1
|
Hong Z, He X, Duan J, Yu F, Liu H, Lu D, Wang M, Zhang Y. Prenatal diagnostic approaches diagnosed craniosynostosis and identified a novel nonsense variant in SMAD6 in a Chinese fetus. Gene 2024; 896:147994. [PMID: 37977316 DOI: 10.1016/j.gene.2023.147994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/06/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Craniosynostosis is one of the most common congenital craniofacial birth defects. The genetic etiology is complex, involving syndromic developmental diseases, chromosomal abnormalities, and monogenic non-syndromic diseases. Herein, we presented a proband of craniosynostosis, who firstly displayed structural abnormalities. This research conducted dynamic ultrasound monitoring a fetus with gradually developing intrauterine growth retardation (IUGR). A novel de novo variant c.41G > A: p.W14* in SMAD6 was identified by pedigree analysis and genetic examination approaches. Recombinant plasmid carrying wild-type sequence and mutant that carries c.41G > A in SMAD6 were constructed and transfected into HEK293T cells. mRNA and protein expression of SMAD6 were reduced in SMAD6 mutants compared to the wild type. Cycloheximide (CHX) treatment and si-UPF1 transfection rescued the SMAD6 mRNA expression in the mutant construct, indicating that c.41G > A: p.W14* in SMAD6 triggered nonsense-mediated mRNA degradation (NMD) process and thus led to haploinsufficiency of the protein product. Our study demonstrated that whole-exome sequencing (WES) was a powerful tool for further diagnosis and etiological identification once fetal malformation was detected by ultrasound. Novel de novo c.41G > A: p.W14* in SMAD6 is pathogenic and potentially leads to craniosynostosis via NMD process.
Collapse
Affiliation(s)
- Zhidan Hong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, PR China
| | - Xuanyi He
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, PR China
| | - Jie Duan
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, PR China; Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Fang Yu
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, PR China; Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Huanyu Liu
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, PR China
| | - Dan Lu
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, PR China; Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, PR China
| | - Yuanzhen Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, PR China.
| |
Collapse
|
2
|
Zhao Z, D’Oliveira Albanus R, Taylor H, Tang X, Han Y, Orchard P, Varshney A, Zhang T, Manickam N, Erdos M, Narisu N, Taylor L, Saavedra X, Zhong A, Li B, Zhou T, Naji A, Liu C, Collins F, Parker SCJ, Chen S. An integrative single-cell multi-omics profiling of human pancreatic islets identifies T1D associated genes and regulatory signals. RESEARCH SQUARE 2023:rs.3.rs-3343318. [PMID: 37886586 PMCID: PMC10602166 DOI: 10.21203/rs.3.rs-3343318/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Genome wide association studies (GWAS) have identified over 100 signals associated with type 1 diabetes (T1D). However, translating any given T1D GWAS signal into mechanistic insights, including putative causal variants and the context (cell type and cell state) in which they function, has been limited. Here, we present a comprehensive multi-omic integrative analysis of single-cell/nucleus resolution profiles of gene expression and chromatin accessibility in healthy and autoantibody+ (AAB+) human islets, as well as islets under multiple T1D stimulatory conditions. We broadly nominate effector cell types for all T1D GWAS signals. We further nominated higher-resolution contexts, including effector cell types, regulatory elements, and genes for three independent T1D risk variants acting through islet cells within the pancreas at the DLK1/MEG3, RASGRP1, and TOX loci. Subsequently, we created isogenic gene knockouts DLK1-/-, RASGRP1-/-, and TOX-/-, and the corresponding regulatory region knockout, RASGRP1Δ, and DLK1Δ hESCs. Loss of RASGRP1 or DLK1, as well as knockout of the regulatory region of RASGRP1 or DLK1, increased β cell apoptosis. Additionally, pancreatic β cells derived from isogenic hESCs carrying the risk allele of rs3783355A/A exhibited increased β cell death. Finally, RNA-seq and ATAC-seq identified five genes upregulated in both RASGRP1-/- and DLK1-/- β-like cells, four of which are associated with T1D. Together, this work reports an integrative approach for combining single cell multi-omics, GWAS, and isogenic hESC-derived β-like cells to prioritize the T1D associated signals and their underlying context-specific cell types, genes, SNPs, and regulatory elements, to illuminate biological functions and molecular mechanisms.
