1
|
Kim Y, Xu W, Barrs V, Beatty J, Kenéz Á. In-depth characterisation of the urine metabolome in cats with and without urinary tract diseases. Metabolomics 2022; 18:19. [PMID: 35305176 PMCID: PMC8934335 DOI: 10.1007/s11306-022-01877-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/23/2022] [Indexed: 12/03/2022]
Abstract
INTRODUCTION Our understanding of the urine metabolome and its association with urinary tract disease is limited in cats. OBJECTIVES We conducted a case-control study to characterise the feline urine metabolome, investigate its association with chronic kidney disease (CKD) and feline idiopathic cystitis (FIC), and assess its compositional relationship with the urine microbiome. METHODS The urine metabolome of 45 owned cats, including 23 controls, 16 CKD, and 6 FIC cases, was characterised by an untargeted metabolomics approach using high-performance chemical isotope labelling liquid chromatography-mass spectrometry. RESULTS We detected 9411 unique compounds in the urine of controls and cases and identified 1037 metabolites with high confidence. Amino acids, peptides, and analogues dominated these metabolites (32.2%), followed by carbonyl compounds (7.1%) and carbohydrates (6.5%). Seven controls from one household showed a significant level of metabolome clustering, with a distinct separation from controls from other households (p value < 0.001). Owner surveys revealed that this cluster of cats was fed dry food only, whereas all but one other control had wet food in their diet. Accordingly, the diet type was significantly associated with the urine metabolome composition in our multivariate model (p value = 0.001). Metabolites significantly altered in this cluster included taurine, an essential amino acid in cats. Urine metabolome profiles were not significantly different in CKD and FIC cases compared with controls, and no significant compositional relationship was detected between the urine metabolome and microbiome. CONCLUSION Our study reveals in-depth diversity of the feline urine metabolome composition, and suggests that it can vary considerably depending on environmental factors.
Collapse
Affiliation(s)
- Younjung Kim
- Centre for Applied One Health Research and Policy Advice, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, SAR, China.
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, SAR, China.
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| | - Wei Xu
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing, 100097, China
| | - Vanessa Barrs
- Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, SAR, China
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, SAR, China
| | - Julia Beatty
- Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, SAR, China
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, SAR, China
| | - Ákos Kenéz
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
2
|
Lyu Y, Liu D, Nguyen P, Peters I, Heilmann RM, Fievez V, Hemeryck LY, Hesta M. Differences in Metabolic Profiles of Healthy Dogs Fed a High-Fat vs. a High-Starch Diet. Front Vet Sci 2022; 9:801863. [PMID: 35252418 PMCID: PMC8891928 DOI: 10.3389/fvets.2022.801863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity is a common problem in dogs and overconsumption of energy-rich foods is a key factor. This study compared the inflammatory response and fecal metabolome of dogs fed a high-fat vs. a high-starch diet. Ten healthy lean adult beagles were equally allocated into two groups in a cross-over design. Each group received two diets in which fat (horse fat) and starch (pregelatinized corn starch) were exchanged in an isocaloric way to compare high fat vs. high starch. There was a tendency to increase the glucose and glycine concentrations and the glucose/insulin ratio in the blood in dogs fed with the high-fat diet, whereas there was a decrease in the level of Non-esterified fatty acids and a tendency to decrease the alanine level in dogs fed with the high-starch diet. Untargeted analysis of the fecal metabolome revealed 10 annotated metabolites of interest, including L-methionine, which showed a higher abundance in dogs fed the high-starch diet. Five other metabolites were upregulated in dogs fed the high-fat diet, but could not be annotated. The obtained results indicate that a high-starch diet, compared to a high-fat diet, may promote lipid metabolism, anti-oxidative effects, protein biosynthesis and catabolism, mucosal barrier function, and immunomodulation in healthy lean dogs.
