1
|
Pal P, Kioka A. Micro and nanobubbles enhanced ozonation technology: A synergistic approach for pesticides removal. Compr Rev Food Sci Food Saf 2025; 24:e70133. [PMID: 39929639 PMCID: PMC11810549 DOI: 10.1111/1541-4337.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/27/2024] [Accepted: 01/18/2025] [Indexed: 02/13/2025]
Abstract
Pesticides production, consumption, and disposal around the world are raising concerns day by day for their human and environmental health impacts. Among developing treatment technologies, ozonation has attracted the attention of many researchers in recent years. It is an emerging and promising technology for removing pesticides in the aqueous environment and degrading the residual pesticides from the fruits and vegetables (F&V) surfaces. This systematic review presents an extensive study of the degradation of different types of residual pesticides from F&V using ozonation, micro- and nanobubble (MNB) ozonation, or other advanced techniques such as microwaves/ultrasonication and advanced oxidation process. This review compiles the studies that reported the effect of MNB size on the dissolution of ozone gas in the washing medium and its effect on the degradation of residual pesticides from F&V. The mechanism and routes of pesticide degradation and how integrating MNB technology (MNBT) can help overcome economic losses, reduce health issues for consumers, and save the environment from harmful chemicals used in the pesticides are also discussed. The article encourages the development and utilization of MNBT not only in agriculture, but aquaculture, fisheries, food industries, food storage, and packing, for reducing/degrading the residual pesticides from foods and support environmental sustainability as well as improve international trade.
Collapse
Affiliation(s)
- Preeti Pal
- Department of Systems Innovation, School of EngineeringThe University of TokyoTokyoJapan
| | - Arata Kioka
- Department of Systems Innovation, School of EngineeringThe University of TokyoTokyoJapan
| |
Collapse
|
2
|
Goetz C, Sanschagrin L, Jubinville E, Jacques M, Jean J. Recent progress in antibiofilm strategies in the dairy industry. J Dairy Sci 2024:S0022-0302(24)01335-3. [PMID: 39603496 DOI: 10.3168/jds.2024-25554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Biofilm formation allows microorganisms including bacteria to persist on abiotic or biotic surfaces, to resist treatments with biocides (disinfectants and antibiotics) and to evade the immune response in animal hosts much more than they do in the planktonic form. Bacteria able to form biofilm can be troublesome in the dairy industry, both by causing clinical symptoms in livestock and by colonizing milking devices and milk processing equipment, resulting in dairy products of lower quality and sometimes raising serious food safety issues. In fact, most of the bacterial species isolated frequently in the dairy chain have the ability to form biofilm. Common examples include Staphylococcus aureus and other staphylococci that frequently infect mammary glands, but also Bacillus spp., Listeria monocytogenes and Pseudomonas spp. which cause spoilage of dairy products and sometimes foodborne illnesses. The economic losses due to biofilm formation in the dairy industry are considerable, and scientists are constantly solicited to develop new antibiofilm strategies, especially using biocides of natural origin. Although the number of studies in this subject area has exploded in recent years, the in vivo efficacy of most novel approaches remains to be explored. Used alone or to increase the efficacy of disinfectants or antibiotics, they could allow the implementation of strategies having less impact on the environment. Their use is expected to lead to less reliance on antibiotics to treat intramammary infections in dairy farms and to the use of lower concentrations of chemical disinfectants in dairy processing plants.