Collapse
Affiliation(s)
- Zeping Zhao
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY 15 10065, USA
| | | | - Henry Taylor
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuming Tang
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY 15 10065, USA
| | - Yuling Han
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY 15 10065, USA
| | - Peter Orchard
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Arushi Varshney
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Tuo Zhang
- Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Nandini Manickam
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Mike Erdos
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Narisu Narisu
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leland Taylor
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaxia Saavedra
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Aaron Zhong
- Genomic Resource Core Facility, Weill Cornell Medical College, NY 10065, USA
| | - Bo Li
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Ting Zhou
- Genomic Resource Core Facility, Weill Cornell Medical College, NY 10065, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA19104, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA19104, USA
| | - Francis Collins
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen CJ Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY 15 10065, USA
| |
Collapse
|
3
|
Cao S, Gao X, Liu F, Chen Y, Na Q, Meng Q, Shao P, Chen C, Song Y, Wu B, Li X, Bao S. Derivation and characteristics of induced pluripotent stem cells from a patient with acute myelitis. Front Cell Dev Biol 2023; 11:1172385. [PMID: 37519296 PMCID: PMC10375497 DOI: 10.3389/fcell.2023.1172385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
The emergence and development of induced pluripotent stem cells (iPSCs) provides an approach to understand the regulatory mechanisms of cell pluripotency and demonstrates the great potential of iPSCs in disease modeling. Acute myelitis defines a group of inflammatory diseases that cause acute nerve damage in the spinal cord; however, its pathophysiology remains to be elusive. In this study, we derived skin fibroblasts from a patient with acute myelitis (P-HAF) and then reprogrammed P-HAF cells to iPSCs using eight exogenous factors (namely, OCT4, SOX2, c-MYC, KLF4, NANOG, LIN28, RARG, and LRH1). We performed transcriptomic analysis of the P-HAF and compared the biological characteristics of the iPSCs derived from the patient (P-iPSCs) with those derived from normal individuals in terms of pluripotency, transcriptomic characteristics, and differentiation ability toward the ectoderm. Compared to the control iPSCs, the P-iPSCs displayed similar features of pluripotency and comparable capability of ectoderm differentiation in the specified culture. However, when tested in the common medium, the P-iPSCs showed attenuated potential for ectoderm differentiation. The transcriptomic analysis revealed that pathways enriched in P-iPSCs included those involved in Wnt signaling. To this end, we treated iPSCs and P-iPSCs with the Wnt signaling pathway inhibitor IWR1 during the differentiation process and found that the expression of the ectoderm marker Sox1 was increased significantly in P-iPSCs. This study provides a novel approach to investigating the pathogenesis of acute myelitis.
Collapse
Affiliation(s)
- Shuo Cao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xinyue Gao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Fangyuan Liu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yanglin Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Qin Na
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Qiaoqiao Meng
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Peng Shao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chen Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yongli Song
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Baojiang Wu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
4
|
Beydag-Tasöz BS, Yennek S, Grapin-Botton A. Towards a better understanding of diabetes mellitus using organoid models. Nat Rev Endocrinol 2023; 19:232-248. [PMID: 36670309 PMCID: PMC9857923 DOI: 10.1038/s41574-022-00797-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 01/22/2023]
Abstract
Our understanding of diabetes mellitus has benefited from a combination of clinical investigations and work in model organisms and cell lines. Organoid models for a wide range of tissues are emerging as an additional tool enabling the study of diabetes mellitus. The applications for organoid models include studying human pancreatic cell development, pancreatic physiology, the response of target organs to pancreatic hormones and how glucose toxicity can affect tissues such as the blood vessels, retina, kidney and nerves. Organoids can be derived from human tissue cells or pluripotent stem cells and enable the production of human cell assemblies mimicking human organs. Many organ mimics relevant to diabetes mellitus are already available, but only a few relevant studies have been performed. We discuss the models that have been developed for the pancreas, liver, kidney, nerves and vasculature, how they complement other models, and their limitations. In addition, as diabetes mellitus is a multi-organ disease, we highlight how a merger between the organoid and bioengineering fields will provide integrative models.