Collapse
Affiliation(s)
- Yang Lyu
- ECAN Equine and Companion Animal Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Liu
- ECAN Equine and Companion Animal Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Patrick Nguyen
- Nutrition, Physiopathology and Pharmacology Unit, National College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| | - Iain Peters
- SYNLAB VPG, Exeter Science Park, Exeter, United Kingdom
| | - Romy M. Heilmann
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Veerle Fievez
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent, Belgium
| | - Lieselot Y. Hemeryck
- Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- *Correspondence: Myriam Hesta
| | - Myriam Hesta
- ECAN Equine and Companion Animal Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Lieselot Y. Hemeryck
| |
Collapse
|
3
|
Multi Platforms Strategies and Metabolomics Approaches for the Investigation of Comprehensive Metabolite Profile in Dogs with Babesia canis Infection. Int J Mol Sci 2022; 23:ijms23031575. [PMID: 35163517 PMCID: PMC8835742 DOI: 10.3390/ijms23031575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Canine babesiosis is an important tick-borne disease worldwide, caused by parasites of the Babesia genus. Although the disease process primarily affects erythrocytes, it may also have multisystemic consequences. The goal of this study was to explore and characterize the serum metabolome, by identifying potential metabolites and metabolic pathways in dogs naturally infected with Babesia canis using liquid and gas chromatography coupled to mass spectrometry. The study included 12 dogs naturally infected with B. canis and 12 healthy dogs. By combining three different analytical platforms using untargeted and targeted approaches, 295 metabolites were detected. The untargeted ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) metabolomics approach identified 64 metabolites, the targeted UHPLC-MS/MS metabolomics approach identified 205 metabolites, and the GC-MS metabolomics approach identified 26 metabolites. Biological functions of differentially abundant metabolites indicate the involvement of various pathways in canine babesiosis including the following: glutathione metabolism; alanine, aspartate, and glutamate metabolism; glyoxylate and dicarboxylate metabolism; cysteine and methionine metabolism; and phenylalanine, tyrosine, and tryptophan biosynthesis. This study confirmed that host–pathogen interactions could be studied by metabolomics to assess chemical changes in the host, such that the differences in serum metabolome between dogs with B. canis infection and healthy dogs can be detected with liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) methods. Our study provides novel insight into pathophysiological mechanisms of B. canis infection.
Collapse
|
4
|
Lee YF, Sim XY, Teh YH, Ismail MN, Greimel P, Murugaiyah V, Ibrahim B, Gam LH. The effects of high-fat diet and metformin on urinary metabolites in diabetes and prediabetes rat models. Biotechnol Appl Biochem 2021; 68:1014-1026. [PMID: 32931602 DOI: 10.1002/bab.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
High-fat diet (HFD) interferes with the dietary plan of patients with type 2 diabetes mellitus (T2DM). However, many diabetes patients consume food with higher fat content for a better taste bud experience. In this study, we examined the effect of HFD on rats at the early onset of diabetes and prediabetes by supplementing their feed with palm olein oil to provide a fat content representing 39% of total calorie intake. Urinary profile generated from liquid chromatography-mass spectrometry analysis was used to construct the orthogonal partial least squares discriminant analysis (OPLS-DA) score plots. The data provide insights into the physiological state of an organism. Healthy rats fed with normal chow (NC) and HFD cannot be distinguished by their urinary metabolite profiles, whereas diabetic and prediabetic rats showed a clear separation in OPLS-DA profile between the two diets, indicating a change in their physiological state. Metformin treatment altered the metabolomics profiles of diabetic rats and lowered their blood sugar levels. For prediabetic rats, metformin treatment on both NC- and HFD-fed rats not only reduced their blood sugar levels to normal but also altered the urinary metabolite profile to be more like healthy rats. The use of metformin is therefore beneficial at the prediabetes stage.