Collapse
Affiliation(s)
- Coralie Goetz
- INRAE, L'Institut Agro Rennes-Angers, UMR 1253 STLO, Rennes Cedex, France
| | - Laurie Sanschagrin
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Eric Jubinville
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Mario Jacques
- Regroupement de recherche pour un lait de qualité optimale (Op+lait), Faculté de médecine vétérinaire, Université de Montréal, St Hyacinthe, QC, Canada
| | - Julie Jean
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada.
| |
Collapse
|
3
|
Catella C, Pellegrini F, Carbonari A, Burgio M, Patruno G, Rizzo A, Trombetta CM, Palmisani J, Martella V, Camero M, Lanave G. In Vitro Antiviral and Virucidal Activity of Ozone against Feline Calicivirus. Animals (Basel) 2024; 14:682. [PMID: 38473067 DOI: 10.3390/ani14050682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The Caliciviridae family includes several viral pathogens of humans and animals, including norovirus (NoV), genus Norovirus, and feline calicivirus (FCV), genus Vesivirus. Due to their resistance in the environment, NoV and FCV may give rise to nosocomial infections, and indirect transmission plays a major role in their diffusion in susceptible populations. A pillar of the control of viruses resistant to an environment is the adoption of prophylaR1.6ctic measures, including disinfection. Since NoVs are not cultivatable in common cell cultures, FCV has been largely used as a surrogate of NoV for the assessment of effective disinfectants. Ozone (O3), a molecule with strong oxidizing properties, has shown strong microbicidal activity on bacteria, fungi, protozoa, and viruses. In this study, the virucidal and antiviral activities of an O3/O2 gas mixture containing O3 were tested at different concentrations (20, 35, and 50 μg/mL) for distinct contact times against FCV. The O3/O2 gas mixture showed virucidal and antiviral activities against FCV in a dose- and contact time-dependent fashion. Ozonation could be considered as a valid strategy for the disinfection of environments at risk of contamination by FCV and NoV.
Collapse
Affiliation(s)
- Cristiana Catella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Alice Carbonari
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Matteo Burgio
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Giovanni Patruno
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Annalisa Rizzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | | | - Jolanda Palmisani
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Michele Camero
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| |
Collapse
|
4
|
Jonsdottir HR, Zysset D, Lenz N, Siegrist D, Ruedin Y, Ryter S, Züst R, Geissmann Y, Ackermann-Gäumann R, Engler OB, Weber B. Virucidal activity of three standard chemical disinfectants against Ebola virus suspended in tripartite soil and whole blood. Sci Rep 2023; 13:15718. [PMID: 37735604 PMCID: PMC10514052 DOI: 10.1038/s41598-023-42376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023] Open
Abstract
Proper disinfection and inactivation of highly pathogenic viruses is an essential component of public health and prevention. Depending on environment, surfaces, and type of contaminant, various methods of disinfection must be both efficient and available. To test both established and novel chemical disinfectants against risk group 4 viruses in our maximum containment facility, we developed a standardized protocol and assessed the chemical inactivation of the two Ebola virus variants Mayinga and Makona suspended in two different biological soil loads. Standard chemical disinfectants ethanol and sodium hypochlorite completely inactivate both Ebola variants after 30 s in suspension at 70% and 0.5% v/v, respectively, concentrations recommended for disinfection by the World Health Organization. Additionally, peracetic acid is also inactivating at 0.2% v/v under the same conditions. Continued vigilance and optimization of current disinfection protocols is extremely important due to the continuous presence of Ebola virus on the African continent and increased zoonotic spillover of novel viral pathogens. Furthermore, to facilitate general pandemic preparedness, the establishment and sharing of standardized protocols is very important as it allows for rapid testing and evaluation of novel pathogens and chemical disinfectants.
Collapse
Affiliation(s)
- Hulda R Jonsdottir
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland.
- Department of Rheumatology, Immunology, and Allergology, Inselspital University Hospital, Bern, Switzerland.
- Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Daniel Zysset
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland.
| | - Nicole Lenz
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011, Lausanne, Switzerland
- Agroscope, Federal Office for Agriculture, Bern, Switzerland
| | - Denise Siegrist
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Yelena Ruedin
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Sarah Ryter
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Roland Züst
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Yannick Geissmann
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Rahel Ackermann-Gäumann
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
- ADMED Microbiologie, La Chaux-de-Fonds, Switzerland
| | - Olivier B Engler
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Benjamin Weber
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| |
Collapse
|
5
|
Gunathilaka GU, Li H, Zhang W, Ryser ET. Persistence of Silver Nanoparticles Sorbed on Fresh-Cut Lettuce during Flume Washing and Centrifugal Drying. J Food Prot 2023; 86:100097. [PMID: 37142126 DOI: 10.1016/j.jfp.2023.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/06/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Increased agricultural use of silver nanoparticles (Ag NPs) may potentially lead to residual levels on fresh produce, raising food safety and public health concerns. However, the ability of typical washing practices to remove Ag NPs from fresh produce is poorly understood. This study investigated the removal of Ag NPs from Ag NP-contaminated lettuce during bench-top and pilot-scale washing and drying. Ag NP removal was first assessed by washing lettuce leaves in a 4-L carboy batch system using water containing chlorine (100 mg/L) or peroxyacetic acid (80 mg/L) with and without a 2.5% organic load and water alone as the control. Overall, these treatments removed only 3-7% of the sorbed Ag from the lettuce. Thereafter, Ag NP-contaminated lettuce leaves were flume-washed for 90 s in a pilot-scale processing line using ∼600 L of recirculating water with or without a chlorine-based sanitizer (100 mg/L) and then centrifugally dried. After processing, only 0.3-3% of the sorbed Ag was removed, probably due to the strong binding of Ag with plant organic materials. Centrifugation only removed a minor amount of Ag as compared to flume washing. However, the Ag concentration in the ∼750 mL of centrifugation water was much higher as compared to the flume water, suggesting that the centrifugation water would be preferred when assessing fresh-cut leafy greens for Ag contamination. These findings indicate that Ag NPs may persist on contaminated leafy greens with commercial flume washing systems unable to substantially reduce Ag NP levels.
Collapse
Affiliation(s)
- Gayathri U Gunathilaka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, United States
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Elliot T Ryser
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
6
|
Botondi R, Lembo M, Carboni C, Eramo V. The Use of Ozone Technology: An Eco-Friendly Method for the Sanitization of the Dairy Supply Chain. Foods 2023; 12:foods12050987. [PMID: 36900504 PMCID: PMC10001170 DOI: 10.3390/foods12050987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
The dairy field has considerable economic relevance in the agri-food system, but also has the need to develop new 'green' supply chain actions to ensure that sustainable products are in line with consumer requirements. In recent years, the dairy farming industry has generally improved in terms of equipment and product performance, but innovation must be linked to traditional product specifications. During cheese ripening, the storage areas and the direct contact of the cheese with the wood must be carefully managed because the proliferation of contaminating microorganisms, parasites, and insects increases significantly and product quality quickly declines, notably from a sensory level. The use of ozone (as gas or as ozonated water) can be effective for sanitizing air, water, and surfaces in contact with food, and its use can also be extended to the treatment of waste and process water. Ozone is easily generated and is eco-sustainable as it tends to disappear in a short time, leaving no residues of ozone. However, its oxidation potential can lead to the peroxidation of cheese polyunsaturated fatty acids. In this review we intend to investigate the use of ozone in the dairy sector, selecting the studies that have been most relevant over the last years.
