1
|
Wang L, Piao Y, Guo F, Wei J, Chen Y, Dai X, Zhang X. Current progress of pig models for liver cancer research. Biomed Pharmacother 2023; 165:115256. [PMID: 37536038 DOI: 10.1016/j.biopha.2023.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
Preclinical trials play critical roles in assessing the safety and efficiency of novel therapeutic strategies for human diseases including live cancer. However, most therapeutic strategies that were proved to be effective in preclinical cancer models failed in human clinical trials due to the lack of appropriate disease animal models. Therefore, it is of importance and urgent to develop a precise animal model for preclinical cancer research. Liver cancer is one of the most frequently diagnosed cancers with low 5-year survival rate. Recently, porcine attracted increasing attentions as animal model in biomedical research. Porcine liver cancer model may provide a promising platform for biomedical research due to their similarities to human being in body size, anatomical characteristics, physiology and pathophysiology. In this review, we comprehensively summarized and discussed the advantages and disadvantages, rationale, current status and progress of pig models for liver cancer research.
Collapse
Affiliation(s)
- Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Yuexian Piao
- Invasive Technology Nursing Platform, First Hospital of Jilin University, Changchun, China
| | - Fucheng Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Jiarui Wei
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China.
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Cinelli L, Muttillo EM, Felli E, Baiocchini A, Giannone F, Marescaux J, Mutter D, De Mathelin M, Gioux S, Felli E, Diana M. Surgical Models of Liver Regeneration in Pigs: A Practical Review of the Literature for Researchers. Cells 2023; 12:603. [PMID: 36831271 PMCID: PMC9954688 DOI: 10.3390/cells12040603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
The remarkable capacity of regeneration of the liver is well known, although the involved mechanisms are far from being understood. Furthermore, limits concerning the residual functional mass of the liver remain critical in both fields of hepatic resection and transplantation. The aim of the present study was to review the surgical experiments regarding liver regeneration in pigs to promote experimental methodological standardization. The Pubmed, Medline, Scopus, and Cochrane Library databases were searched. Studies evaluating liver regeneration through surgical experiments performed on pigs were included. A total of 139 titles were screened, and 41 articles were included in the study, with 689 pigs in total. A total of 29 studies (71% of all) had a survival design, with an average study duration of 13 days. Overall, 36 studies (88%) considered partial hepatectomy, of which four were an associating liver partition and portal vein ligation for staged hepatectomy (ALPPS). Remnant liver volume ranged from 10% to 60%. Only 2 studies considered a hepatotoxic pre-treatment, while 25 studies evaluated additional liver procedures, such as stem cell application, ischemia/reperfusion injury, portal vein modulation, liver scaffold application, bio-artificial, and pharmacological liver treatment. Only nine authors analysed how cytokines and growth factors changed in response to liver resection. The most used imaging system to evaluate liver volume was CT-scan volumetry, even if performed only by nine authors. The pig represents one of the best animal models for the study of liver regeneration. However, it remains a mostly unexplored field due to the lack of experiments reproducing the chronic pathological aspects of the liver and the heterogeneity of existing studies.