Collapse
Affiliation(s)
- Yan-Fen Lee
- USM-RIKEN International Centre of Aging Science, USM, Minden, Penang, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Xuan-Yi Sim
- USM-RIKEN International Centre of Aging Science, USM, Minden, Penang, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Ying-Hui Teh
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre (ABrC), USM, Minden, Penang, Malaysia
| | - Peter Greimel
- Laboratory for Cell Function Dynamics, RIKEN Centre for Brain Sciences, Wako, Saitama, Japan
| | | | - Baharudin Ibrahim
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Lay-Harn Gam
- USM-RIKEN International Centre of Aging Science, USM, Minden, Penang, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| |
Collapse
|
5
|
Ma J, Cheng Y, Su Q, Ai W, Gong L, Wang Y, Li L, Ma Z, Pan Q, Qiao Z, Chen K. Effects of intermittent fasting on liver physiology and metabolism in mice. Exp Ther Med 2021; 22:950. [PMID: 34335892 PMCID: PMC8290466 DOI: 10.3892/etm.2021.10382] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
A broad spectrum of health benefits from intermittent fasting have been reported in studies on animal models and human subjects. However, the underlying mechanisms of these beneficial effects remain largely elusive. The present study aimed to explore the effects and potential mode of action of intermittent fasting in mouse models with a focus on the liver. C57BL/6 mice were subjected to intermittent fasting or ad libitum feeding as controls. It was determined that 12 h of daily intermittent fasting for 30 days significantly reduced the cumulative food intake compared with that in mice with ad libitum feeding. Fasting resulted in a significantly reduced liver mass but only had a minimal effect on bodyweight. The effects on the liver by 30 days of fasting were not reversed by subsequent ad libitum refeeding for 30 days. Among the measured blood biochemical parameters, the levels of blood glucose were decreased, while the levels of alkaline phosphatase were increased in fasting mice. Of note, targeted metabolic profiling revealed global elevation of metabolites in the livers of fasting mice. These metabolic molecules included adenosine triphosphate, nicotinamide adenine dinucleotide phosphate (NADP), reduced NADP and succinate, which are essentially involved in the citric acid cycle and oxidative phosphorylation. Thus, it was concluded that daily 12 h of intermittent fasting for one month significantly reduced the liver weight of mice, which is associated with enhanced liver metabolism.
Collapse
Affiliation(s)
- Jianbo Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Yan Cheng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China.,Experimental Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Qiang Su
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Wen Ai
- Department of Cardiology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong 518102, P.R. China
| | - Ling Gong
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Yueying Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Linhao Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Zhongren Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Qiuwei Pan
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Zilin Qiao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Kan Chen
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China.,College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
6
|
Urinary proteome and metabolome in dogs (Canis lupus familiaris): The effect of chronic kidney disease. J Proteomics 2020; 222:103795. [PMID: 32335294 DOI: 10.1016/j.jprot.2020.103795] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) is a progressive and irreversible disease. Although urine is an ideal biological sample for proteomics and metabolomics studies, sensitive and specific biomarkers are currently lacking in dogs. This study characterised dog urine proteome and metabolome aiming to identify and possibly quantify putative biomarkers of CKD in dogs. Twenty-two healthy dogs and 28 dogs with spontaneous CKD were selected and urine samples were collected. Urinary proteome was separated by SDS-PAGE and analysed by mass spectrometry, while urinary metabolome was analysed in protein-depleted samples by 1D 1H NMR spectra. The most abundant proteins in urine samples from healthy dogs were uromodulin, albumin and, in entire male dogs, arginine esterase. In urine samples from CKD dogs, the concentrations of uromodulin and albumin were significantly lower and higher, respectively, than in healthy dogs. In addition, these samples were characterised by a more complex protein pattern indicating mixed glomerular (protein bands ≥65 kDa) and tubular (protein bands <65 kDa) proteinuria. Urine spectra acquired by NMR allowed the identification of 86 metabolites in healthy dogs, belonging to 49 different pathways mainly involved in amino acid metabolism, purine and aminoacyl-tRNA biosynthesis or tricarboxylic acid cycle. Seventeen metabolites showed significantly different concentrations when comparing healthy and CKD dogs. In particular, carnosine, trigonelline, and cis-aconitate, might be suggested as putative biomarkers of CKD in dogs. SIGNIFICANCE: Urine is an ideal biological sample, however few proteomics and metabolomics studies investigated this fluid in dogs and in the context of CKD (chronic kidney disease). In this research, applying a multi-omics approach, new insights were gained regarding the molecular changes triggered by this disease in canine urinary proteome and metabolome. In particular, the involvement of the tubular component was highlighted, suggesting uromodulin, trigonelline and carnosine as possible biomarkers of CKD in dogs.
Collapse
|