1
|
Shen B, Shen A, Tan Y, Liu L, Li S, Tan Z. Development of KASP markers, SNP fingerprinting and population genetic analysis of Cymbidium ensifolium (L.) Sw. germplasm resources in China. FRONTIERS IN PLANT SCIENCE 2025; 15:1460603. [PMID: 39845486 PMCID: PMC11750851 DOI: 10.3389/fpls.2024.1460603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025]
Abstract
Cymbidium ensifolium (L.) Sw. is a valuable ornamental plant in the genus Cymbidium, family Orchidaceae, with high economic and ecological significance. However, the lack of population genetic information and molecular markers has hindered the development of the sales market and genetic breeding of C. ensifolium despite the abundance of commercial cultivars available. In this study, we aimed to develop a set of single nucleotide polymorphism (SNP) markers to distinguish the main cultivated C. ensifolium cultivars in China and provide technical support for domestic cultivar protection, registration, and market rights protection. A total of 1,280,516 high-quality loci were identified from 10,021,591 SNPs obtained by sequencing 50 C. ensifolium commercial cultivars using double digest restriction site-assisted DNA sequencing technology. A total of 7,599 SNPs were selected for kompetitive allele-specific PCR (KASP) primer design, and 4,360 were successfully designed as KASP markers. Population structure analysis revealed that the 50 commercial cultivars were best divided into four populations, with some correlation between the group distribution and the morphological and geographical characteristics of the germplasm. Using the genotyping results from 28 KASP markers screened from the cultivars, a minimum set of 11 markers was identified that could distinguish 83 C. ensifolium commercial cultivars completely, with the remaining 17 markers serving as extended markers. The average PIC value of the 11 markers was 0.345, which was considered medium polymorphism. DNA fingerprints were constructed for the 83 cultivars on the basis of the 11 KASP markers, providing a new approach for mapping DNA fingerprints in C. ensifolium cultivars with high efficiency, accuracy, and low cost compared with traditional methods.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhuming Tan
- Institute of Biodiversity, Hunan Academy of Forestry, Changsha, China
| |
Collapse
|
2
|
Rezai M, Seifati SE, Tabandeh Saravi A, Shahsavand Hasani H. Genetic Diversity and Population Structure of Primary Tritipyrum Lines in Comparison with Bread Wheat Varieties and Triticale Lines using SCoT Markers. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3889. [PMID: 39737202 PMCID: PMC11682527 DOI: 10.30498/ijb.2024.447932.3889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/18/2024] [Indexed: 01/01/2025]
Abstract
Background Triticale and tritipyrum as a new artificial cereal were investigated as potential stress-resistant alternatives within the Triticeae tribe due to their notable adaptability to environmental stresses. Objectives The first purpose of this study was to determine the genetic variation of 14 genotypes on physiological traits in arid and semi-arid climate of Yazd province on primary trans chromosomal tritipyrum (PTCT) lines, promising triticale lines, and Iranian and Afghan bread wheat cultivars, and the second purpose was to investigate the genetic diversity and classification of genotypes using start codon targeted (SCoT) markers. Materials and Methods The photosynthesis pigments, proline, and catalase enzyme activity of 14 genotypes were determined. Also, genomic DNA of 10 genotypes was extracted using a modified CTAB protocol. The 13 primers were set-up for PCR and the studied parameters were analyzed with Excel, GenAlEx6.5, POPGen32, and STRUCTURE software. Results Based on 14 amphidiploids, Triticale 4115 and PTCT line (Ka/b) (Cr/b) F2 had the greatest carotenoids and photosynthesis pigments values. Proline content was highest in PTCT lines (Ka/b) (Cr/b) F2, triticale line 4115, and La(4B/4D)/b. The PTCT lines La/b and Az/b showed the highest (0.34) and lowest (0.04) average catalase, respectively. The investigation of genetic diversity in physiological traits related to the arid and semi-arid climate conditions of Yazd province showed that there is a great diversity between the genotypes.
