1
|
Hsieh YL, Huang SM, Yu S, Chao TN, Chiang CW, Kan YY, Chang YS, Kuo LW, Yu HS. Chronic blue light exposure induced spatial anxiety in an adolescent mouse model: Per2 upregulation and altered brain resting-state functional activity. Neuroimage 2025; 314:121259. [PMID: 40349744 DOI: 10.1016/j.neuroimage.2025.121259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 04/07/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Blue light (BL) is the primary component of light emitted from 3C devices. The use of 3C (computers, consumer electronics, and communication) devices has been increasing among all age groups. How social interaction and spatial cognition are affected in adolescents after long-term 3C device usage at night remains unclear. METHODS Five-week-old mice were exposed to BL. Subsequently, these mice were subjected to social behavior tests, functional magnetic resonance imaging, and histopathologic analyses. RESULTS BL exposure increased spatial anxiety but did not affect sociability, social novelty, or motor coordination. Also, BL exposure altered brain connectivity in the hippocampus (Hip), thalamus, and striatum, and it reduced brain activity in the retrosplenial cortex and dorsal part of the Hip. Spatial anxiety was associated with brain alterations. Although BL exposure reduced the size of retinal oligodendrocytes and increased the expression of the Period 2 circadian protein, it did not result in brain inflammation, at least not in the Hip. CONCLUSION Our findings highlight that long-term BL exposure in adolescents induces spatial anxiety. The underlying mechanisms include changes in brain activity and connectivity and the disruption of the circadian rhythm.
Collapse
Affiliation(s)
- Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Sheng-Min Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sebastian Yu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dermatology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Ning Chao
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Wen Chiang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Yu-Yu Kan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan; Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Hsin-Su Yu
- Department of Dermatology, Kaohsiung Medical University Hospital, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Huang SM, Cho KH, Chang K, Huang PH, Kuo LW. Altered thalamocortical tract trajectory growth with undisrupted thalamic parcellation pattern in human lissencephaly brain at mid-gestational stage. Neurobiol Dis 2024; 199:106577. [PMID: 38914171 DOI: 10.1016/j.nbd.2024.106577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024] Open
Abstract
Proper topographically organized neural connections between the thalamus and the cerebral cortex are mandatory for thalamus function. Thalamocortical (TC) fiber growth begins during the embryonic period and completes by the third trimester of gestation, so that human neonates at birth have a thalamus with a near-facsimile of adult functional parcellation. Whether congenital neocortical anomaly (e.g., lissencephaly) affects TC connection in humans is unknown. Here, via diffusion MRI fiber-tractography analysis of long-term formalin-fixed postmortem fetal brain diagnosed as lissencephaly in comparison with an age-matched normal one, we found similar topological patterns of thalamic subregions and of internal capsule parcellated by TC fibers. However, lissencephaly fetal brain showed white matter structural changes, including fewer/less organized TC fibers and optic radiations, and much less cortical plate invasion by TC fibers - particularly around the shallow central sulcus. Diffusion MRI fiber tractography of normal fetal brains at 15, 23, and 26 gestational weeks (GW) revealed dynamic volumetric change of each parcellated thalamic subregion, suggesting coupled developmental progress of the thalamus with the corresponding cortex. Moreover, from GW23 and GW26 normal fetal brains, TC endings in the cortical plate could be delineated to reflect cumulative progressive TC invasion of cortical plate. By contrast, lissencephaly brain showed a dramatic decrease in TC invasion of the cortical plate. Our study thus shows the feasibility of diffusion MRI fiber tractography in postmortem long-term formalin-fixed fetal brains to disclose the developmental progress of TC tracts coordinating with thalamic and neocortical growth both in normal and lissencephaly fetal brains at mid-gestational stage.
Collapse
Affiliation(s)
- Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - Kuan-Hung Cho
- Department of Electronic Engineering, National United University, Miaoli 360, Taiwan
| | - Koping Chang
- Department of Pathology, National Taiwan University Hospital, Taipei 100, Taiwan; Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Pei-Hsin Huang
- Department of Pathology, National Taiwan University Hospital, Taipei 100, Taiwan; Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei 100, Taiwan.
