents an unmet medical need. Orally delivered, tableted TB vaccine (V7) containing heat-killed Mycobacterium vaccae (NCTC 11659) has been demonstrated in prior clinical studies to be safe and fast-acting immune adjunct. Methods The outcome of Phase III trial of V7 containing 10 µg of hydrolyzed M. vaccae was evaluated in 152 patients randomized at 2:1 ratio: V7 (N = 100), placebo (N = 52). Both arms received conventional 1st or 2nd line TB drugs co-administered with daily pill of V7 or placebo. Results After one month mycobacterial clearance was observed in 68% (P < 0.0001) and 23.1% (P = 0.04) of patients on V7 and placebo. Stratified conversion rates in V7 recipients with drug-sensitive and multidrug-resistant TB were 86.7% and 55.6% vs 27.2% and 15% in placebo. Patients on V7 gained on average 2.4 kg (P < 0.0001) vs 0.3 kg (P = 0.18) in placebo. Improvements in hemoglobin levels, erythrocyte sedimentation rate and leukocyte counts were significantly better than in controls. Liver function tests revealed that V7 can prevent chemotherapy-induced hepatic damage. Conclusion Oral M. vaccae is safe, can overcome TB-associated weight loss and inflammation, reduce hepatotoxicity of TB drugs, improve sputum conversion three-fold OR 3.15; 95%CI (2.3,4.6), and cut treatment length by at least six-fold. Longer follow-up studies might be needed to further substantiate our findings (Clinicaltrials.gov: NCT01977768).
Collapse
|