Collapse
Affiliation(s)
- Marzia Rezai
- Department of Arid Land and Desert Management, School of Natural Resources and Desert Studies, Yazd University, Yazd, Iran
- Department of plant production and genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - S. Ebrahim Seifati
- Department of Arid Land and Desert Management, School of Natural Resources and Desert Studies, Yazd University, Yazd, Iran
| | - Afagh Tabandeh Saravi
- Department of Environment, School of Natural Resources and Desert Studies, Yazd University, Yazd, Iran
| | - Hossein Shahsavand Hasani
- Department of plant production and genetics, School of Agriculture, Shiraz University, Shiraz, Iran
- Tubitak 121C036 project leader, at Ankara University and Field Crop Central Research Institute of Agricultural ministry of Türkiye
| |
Collapse
|
3
|
Rabieyan E, Darvishzadeh R, Mohammadi R, Gul A, Rasheed A, Akhar FK, Abdi H, Alipour H. Genetic diversity, linkage disequilibrium, and population structure of tetraploid wheat landraces originating from Europe and Asia. BMC Genomics 2023; 24:682. [PMID: 37964224 PMCID: PMC10644499 DOI: 10.1186/s12864-023-09768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Durum wheat is one of the most important crops, especially in the Mediterranean region. Insight into the genetic diversity of germplasm can improve the breeding program management in various traits. This study was done using single nucleotide polymorphisms (SNP) markers to characterize the genetic distinctiveness and differentiation of tetraploid wheat landraces collected from nine European and Asian countries. A sum of 23,334 polymorphic SNPs was detected in 126 tetraploid wheat landraces in relation to the reference genome. RESULTS The number of identified SNPs was 11,613 and 11,721 in A and B genomes, respectively. The highest and lowest diversity was on 6B and 6 A chromosomes, respectively. Structure analysis classified the landraces into two distinct subpopulations (K = 2). Evaluating the principal coordinate analysis (PCoA) and weighted pair-group method using arithmetic averages (WPGMA) clustering results demonstrated that landraces (99.2%) are categorized into one of the two chief subpopulations. Therefore, the grouping pattern did not clearly show the presence of a clear pattern of relationships between genetic diversity and their geographical derivation. Part of this result could be due to the historical exchange between different germplasms. Although the result did not separate landraces based on their region of origin, the landraces collected from Iran were classified into the same group and cluster. Analysis of molecular variance (AMOVA) also confirmed the results of population structure. Finally, Durum wheat landraces in some countries, including Turkey, Russia, Ukraine, and Afghanistan, were highly diverse, while others, including Iran and China, were low-diversity. CONCLUSION The recent study concluded that the 126 tetraploid wheat genotypes and their GBS-SNP markers are very appropriate for quantitative trait loci (QTLs) mapping and genome-wide association studies (GWAS). The core collection comprises two distinct subpopulations. Subpopulation II genotypes are the most diverse genotypes, and if they possess desired traits, they may be used in future breeding programs. The degree of diversity in the landraces of countries can provide the ground for the improvement of new cultivars with international cooperation. linkage disequilibrium (LD) hotspot distribution across the genome was investigated, which provides useful information about the genomic regions that contain intriguing genes.
Collapse
Affiliation(s)
- Ehsan Rabieyan
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
| | - Reza Darvishzadeh
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Reza Mohammadi
- Dryland Agricultural Research Institute (DARI), AREEO, Sararood branch, Iran
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Awais Rasheed
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT), c/o CAAS, Beijing, 100081, China
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Fatemeh Keykha Akhar
- Department of Plant Biotechnology, College of Agriculture, Jahrom University, Jahrom, Iran
| | - Hossein Abdi
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Hadi Alipour
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.