Collapse
Affiliation(s)
- Belin Selcen Beydag-Tasöz
- The Novo Nordisk Foundation Center for Stem Cell Biology, Copenhagen, Denmark
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Siham Yennek
- The Novo Nordisk Foundation Center for Stem Cell Biology, Copenhagen, Denmark
| | - Anne Grapin-Botton
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Paul Langerhans Institute Dresden, Dresden, Germany.
| |
Collapse
|
5
|
A Potential Therapy Using Antisense Oligonucleotides to Treat Autosomal Recessive Polycystic Kidney Disease. J Clin Med 2023; 12:jcm12041428. [PMID: 36835961 PMCID: PMC9966971 DOI: 10.3390/jcm12041428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
(1) Background: Autosomal recessive polycystic kidney disease (ARPKD) is a rare ciliopathy characterized by progressively enlarged kidneys with fusiform dilatation of the collecting ducts. Loss-of-function mutations in the PKHD1 gene, which encodes fibrocystin/polyductin, cause ARPKD; however, an efficient treatment method and drug for ARPKD have yet to be found. Antisense oligonucleotides (ASOs) are short special oligonucleotides which function to regulate gene expression and alter mRNA splicing. Several ASOs have been approved by the FDA for the treatment of genetic disorders, and many are progressing at present. We designed ASOs to verify whether ASOs mediate the correction of splicing further to treat ARPKD arising from splicing defects and explored them as a potential treatment option. (2) Methods: We screened 38 children with polycystic kidney disease for gene detection using whole-exome sequencing (WES) and targeted next-generation sequencing. Their clinical information was investigated and followed up. The PKHD1 variants were summarized and analyzed, and association analysis was carried out to analyze the relationship between genotype and phenotype. Various bioinformatics tools were used to predict pathogenicity. Hybrid minigene analysis was performed as part of the functional splicing analysis. Moreover, the de novo protein synthesis inhibitor cycloheximide was selected to verify the degraded pathway of abnormal pre-mRNAs. ASOs were designed to rescue aberrant splicing, and this was verified. (3) Results: Of the 11 patients with PKHD1 variants, all of them exhibited variable levels of complications of the liver and kidneys. We found that patients with truncating variants and variants in certain regions had a more severe phenotype. Two splicing variants of the PKHD1 genotypes were studied via the hybrid minigene assay: variants c.2141-3T>C and c.11174+5G>A. These cause aberrant splicing, and their strong pathogenicity was confirmed. We demonstrated that the abnormal pre-mRNAs produced from the variants escaped from the NMD pathway with the use of the de novo protein synthesis inhibitor cycloheximide. Moreover, we found that the splicing defects were rescued by using ASOs, which efficiently induced the exclusion of pseudoexons. (4) Conclusion: Patients with truncating variants and variants in certain regions had a more severe phenotype. ASOs are a potential drug for treating ARPKD patients harboring splicing mutations of the PKHD1 gene by correcting the splicing defects and increasing the expression of the normal PKHD1 gene.