Collapse
Affiliation(s)
- Lorenzo Cinelli
- Department of Gastrointestinal Surgery, San Raffaele Hospital IRCCS, 20132 Milan, Italy
- Research Institute against Digestive Cancer (IRCAD), 67000 Strasbourg, France
| | - Edoardo Maria Muttillo
- Division of General Surgery, Department of Medical and Surgical Sciences and Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Emanuele Felli
- Service Chirurgie Digestive et Transplantation Hépatique, Hôpital Trousseau CHU, 37170 Tours, France
| | - Andrea Baiocchini
- Department of Pathology, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Fabio Giannone
- Digestive and Endocrine Surgery, Nouvel Hopital Civil, University of Strasbourg, 67000 Strasbourg, France
| | - Jacques Marescaux
- Research Institute against Digestive Cancer (IRCAD), 67000 Strasbourg, France
| | - Didier Mutter
- Digestive and Endocrine Surgery, Nouvel Hopital Civil, University of Strasbourg, 67000 Strasbourg, France
- Institut de Chirurgie Guidée par L’image, University Hospital Institute (IHU), University of Strasbourg, 67000 Strasbourg, France
| | - Michel De Mathelin
- ICube Laboratory, Photonics Instrumentation for Health, 67400 Strasbourg, France
| | - Sylvain Gioux
- ICube Laboratory, Photonics Instrumentation for Health, 67400 Strasbourg, France
| | - Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| | - Michele Diana
- Research Institute against Digestive Cancer (IRCAD), 67000 Strasbourg, France
- Digestive and Endocrine Surgery, Nouvel Hopital Civil, University of Strasbourg, 67000 Strasbourg, France
- ICube Laboratory, Photonics Instrumentation for Health, 67400 Strasbourg, France
| |
Collapse
|
3
|
Hensen B, Hellms S, Werlein C, Jonigk D, Gronski PA, Bruesch I, Rumpel R, Wittauer EM, Vondran FWR, Parker DL, Wacker F, Gutberlet M. Correction of heat-induced susceptibility changes in respiratory-triggered 2D-PRF-based thermometry for monitoring of magnetic resonance-guided hepatic microwave ablation in a human-like in vivo porcine model. Int J Hyperthermia 2022; 39:1387-1396. [DOI: 10.1080/02656736.2022.2138987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Bennet Hensen
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- STIMULATE-Solution Centre for Image Guided Local Therapies, Magdeburg, Germany
| | - Susanne Hellms
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | | | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | | | - Inga Bruesch
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Regina Rumpel
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Eva-Maria Wittauer
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Florian W. R. Vondran
- Clinic for General, Abdominal and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Dennis L. Parker
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, USA
| | - Frank Wacker
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- STIMULATE-Solution Centre for Image Guided Local Therapies, Magdeburg, Germany
| | - Marcel Gutberlet
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- STIMULATE-Solution Centre for Image Guided Local Therapies, Magdeburg, Germany
| |
Collapse
|
4
|
Oldhafer F, Wittauer EM, Beetz O, Weigle CA, Sieg L, Eismann H, Braubach P, Bock M, Jonigk D, Johanning K, Vondran FWR. Supportive Hepatocyte Transplantation after Partial Hepatectomy Enhances Liver Regeneration in a Preclinical Pig Model. Eur Surg Res 2021; 62:238-247. [PMID: 34044396 DOI: 10.1159/000516690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/07/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hepatocyte transplantation (HTx) is regarded as a potential treatment modality for various liver diseases including acute liver failure. We developed a preclinical pig model to evaluate if HTx could safely support recovery from liver function impairment after partial hepatectomy. METHODS Pigs underwent partial hepatectomy with reduction of the liver volume by 50% to induce a transient but significant impairment of liver function. Thereafter, 2 protocols for HTx were evaluated and compared to a control group receiving liver resection only (group 1, n = 5). Portal pressure-controlled HTx was performed either immediately after surgery (group 2, n = 6) or 3 days postoperatively (group 3, n = 5). In all cases, liver regeneration was monitored by conventional laboratory tests and the novel noninvasive maximum liver function capacity (LiMAx) test with a follow-up of 4 weeks. RESULTS Partial hepatectomy significantly impaired liver function according to conventional liver function tests as well as LiMAx in all groups. A mean of 4.10 ± 1.1 × 108 and 3.82 ± 0.7 × 108 hepatocytes were transplanted in groups 2 and 3, respectively. All animals remained stable with respect to vital parameters during and after HTx. The animals in group 2 showed enhanced liver regeneration as observed by mean postoperative LiMAx values (621.5 vs. 331.3 μg/kg/h on postoperative day 7; p < 0.001) whereas HTx in group 3 led to a significant increase in mean liver-specific coagulation factor VII (112.2 vs. 54.0% on postoperative day 7; p = 0.003) compared to controls (group 1), respectively. In both experimental groups, thrombotic material was observed in the portal veins and pulmonary arteries on histology, despite the absence of clinical symptoms. CONCLUSION HTx can be performed safely and effectively immediately after a partial (50%) hepatectomy as well as 3 days postoperatively, with comparable results regarding the enhancement of liver function and regeneration.