| |
Collapse
|
4
|
Marzario S, Sica R, Taranto F, Fania F, Esposito S, De Vita P, Gioia T, Logozzo G. Phenotypic evolution in durum wheat ( Triticum durum Desf.) based on SNPs, morphological traits, UPOV descriptors and kernel-related traits. FRONTIERS IN PLANT SCIENCE 2023; 14:1206560. [PMID: 37701808 PMCID: PMC10493298 DOI: 10.3389/fpls.2023.1206560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/21/2023] [Indexed: 09/14/2023]
Abstract
Durum wheat is a worldwide staple crop cultivated mainly in the Mediterranean basin. Progress in durum wheat breeding requires the exploitation of genetic variation among the gene pool enclosed in landraces, old cultivars and modern cultivars. The aim of this study was to provide a more comprehensive view of the genetic architecture evolution among 123 durum wheat accessions (41 landraces, 41 old cultivars and 41 modern cultivars), grown in replicated randomized complete block in two areas, Metaponto (Basilicata) and Foggia (Apulia), using the Illumina iSelect 15K wheat SNP array and 33 plant and kernel traits including the International Union for the Protection of new Varieties of Plants (UPOV) descriptors. Through DAPC and Bayesian population structure five groups were identified according to type of material data and reflecting the genetic basis and breeding strategies involved in their development. Phenotypic and genotypic coefficient of variation were low for kernel width (6.43%) and for grain protein content (1.03%). Highly significant differences between environments, genotypes and GEI (Genotype x Environment Interaction) were detected by mixed ANOVAs for agro-morphological-quality traits. Number of kernels per spike (h2 = 0.02) and grain protein content (h2 = 0.03) were not a heritability character and highly influenced by the environment. Nested ANOVAs revealed highly significant differences between DAPC clusters within environments for all traits except kernel roundness. Ten UPOV traits showed significant diversity for their frequencies in the two environments. By PCAmix multivariate analysis, plant height, heading time, spike length, weight of kernels per spike, thousand kernel weight, and the seed related traits had heavy weight on the differentiation of the groups, while UPOV traits discriminated moderately or to a little extent. The data collected in this study provide useful resources to facilitate management and use of wheat genetic diversity that has been lost due to selection in the last decades.
Collapse
Affiliation(s)
- Stefania Marzario
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Rita Sica
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | | | - Fabio Fania
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE) - University of Foggia, Foggia, Italy
| | | | - Pasquale De Vita
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Giuseppina Logozzo
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
5
|
Qin Y, Zhao H, Han H, Zhu G, Wang Z, Li F. Chromosome-Level Genome Assembly and Population Genomic Analyses Reveal Geographic Variation and Population Genetic Structure of Prunus tenella. Int J Mol Sci 2023; 24:11735. [PMID: 37511492 PMCID: PMC10380494 DOI: 10.3390/ijms241411735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Prunus tenella is a rare and precious relict plant in China. It is an important genetic resource for almond improvement and an indispensable material in ecological protection and landscaping. However, the research into molecular breeding and genetic evolution has been severely restricted due to the lack of genome information. In this investigation, we created a chromosome-level genomic pattern of P. tenella, 231 Mb in length with a contig N50 of 18.1 Mb by Hi-C techniques and high-accuracy PacBio HiFi sequencing. The present assembly predicted 32,088 protein-coding genes, and an examination of the genome assembly indicated that 94.7% among all assembled transcripts were alignable to the genome assembly; most (97.24%) were functionally annotated. By phylogenomic genome comparison, we found that P. tenella is an ancient group that diverged approximately 13.4 million years ago (mya) from 13 additional closely related species and about 6.5 Mya from the cultivated almond. Collinearity analysis revealed that P. tenella is highly syntenic and has high sequence conservation with almond and peach. However, this species also exhibits many presence/absence variants. Moreover, a large inversion at the 7588 kb position of chromosome 5 was observed, which may have a significant association with phenotypic traits. Lastly, population genetic structure analysis in eight different populations indicated a high genetic differentiation among the natural distribution of P. tenella. This high-quality genome assembly provides critical clues and comprehensive information for the systematic evolution, genetic characteristics, and functional gene research of P. tenella. Moreover, it provides a valuable genomic resource for in-depth study in protection, developing, and utilizing P. tenella germplasm resources.