Collapse
|
6
|
Miyachi Y, Miyazawa T, Ogawa Y. HNF1A Mutations and Beta Cell Dysfunction in Diabetes. Int J Mol Sci 2022; 23:ijms23063222. [PMID: 35328643 PMCID: PMC8948720 DOI: 10.3390/ijms23063222] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/26/2022] Open
Abstract
Understanding the genetic factors of diabetes is essential for addressing the global increase in type 2 diabetes. HNF1A mutations cause a monogenic form of diabetes called maturity-onset diabetes of the young (MODY), and HNF1A single-nucleotide polymorphisms are associated with the development of type 2 diabetes. Numerous studies have been conducted, mainly using genetically modified mice, to explore the molecular basis for the development of diabetes caused by HNF1A mutations, and to reveal the roles of HNF1A in multiple organs, including insulin secretion from pancreatic beta cells, lipid metabolism and protein synthesis in the liver, and urinary glucose reabsorption in the kidneys. Recent studies using human stem cells that mimic MODY have provided new insights into beta cell dysfunction. In this article, we discuss the involvement of HNF1A in beta cell dysfunction by reviewing previous studies using genetically modified mice and recent findings in human stem cell-derived beta cells.
Collapse
|
7
|
Cujba AM, Alvarez-Fallas ME, Pedraza-Arevalo S, Laddach A, Shepherd MH, Hattersley AT, Watt FM, Sancho R. An HNF1α truncation associated with maturity-onset diabetes of the young impairs pancreatic progenitor differentiation by antagonizing HNF1β function. Cell Rep 2022; 38:110425. [PMID: 35235779 PMCID: PMC8905088 DOI: 10.1016/j.celrep.2022.110425] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/23/2021] [Accepted: 02/02/2022] [Indexed: 01/16/2023] Open
Abstract
The HNF1αp291fsinsC truncation is the most common mutation associated with maturity-onset diabetes of the young 3 (MODY3). Although shown to impair HNF1α signaling, the mechanism by which HNF1αp291fsinsC causes MODY3 is not fully understood. Here we use MODY3 patient and CRISPR/Cas9-engineered human induced pluripotent stem cells (hiPSCs) grown as 3D organoids to investigate how HNF1αp291fsinsC affects hiPSC differentiation during pancreatic development. HNF1αp291fsinsC hiPSCs shows reduced pancreatic progenitor and β cell differentiation. Mechanistically, HNF1αp291fsinsC interacts with HNF1β and inhibits its function, and disrupting this interaction partially rescues HNF1β-dependent transcription. HNF1β overexpression in the HNF1αp291fsinsC patient organoid line increases PDX1+ progenitors, while HNF1β overexpression in the HNF1αp291fsinsC patient iPSC line partially rescues β cell differentiation. Our study highlights the capability of pancreas progenitor-derived organoids to model disease in vitro. Additionally, it uncovers an HNF1β-mediated mechanism linked to HNF1α truncation that affects progenitor differentiation and could explain the clinical heterogeneity observed in MODY3 patients. MODY3 patient and CRISPR/Cas9 HNF1αp291fsinsC mutated iPSC lines are generated Mutant iPSCs show deficient pancreatic progenitor and β cell differentiation Mutant truncated HNF1α protein binds wild-type HNF1β protein to hinder its function HNF1β overexpression in MODY3 iPSC line partially rescues β cell differentiation
Collapse
Affiliation(s)
- Ana-Maria Cujba
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | | | | | | | | | | | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Rocio Sancho
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK; Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
8
|
Bartolomé A. Stem Cell-Derived β Cells: A Versatile Research Platform to Interrogate the Genetic Basis of β Cell Dysfunction. Int J Mol Sci 2022; 23:501. [PMID: 35008927 PMCID: PMC8745644 DOI: 10.3390/ijms23010501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic β cell dysfunction is a central component of diabetes progression. During the last decades, the genetic basis of several monogenic forms of diabetes has been recognized. Genome-wide association studies (GWAS) have also facilitated the identification of common genetic variants associated with an increased risk of diabetes. These studies highlight the importance of impaired β cell function in all forms of diabetes. However, how most of these risk variants confer disease risk, remains unanswered. Understanding the specific contribution of genetic variants and the precise role of their molecular effectors is the next step toward developing treatments that target β cell dysfunction in the era of personalized medicine. Protocols that allow derivation of β cells from pluripotent stem cells, represent a powerful research tool that allows modeling of human development and versatile experimental designs that can be used to shed some light on diabetes pathophysiology. This article reviews different models to study the genetic basis of β cell dysfunction, focusing on the recent advances made possible by stem cell applications in the field of diabetes research.