Collapse
Affiliation(s)
- Rinaldo Botondi
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
- Correspondence:
| | - Micaela Lembo
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | | | - Vanessa Eramo
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
7
|
Crosby-Durrani HE, Blowey RW, Manning A, Afonso JS, Carter SD, Evans NJ, Angell JW. An Observational Study Investigating Potential Risk Factors and Economic Impact for Bovine Ischaemic Teat Necrosis on Dairy Farms in Great Britain. Front Vet Sci 2022; 9:748259. [PMID: 35392112 PMCID: PMC8981390 DOI: 10.3389/fvets.2022.748259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
Bovine ischaemic teat necrosis (ITN) is an emerging disease of unknown aetiology that affects the teats of dairy cattle. It causes economic and animal welfare issues with many animals being culled. No effective treatments or epidemiological data to inform control strategies are currently available. The aim of this observational study was to investigate farmer-reported experiences and identify potential farm-level risk factors. In January 2018, a questionnaire was sent to a random sample of 1,855 Great Britain (GB) dairy farmers. A usable response rate of 12.3% was obtained. Fifty-one per cent [95% confidence interval (CI): 44.4–57.8%] of farmers reported having experienced ITN on their farm between 1985 and 2018. Rising numbers of farms indicated that ITN is an emerging disease with 46.3% of farmers reporting the first case in the 3 years up to 2018. At the animal level, 47.3% (95% CI: 38.7–55.9%) of the cases occurred during the first lactation and 78.9% (95% CI: 75.2–82.6%) within the first 90 days in milk. Only 20.8% (95% CI: 15.9–26.4%) of the cases were reported to recover, whereas 22.8% (95% CI: 17.8–28.5%) of the cases required culling. The remaining cases experienced complications such as loss of a teat and/or mastitis. From these data, the cost of ITN, through production losses and expenditure, was estimated to be £1,121 per farm per year. The costs were estimated at £720, £860 and £2,133 for recovered, complicated and culled cases, respectively. Univariable and multivariable logistic regression models were used to explore the associations between the presence of ITN on farm and various risk factors. The presence of udder cleft dermatitis (UCD) (odds ratio 2.80; 95% CI: 1.54–5.07; p < 0.01) and chapped teats (odds ratio 6.07; 95% CI: 1.96–18.76; p < 0.01) in the milking herd was associated with the presence of ITN at the farm level. This is the first national questionnaire of ITN within GB and highlights the association of UCD and chapped teats with ITN at the farm level. While there are many limitations and potential bias around farmer questionnaires, these findings highlight several key areas for further disease investigation and possible intervention.
Collapse
Affiliation(s)
- Hayley E. Crosby-Durrani
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Neston, United Kingdom
- *Correspondence: Hayley E. Crosby-Durrani
| | | | - Al Manning
- Quality Milk Management Services Ltd., Wells, United Kingdom
| | - João Sucena Afonso
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Neston, United Kingdom
| | - Stuart D. Carter
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Neston, United Kingdom
| | - Nicholas J. Evans
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Neston, United Kingdom
| | - Joseph W. Angell
- Wern Vets CYF, Department of Research and Innovation, Ruthin, United Kingdom
| |
Collapse
|
8
|
In Vitro Evaluation of Ozonated Water Treatment on the Viability of Eimeria Oocysts and Giardia Cysts from Water Buffaloes: A Proof-of-Concept Study. Vet Sci 2021; 8:vetsci8060115. [PMID: 34207325 PMCID: PMC8233707 DOI: 10.3390/vetsci8060115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 01/23/2023] Open
Abstract
The aim of this proof-of-concept study was to evaluate the in vitro effects of ozonated water treatment on the viability of Eimeria oocysts and Giardia cysts isolated from naturally infected water buffaloes. Eimeria oocysts were divided into seven groups of six replicates that were treated with ozonated water at three ozone concentrations (0.5, 1, and 2 mg/L) and two contact times (five and ten minutes), and one group (negative control) that was exposed to non-treated water. Giardia cysts were divided into nine groups of six replicates and were treated with ozonated water at four ozone concentrations (0.1, 0.3, 0.5, and 1 mg/L) and two contact times (one and two minutes), while one group (negative control) was exposed to non-treated water. The results of the ozonated water treatment gave a 33% inhibition of the sporulation of Eimeria oocysts and rendered 96.3% of Giardia cysts non-viable, suggesting that ozonated water treatment could be a promising alternative sanitation technology to common conventional disinfectants for reducing intestinal protozoa infections in water buffaloes; though further in vitro and in vivo tests are needed.