Collapse
Affiliation(s)
- Yue Qin
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| | - Han Zhao
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| | - Hongwei Han
- Economic Forest Research Institute, Xinjiang Academy of Forestry, Urumqi 830000, China
| | - Gaopu Zhu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| | - Zhaoshan Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Fangdong Li
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| |
Collapse
|
6
|
Mulugeta B, Ortiz R, Geleta M, Hailesilassie T, Hammenhag C, Hailu F, Tesfaye K. Harnessing genome-wide genetic diversity, population structure and linkage disequilibrium in Ethiopian durum wheat gene pool. FRONTIERS IN PLANT SCIENCE 2023; 14:1192356. [PMID: 37546270 PMCID: PMC10400094 DOI: 10.3389/fpls.2023.1192356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Yanyang Liu, Henan Academy of Agricultural Sciences (HNAAS), China; Landraces are an important genetic source for transferring valuable novel genes and alleles required to enhance genetic variation. Therefore, information on the gene pool's genetic diversity and population structure is essential for the conservation and sustainable use of durum wheat genetic resources. Hence, the aim of this study was to assess genetic diversity, population structure, and linkage disequilibrium, as well as to identify regions with selection signature. Five hundred (500) individuals representing 46 landraces, along with 28 cultivars were evaluated using the Illumina Infinium 25K wheat SNP array, resulting in 8,178 SNPs for further analysis. Gene diversity (GD) and the polymorphic information content (PIC) ranged from 0.13-0.50 and 0.12-0.38, with mean GD and PIC values of 0.34 and 0.27, respectively. Linkage disequilibrium (LD) revealed 353,600 pairs of significant SNPs at a cut-off (r2 > 0.20, P < 0.01), with an average r2 of 0.21 for marker pairs. The nucleotide diversity (π) and Tajima's D (TD) per chromosome for the populations ranged from 0.29-0.36 and 3.46-5.06, respectively, with genome level, mean π values of 0.33 and TD values of 4.43. Genomic scan using the Fst outlier test revealed 85 loci under selection signatures, with 65 loci under balancing selection and 17 under directional selection. Putative candidate genes co-localized with regions exhibiting strong selection signatures were associated with grain yield, plant height, host plant resistance to pathogens, heading date, grain quality, and phenolic content. The Bayesian Model (STRUCTURE) and distance-based (principal coordinate analysis, PCoA, and unweighted pair group method with arithmetic mean, UPGMA) methods grouped the genotypes into five subpopulations, where landraces from geographically non-adjoining environments were clustered in the same cluster. This research provides further insights into population structure and genetic relationships in a diverse set of durum wheat germplasm, which could be further used in wheat breeding programs to address production challenges sustainably.
Collapse
Affiliation(s)
- Behailu Mulugeta
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Sinana Agricultural Research Center, Oromia Agricultural Research Institute, Bale-Robe, Ethiopia
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Cecilia Hammenhag
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Faris Hailu
- Bio and Emerging Technology Institute, Addis Ababa, Ethiopia
| | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Biology and Biotechnology, Wollo University, Dessie, Ethiopia
| |
Collapse
|
7
|
Characterization of 35 new microsatellite markers for the blacktip reef shark (Carcharhinus melanopterus) and cross-species amplification in eight other shark species. Mol Biol Rep 2023; 50:3205-3215. [PMID: 36707491 DOI: 10.1007/s11033-022-08209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/13/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Shark species are overfished at a global scale, as they are poached for the finning industry or are caught as bycatch. Efficient conservation measures require fine-scale spatial and temporal studies to characterize shark habitat use, infer migratory habits, analyze relatedness, and detect population genetic differentiation. Gathering these types of data is costly and time-consuming, especially when it requires collection of shark tissue samples. METHODS AND RESULTS Genetic tools, such as microsatellite markers, are the most economical sampling method for collecting genetic data, as they enable the estimation of genetic diversity, population structure and parentage relationships and are thus an efficient way to inform conservation strategies. Here, a set of 45 microsatellite loci was tested on three blacktip reef shark (Carcharhinus melanopterus) populations from three Polynesian islands: Moorea, Morane and Tenararo. The set was composed of 10 previously published microsatellite markers and 35 microsatellite markers that were developed specifically for C. melanopterus as part of the present study. The 35 novel and 10 existing loci were cross-amplified on eight additional shark species (Carcharhinus amblyrhynchos, C. longimanus, C. sorrah, Galeocerdo cuvier, Negaprion acutidens, Prionacea glauca, Rhincodon typus and Sphyrna lewini). These species had an average of 69% of successful amplification, considered if at least 50% of the individual samples being successfully amplified per species and per locus. CONCLUSIONS This novel microsatellite marker set will help address numerous knowledge gaps that remain, concerning genetic stock identification, shark behavior and reproduction via parentage analysis.