Collapse
Affiliation(s)
- Alberto Bartolomé
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
9
|
Kondoh T, Nakajima Y, Yokoi K, Matsumoto Y, Inagaki H, Kato T, Nakajima Y, Ito T, Yoshikawa T, Kurahashi H. Identification of a Novel Mutation in Carboxyl Ester Lipase Gene in a Patient with MODY-like Diabetes. TOHOKU J EXP MED 2022; 256:37-41. [DOI: 10.1620/tjem.256.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Tomomi Kondoh
- Department of Pediatrics, Fujita Health University School of Medicine
| | - Yoko Nakajima
- Department of Pediatrics, Fujita Health University School of Medicine
| | - Katsuyuki Yokoi
- Department of Pediatrics, Fujita Health University School of Medicine
| | - Yuji Matsumoto
- Department of Pediatrics, Fujita Health University School of Medicine
| | - Hidehito Inagaki
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University School of Medicine
| | - Takema Kato
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University School of Medicine
| | - Yoichi Nakajima
- Department of Pediatrics, Fujita Health University School of Medicine
| | - Tetsuya Ito
- Department of Pediatrics, Fujita Health University School of Medicine
| | | | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University School of Medicine
| |
Collapse
|
10
|
George MN, Leavens KF, Gadue P. Genome Editing Human Pluripotent Stem Cells to Model β-Cell Disease and Unmask Novel Genetic Modifiers. Front Endocrinol (Lausanne) 2021; 12:682625. [PMID: 34149620 PMCID: PMC8206553 DOI: 10.3389/fendo.2021.682625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/13/2021] [Indexed: 01/21/2023] Open
Abstract
A mechanistic understanding of the genetic basis of complex diseases such as diabetes mellitus remain elusive due in large part to the activity of genetic disease modifiers that impact the penetrance and/or presentation of disease phenotypes. In the face of such complexity, rare forms of diabetes that result from single-gene mutations (monogenic diabetes) can be used to model the contribution of individual genetic factors to pancreatic β-cell dysfunction and the breakdown of glucose homeostasis. Here we review the contribution of protein coding and non-protein coding genetic disease modifiers to the pathogenesis of diabetes subtypes, as well as how recent technological advances in the generation, differentiation, and genome editing of human pluripotent stem cells (hPSC) enable the development of cell-based disease models. Finally, we describe a disease modifier discovery platform that utilizes these technologies to identify novel genetic modifiers using induced pluripotent stem cells (iPSC) derived from patients with monogenic diabetes caused by heterozygous mutations.
Collapse
Affiliation(s)
- Matthew N. George
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Karla F. Leavens
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
11
|
Pellegrini S, Pipitone GB, Cospito A, Manenti F, Poggi G, Lombardo MT, Nano R, Martino G, Ferrari M, Carrera P, Sordi V, Piemonti L. Generation of β Cells from iPSC of a MODY8 Patient with a Novel Mutation in the Carboxyl Ester Lipase (CEL) Gene. J Clin Endocrinol Metab 2021; 106:e2322-e2333. [PMID: 33417713 DOI: 10.1210/clinem/dgaa986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Maturity-onset diabetes of the young (MODY) 8 is a rare form of monogenic diabetes characterized by a mutation in CEL (carboxyl ester lipase) gene, which leads to exocrine pancreas dysfunction, followed by β cell failure. Induced pluripotent stem cells can differentiate into functional β cells. Thus, β cells from MODY8 patients can be generated in vitro and used for disease modelling and cell replacement therapy. METHODS A genetic study was performed in a patient suspected of monogenic diabetes. RESULTS A novel heterozygous pathogenic variant in CEL (c.1818delC) was identified in the proband, allowing diagnosis of MODY8. Three MODY8-iPSC (induced pluripotent stem cell) clones were reprogrammed from skin fibroblasts of the patient, and their pluripotency and genomic stability confirmed. All 3 MODY8-iPSC differentiated into β cells following developmental stages. MODY8-iPSC-derived β cells were able to secrete insulin upon glucose dynamic perifusion. The CEL gene was not expressed in iPSCs nor during any steps of endocrine differentiation. CONCLUSION iPSC lines from a MODY8 patient with a novel pathogenic variant in the CEL gene were generated; they are capable of differentiation into endocrine cells, and β cell function is preserved in mutated cells. These results set the basis for in vitro modelling of the disease and potentially for autologous β cell replacement.