Collapse
|
9
|
Artasensi A, Mazzotta S, Fumagalli L. Back to Basics: Choosing the Appropriate Surface Disinfectant. Antibiotics (Basel) 2021; 10:antibiotics10060613. [PMID: 34063833 PMCID: PMC8224088 DOI: 10.3390/antibiotics10060613] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
From viruses to bacteria, our lives are filled with exposure to germs. In built environments, exposure to infectious microorganisms and their byproducts is clearly linked to human health. In the last year, public health emergency surrounding the COVID-19 pandemic stressed the importance of having good biosafety measures and practices. To prevent infection from spreading and to maintain the barrier, disinfection and hygiene habits are crucial, especially when the microorganism can persist and survive on surfaces. Contaminated surfaces are called fomites and on them, microorganisms can survive even for months. As a consequence, fomites serve as a second reservoir and transfer pathogens between hosts. The knowledge of microorganisms, type of surface, and antimicrobial agent is fundamental to develop the best approach to sanitize fomites and to obtain good disinfection levels. Hence, this review has the purpose to briefly describe the organisms, the kind of risk associated with them, and the main classes of antimicrobials for surfaces, to help choose the right approach to prevent exposure to pathogens.
Collapse
|
10
|
EL-Ghoul Y, Ammar C, Alminderej FM, Shafiquzzaman M. Design and Evaluation of a New Natural Multi-Layered Biopolymeric Adsorbent System-Based Chitosan/Cellulosic Nonwoven Material for the Biosorption of Industrial Textile Effluents. Polymers (Basel) 2021; 13:polym13030322. [PMID: 33498334 PMCID: PMC7864031 DOI: 10.3390/polym13030322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 01/21/2023] Open
Abstract
The adsorption phenomenon using low-cost adsorbents that are abundant in nature is of great interest when the adsorbed capacity is significant. A newly designed natural polyelectrolyte multi-layered (PEM) biopolymeric system-based chitosan/modified chitosan polymer and functionalized cellulosic nonwoven material was prepared and used as an effective adsorbent for Reactive Red 198 (RR198) dye solutions. The bio-sorbent was characterized by FTIR, SEM, and thermal (TGA/DTA) analysis. The swelling behavior was also evaluated, showing the great increase of the hydrophilicity of the prepared adsorbent biopolymer. The effect of various process parameters on the performance of RR198 dye removal such as pH, contact time, temperature, and initial dye concentration was studied. The biopolymeric system has shown good efficiency of adsorption compared to other adsorbents based on chitosan polymer. The highest adsorption capacity was found to be 722.3 mgg−1 at pH = 4 (ambient temperature, time = 120 min and dye concentration = 600 mg L−1). The adsorption process fitted well to both pseudo-second-order kinetics and Freundlich/Temkin adsorption isotherm models. Regarding its low cost, easy preparation, and promising efficient adsorption results, this new concepted multi-layered bio-sorbent could be an effective solution for the treatment of industrial wastewater.