Collapse
|
8
|
Mulugeta B, Tesfaye K, Ortiz R, Johansson E, Hailesilassie T, Hammenhag C, Hailu F, Geleta M. Marker-trait association analyses revealed major novel QTLs for grain yield and related traits in durum wheat. FRONTIERS IN PLANT SCIENCE 2023; 13:1009244. [PMID: 36777537 PMCID: PMC9909559 DOI: 10.3389/fpls.2022.1009244] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
The growing global demand for wheat for food is rising due to the influence of population growth and climate change. The dissection of complex traits by employing a genome-wide association study (GWAS) allows the identification of DNA markers associated with complex traits to improve the productivity of crops. We used GWAS with 10,045 single nucleotide polymorphism (SNP) markers to search for genomic regions associated with grain yield and related traits based on diverse panels of Ethiopian durum wheat. In Ethiopia, multi-environment trials of the genotypes were carried out at five locations. The genotyping was conducted using the 25k Illumina Wheat SNP array to explore population structure, linkage disequilibrium (LD), and marker-trait associations (MTAs). For GWAS, the multi-locus Fixed and Random Model Circulating Probability Unification (FarmCPU) model was applied. Broad-sense heritability estimates were high, ranging from 0.63 (for grain yield) to 0.97 (for thousand-kernel weight). The population structure based on principal component analysis, and model-based cluster analysis revealed two genetically distinct clusters with limited admixtures. The LD among SNPs declined within the range of 2.02-10.04 Mbp with an average of 4.28 Mbp. The GWAS scan based on the mean performance of the genotypes across the environments identified 44 significant MTAs across the chromosomes. Twenty-six of these MTAs are novel, whereas the remaining 18 were previously reported and confirmed in this study. We also identified candidate genes for the novel loci potentially regulating the traits. Hence, this study highlights the significance of the Ethiopian durum wheat gene pool for improving durum wheat globally. Furthermore, a breeding strategy focusing on accumulating favorable alleles at these loci could improve durum wheat production in the East African highlands and elsewhere.
Collapse
Affiliation(s)
- Behailu Mulugeta
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Sinana Agricultural Research Center, Oromia Agricultural Research Institute, Bale-Robe, Ethiopia
| | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Director General, Bio and Emerging Technology Institute (BETin), Addis Ababa, Ethiopia
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Cecilia Hammenhag
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Faris Hailu
- Department of Biology and Biotechnology, Wollo University, Dessie, Ethiopia
| | - Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
9
|
Population structure, allelic variation at Rht-B1 and Ppd-A1 loci and its effects on agronomic traits in Argentinian durum wheat. Sci Rep 2022; 12:9629. [PMID: 35688907 PMCID: PMC9187632 DOI: 10.1038/s41598-022-13563-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
Exploring the genetic variability in yield and yield-related traits is essential to continue improving genetic gains. Fifty-nine Argentinian durum wheat cultivars were analyzed for important agronomic traits in three field experiments. The collection was genotyped with 3565 genome-wide SNPs and functional markers in order to determine the allelic variation at Rht-B1 and Ppd-A1 genes. Population structure analyses revealed the presence of three main groups, composed by old, modern and genotypes with European or CIMMYT ancestry. The photoperiod sensitivity Ppd-A1b allele showed higher frequency (75%) than the insensitivity one Ppd-A1a (GS105). The semi-dwarfism Rht-B1b and the Ppd-A1a (GS105) alleles were associated with increases in harvest index and decreases in plant height, grain protein content and earlier heading date, although only the varieties carrying the Rht-B1 variants showed differences in grain yield. Out of the two main yield components, grain number per plant was affected by allelic variants at Rht-B1 and Ppd-A1 loci, while no differences were observed in thousand kernel weight. The increases in grain number per spike associated with Rht-B1b were attributed to a higher grain number per spikelet, whereas Ppd-A1a (GS105) was associated with higher grain number per spikelet, but also with lower spikelets per spike.