Collapse
Affiliation(s)
- Silvia Pellegrini
- Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Giovanni B Pipitone
- Laboratory of Clinical Molecular Biology, Unit of Genomics for human disease diagnosis, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Fabio Manenti
- Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Gaia Poggi
- Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Marta T Lombardo
- Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Rita Nano
- Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maurizio Ferrari
- Laboratory of Clinical Molecular Biology, Unit of Genomics for human disease diagnosis, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Carrera
- Laboratory of Clinical Molecular Biology, Unit of Genomics for human disease diagnosis, IRCCS San Raffaele Hospital, Milan, Italy
| | - Valeria Sordi
- Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
12
|
Abdelalim EM. Modeling different types of diabetes using human pluripotent stem cells. Cell Mol Life Sci 2021; 78:2459-2483. [PMID: 33242105 PMCID: PMC11072720 DOI: 10.1007/s00018-020-03710-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia as a result of progressive loss of pancreatic β cells, which could lead to several debilitating complications. Different paths, triggered by several genetic and environmental factors, lead to the loss of pancreatic β cells and/or function. Understanding these many paths to β cell damage or dysfunction could help in identifying therapeutic approaches specific for each path. Most of our knowledge about diabetes pathophysiology has been obtained from studies on animal models, which do not fully recapitulate human diabetes phenotypes. Currently, human pluripotent stem cell (hPSC) technology is a powerful tool for generating in vitro human models, which could provide key information about the disease pathogenesis and provide cells for personalized therapies. The recent progress in generating functional hPSC-derived β cells in combination with the rapid development in genomic and genome-editing technologies offer multiple options to understand the cellular and molecular mechanisms underlying the development of different types of diabetes. Recently, several in vitro hPSC-based strategies have been used for studying monogenic and polygenic forms of diabetes. This review summarizes the current knowledge about different hPSC-based diabetes models and how these models improved our current understanding of the pathophysiology of distinct forms of diabetes. Also, it highlights the progress in generating functional β cells in vitro, and discusses the current challenges and future perspectives related to the use of the in vitro hPSC-based strategies.
Collapse
Affiliation(s)
- Essam M Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, Qatar.
| |
Collapse
|
13
|
Braverman-Gross C, Benvenisty N. Modeling Maturity Onset Diabetes of the Young in Pluripotent Stem Cells: Challenges and Achievements. Front Endocrinol (Lausanne) 2021; 12:622940. [PMID: 33692757 PMCID: PMC7937923 DOI: 10.3389/fendo.2021.622940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Maturity onset diabetes of the young (MODY), is a group of monogenic diabetes disorders. Rodent models for MODY do not fully recapitulate the human phenotypes, calling for models generated in human cells. Human pluripotent stem cells (hPSCs), capable of differentiation towards pancreatic cells, possess a great opportunity to model MODY disorders in vitro. Here, we review the models for MODY diseases in hPSCs to date and the molecular lessons learnt from them. We also discuss the limitations and challenges that these types of models are still facing.
Collapse
|