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan; Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei 100, Taiwan.
| |
Collapse
|
3
|
Chen Q, Luo C, Tie C, Cheng C, Zou C, Zhang X, Liu X, Zheng H, Li Y. A 5‐channel local B
0
shimming coil combined with a 3‐channel RF receiver coil for rat brain imaging at 3 T. Magn Reson Med 2022; 89:477-486. [DOI: 10.1002/mrm.29458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Qiaoyan Chen
- Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province Shenzhen China
| | - Chao Luo
- Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province Shenzhen China
| | - Changjun Tie
- Institute of Computing Technology, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Peng Cheng Laboratory Shenzhen China
| | - Chuanli Cheng
- Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province Shenzhen China
| | - Chao Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province Shenzhen China
| | - Xiaoliang Zhang
- Department of Biomedical Engineering State University of New York at Buffalo Buffalo New York USA
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province Shenzhen China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province Shenzhen China
| | - Ye Li
- Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province Shenzhen China
| |
Collapse
|
4
|
Chen TF, Lee SH, Zheng WR, Hsu CC, Cho KH, Kuo LW, Chou CCK, Chiu MJ, Tee BL, Cheng TJ. White matter pathology in alzheimer's transgenic mice with chronic exposure to low-level ambient fine particulate matter. Part Fibre Toxicol 2022; 19:44. [PMID: 35768852 PMCID: PMC9245233 DOI: 10.1186/s12989-022-00485-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/29/2022] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Air pollution, especially fine particulate matter (PM), can cause brain damage, cognitive decline, and an increased risk of neurodegenerative disease, especially alzheimer's disease (AD). Typical pathological findings of amyloid and tau protein accumulation have been detected in the brain after exposure in animal studies. However, these observations were based on high levels of PM exposure, which were far from the WHO guidelines and those present in our environment. In addition, white matter involvement by air pollution has been less reported. Thus, this experiment was designed to simulate the true human world and to discuss the possible white matter pathology caused by air pollution. RESULTS 6 month-old female 3xTg-AD mice were divided into exposure and control groups and housed in the Taipei Air Pollutant Exposure System (TAPES) for 5 months. The mice were subjected to the Morris water maze test after exposure and were then sacrificed with brain dissection for further analyses. The mean mass concentration of PM2.5 during the exposure period was 13.85 μg/m3. After exposure, there was no difference in spatial learning function between the two groups, but there was significant decay of memory in the exposure group. Significantly decreased total brain volume and more neuronal death in the cerebral and entorhinal cortex and demyelination of the corpus callosum were noted by histopathological staining after exposure. However, there was no difference in the accumulation of amyloid or tau on immunohistochemistry staining. For the protein analysis, amyloid was detected at significantly higher levels in the cerebral cortex, with lower expression of myelin basic protein in the white matter. A diffuse tensor image study also revealed insults in multiple white matter tracts, including the optic tract. CONCLUSIONS In conclusion, this pilot study showed that even chronic exposure to low PM2.5 concentrations still caused brain damage, such as gross brain atrophy, cortical neuron damage, and multiple white matter tract damage. Typical amyloid cascade pathology did not appear prominently in the vulnerable brain region after exposure. These findings imply that multiple pathogenic pathways induce brain injury by air pollution, and the optic nerve may be another direct invasion route in addition to olfactory nerve.
Collapse
Affiliation(s)
- Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sheng-Han Lee
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Room 720, No. 17, Xuzhou Rd, Taipei, 100, Taiwan
| | - Wan-Ru Zheng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Room 720, No. 17, Xuzhou Rd, Taipei, 100, Taiwan
| | - Ching-Chou Hsu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Room 720, No. 17, Xuzhou Rd, Taipei, 100, Taiwan
| | - Kuan-Hung Cho
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Charles C-K Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Boon Lead Tee
- Department of Neurology, Memory and Aging Center, University of California at San Francisco, San Francisco, CA, USA
| | - Tsun-Jen Cheng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Room 720, No. 17, Xuzhou Rd, Taipei, 100, Taiwan.
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|