Collapse
Affiliation(s)
- Yassine EL-Ghoul
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Textile Engineering Laboratory, University of Monastir, Monastir 5019, Tunisia;
- Correspondence: or ; Tel.: +966-595-519-071
| | - Chiraz Ammar
- Textile Engineering Laboratory, University of Monastir, Monastir 5019, Tunisia;
- Department of Fashion Design, College of Design, Qassim University, Al Fayziyyah Buraidah 52383, Saudi Arabia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
| | - Md. Shafiquzzaman
- Department of Civil Engineering, College of Engineering, Qassim University, Buraidah 51452, Saudi Arabia;
| |
Collapse
|
11
|
Megahed A, Aldridge B, Lowe J. Antimicrobial Efficacy of Aqueous Ozone and Ozone-Lactic Acid Blend on Salmonella-Contaminated Chicken Drumsticks Using Multiple Sequential Soaking and Spraying Approaches. Front Microbiol 2020; 11:593911. [PMID: 33381091 PMCID: PMC7768038 DOI: 10.3389/fmicb.2020.593911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/16/2020] [Indexed: 12/03/2022] Open
Abstract
Ozone (O3) is an attractive alternative antimicrobial in the poultry processing industry. The optimal operational conditions of O3 for improving food safety concerns are poorly understood. The main objective of this study was therefore to characterize the microbial killing capacity of aqueous O3 and O3-lactic acid blend (O3-LA) at different operational conditions on chicken drumsticks contaminated with high Salmonella load using sequential soaking and spraying approaches. Four hundred forty-eight chicken drumsticks (280-310 g) were soaked into two-strain Salmonella cocktail, and the initial load on the surface of the skin was 6.9-log10 cell forming unit (CFU)/cm2 [95% confidence interval (CI), 6.8-7.0]. The contaminated drumsticks were then sequentially (10×) soaked and sprayed with aqueous O3 (8 ppm) and O3-LA. Following O3 exposure, quantitative bacterial cultures were performed on the post-soaking and post-spraying water, skin surface, and subcutaneous (SC) of each drumstick using 3MTM PetrifilmTM Rapid Aerobic Count Plate (RAC) and plate reader. The average killing capacity of aqueous O3/cycle on the skin surface was 1.6-log10/cm2 (95% CI, 1.5-1.8-log10/cm2) and 1.2-log10/cm2 (95% CI, 1.0-1.4-log10/cm2), and it was 1.1-log10/cm2 (95% CI, 0.9-1.3-log10/cm2) and 0.9-log10/cm2 (95% CI, 0.7-1.1-log10/cm2) in SC for soaking and spraying approaches, respectively. Six sequential soaking and seven sequential spraying cycles with ozonated water of 8 ppm reduced the heavy Salmonella load below the detectable limit on the skin surface and SC of drumsticks, respectively. Addition of LA seems to increase the microbial killing capacity of aqueous O3 with average differences of 0.3-log10/cm2 (P = 0.08) and 0.2-log10/cm2 (P = 0.12) on the skin surface using soaking and spraying approaches, respectively. Aqueous O3 did not cause any significant changes in the drumstick skin color. The Salmonella load of < 4.5-log10/cm2 was a strong predictor for the reduction rate (P < 0.001, R 2 = 0.64). These results provide important information that helps the poultry processing facilities for selecting the optimal operational strategy of O3 as an effective antimicrobial.
Collapse
Affiliation(s)
- Ameer Megahed
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, The University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, United States
- Department of Animal Medicine, Internal Medicine, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Brian Aldridge
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, The University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, United States
| | - James Lowe
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, The University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, United States
| |
Collapse
|
12
|
Amato A, Caggiano M, Amato M, Moccia G, Capunzo M, De Caro F. Infection Control in Dental Practice During the COVID-19 Pandemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4769. [PMID: 32630735 PMCID: PMC7369766 DOI: 10.3390/ijerph17134769] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 01/08/2023]
Abstract
COVID-19 is the disease supported by SARS-CoV-2 infection, which causes a severe form of pneumonia. Due to the pathophysiological characteristics of the COVID-19 syndrome, the particular transmissibility of SARS-CoV-2, and the high globalization of our era, the epidemic emergency from China has spread rapidly all over the world. Human-to-human transmission seems to occur mainly through close contact with symptomatic people affected by COVID-19, and the main way of contagion is via the inhalation of respiratory droplets, for example when patients talk, sneeze or cough. The ability of the virus to survive outside living organisms, in aerosol or on fomites has also been recognized. The dental practitioners are particularly exposed to a high risk of SARS-CoV-2 infection because they cannot always respect the interpersonal distance of more than a meter and are exposed to saliva, blood, and other body fluids during surgical procedures. Moreover, many dental surgeries can generate aerosol, and the risk of airborne infection is to be considered higher. The aim of this paper is to provide practical advice for dentists based on the recent literature, which may be useful in reducing the risk of spreading COVID-19 during clinical practice.
Collapse
|