Collapse
Affiliation(s)
- Felix Oldhafer
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany,
| | - Eva-Maria Wittauer
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Oliver Beetz
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Clara A Weigle
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Lion Sieg
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Hendrik Eismann
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Michael Bock
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- Institute for Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Kai Johanning
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Florian Wolfgang Rudolf Vondran
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
5
|
Plekhanov AN, Tovarshinov AI. [Liver regeneration: solved and problem issues]. Khirurgiia (Mosk) 2020:101-106. [PMID: 33210515 DOI: 10.17116/hirurgia2020111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is known that liver is able to restore own dimensions and functional properties in response to various injuries. Despite extensive injuries, liver can preserve functional activity. Analysis of liver regeneration mechanisms allowed us to obtain significant results in the treatment of hepatitis, cirrhosis and liver failure. Liver regeneration processes substantiate the development of hepatocellular cancer following cirrhosis. Modern experimental and clinical data on liver regeneration, as well as current methods of stimulating this process are summarized in the manuscript. Despite significant advances in this issue, there are still many questions in scientific understanding of liver regeneration.
Collapse
Affiliation(s)
- A N Plekhanov
- Buryat State University, Ulan-Ude, Russia.,Irkutsk Research Center of Surgery and Traumatology, Irkutsk, Russia
| | | |
Collapse
|
6
|
Oldhafer F, Wittauer EM, Beetz O, Vondran FWR. Long-term Functional Maintenance of Exteriorized Portal Venous Catheters in a Porcine Animal Model. J Surg Res 2020; 251:187-194. [PMID: 32163793 DOI: 10.1016/j.jss.2020.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 01/10/2020] [Accepted: 02/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Portal venous access for blood sampling, infusion therapy, and measurement of portal venous pressure is of special interest for experimental studies in surgery, pharmacology, and hepatology. Chronic animal models with continuous portal venous access are rare and especially thrombosis or clotting of permanent catheters is a frequent complication. Aim of this study was to establish a preclinical pig model with a permanent portal venous catheter (PVC). MATERIALS AND METHODS PVC implantation was performed in 21 LEWE mini pigs. The catheter was inserted in the distal part of the superior mesenteric vein and fixated with a tobacco-pouch suture. Animals were followed up for 4 wk, directly after implantation of the PVC. Blood gas analyses and portal venous pressures were recorded. Three different groups with continuous infusion via the catheters were defined: NaCl solution (2 mL/h) (group 1), NaCl solution (2 mL/h) + enoxaparin sodium injection (anti-Xa levels of 0.3-0.8 U/mL) (group 2) and heparinized NaCl (2 I.E./mL, 2 mL/h) (group 3). RESULTS All 21 PVC implantations were performed without any complications. Application of continuous perfusion with heparinized NaCl (group 3) enabled portal venous access for the entire experiment in 8 of 10 cases (mean of 23.7 d) without any signs of dysfunction. However, for use of NaCl alone or in combination with enoxaparin sodium, catheters were only functional for 6.8 d and 6.9 d, respectively. CONCLUSIONS Permanent portal venous access through PVC in mini pigs is achievable by continuous infusion of low-dose heparinized NaCl solution.
Collapse
Affiliation(s)
- Felix Oldhafer
- Department of General, Visceral and Transplant Surgery, ReMediES, Hannover Medical School, Hannover, Germany.
| | - Eva-Maria Wittauer
- Department of General, Visceral and Transplant Surgery, ReMediES, Hannover Medical School, Hannover, Germany
| | - Oliver Beetz
- Department of General, Visceral and Transplant Surgery, ReMediES, Hannover Medical School, Hannover, Germany
| | - Florian W R Vondran
- Department of General, Visceral and Transplant Surgery, ReMediES, Hannover Medical School, Hannover, Germany
| |
Collapse
|