Collapse
|
10
|
Tian Y, Sang W, Liu P, Liu J, Xiang J, Cui F, Xu H, Han X, Nie Y, Kong D, Li W, Mu P. Genome-wide Association Study for Starch Pasting Properties in Chinese Spring Wheat. Front Genet 2022; 13:830644. [PMID: 35401682 PMCID: PMC8990798 DOI: 10.3389/fgene.2022.830644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
In order to understand the genetic basis of starch pasting viscosity characteristics of Chinese spring wheat, we assessed the genetic variation of RVA parameters determined by the Rapid Visco Analyser in a panel of 192 Chinese spring wheat accessions grown in Er'shi, Shihezi and Zhaosu during 2012 and 2013 cropping seasons. A genome-wide association study with 47,362 single nucleotide polymorphism (SNP) markers was conducted to detect marker-trait associations using mixed linear model. Phenotypic variations of RVA parameters ranged from 1.6 to 30.7% and broad-sense heritabilities ranged from 0.62 to 0.91. Forty-one SNP markers at 25 loci were significantly associated with seven RVA traits in at least two environments; among these, 20 SNPs were located in coding sequences (CDS) of 18 annotation genes, which can lead to discovering novel genes underpinning starch gelatinization in spring wheat. Haplotype analysis revealed one block for breakdown (BD) on chromosome 3B and two blocks for pasting temperature (T) on chromosome 7B. Cultivars with superior haplotypes at these loci showed better starch pasting viscosity than the average of all cultivars surveyed. The identified loci and associated markers provide valuable sources for future functional characterization and genetic improvement of starch quality in wheat.
Collapse
Affiliation(s)
- Yousheng Tian
- The Key Laboratory of the Oasis Ecological Agriculture, College of Agriculture, Shihezi University, Shihezi, China
- Department of Administrative Management, Xinjiang Academy of Agri-reclamation Sciences, Shihezi, China
| | - Wei Sang
- Institute of Crop Science, Xinjiang Academy of Agri-reclamation Sciences/Key Lab of Xinjiang Production and Construction Corps for Cereal Quality Research and Genetic Improvement, Shihezi, China
| | - Pengpeng Liu
- Institute of Crop Science, Xinjiang Academy of Agri-reclamation Sciences/Key Lab of Xinjiang Production and Construction Corps for Cereal Quality Research and Genetic Improvement, Shihezi, China
| | - Jindong Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jishan Xiang
- Institute of Crop Science, Xinjiang Academy of Agri-reclamation Sciences/Key Lab of Xinjiang Production and Construction Corps for Cereal Quality Research and Genetic Improvement, Shihezi, China
| | - Fengjuan Cui
- Institute of Crop Science, Xinjiang Academy of Agri-reclamation Sciences/Key Lab of Xinjiang Production and Construction Corps for Cereal Quality Research and Genetic Improvement, Shihezi, China
| | - Hongjun Xu
- Institute of Crop Science, Xinjiang Academy of Agri-reclamation Sciences/Key Lab of Xinjiang Production and Construction Corps for Cereal Quality Research and Genetic Improvement, Shihezi, China
| | - Xinnian Han
- Institute of Crop Science, Xinjiang Academy of Agri-reclamation Sciences/Key Lab of Xinjiang Production and Construction Corps for Cereal Quality Research and Genetic Improvement, Shihezi, China
| | - Yingbin Nie
- Institute of Crop Science, Xinjiang Academy of Agri-reclamation Sciences/Key Lab of Xinjiang Production and Construction Corps for Cereal Quality Research and Genetic Improvement, Shihezi, China
| | - Dezhen Kong
- Institute of Crop Science, Xinjiang Academy of Agri-reclamation Sciences/Key Lab of Xinjiang Production and Construction Corps for Cereal Quality Research and Genetic Improvement, Shihezi, China
| | - Weihua Li
- The Key Laboratory of the Oasis Ecological Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Peiyuan Mu
- Institute of Crop Science, Xinjiang Academy of Agri-reclamation Sciences/Key Lab of Xinjiang Production and Construction Corps for Cereal Quality Research and Genetic Improvement, Shihezi, China
| |
Collapse
|
11
|
Kadoglidou K, Irakli M, Boutsika A, Mellidou I, Maninis N, Sarrou E, Georgiadou V, Tourvas N, Krigas N, Moysiadis T, Grigoriadou K, Maloupa E, Xanthopoulou A, Ganopoulos I. Metabolomic Fingerprinting and Molecular Characterization of the Rock Samphire Germplasm Collection from the Balkan Botanic Garden of Kroussia, Northern Greece. PLANTS 2022; 11:plants11040573. [PMID: 35214906 PMCID: PMC8879136 DOI: 10.3390/plants11040573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/19/2022]
Abstract
The traditionally edible aerial parts of rock samphire (Crithmum maritimum L.) could be a valuable functional food or feed ingredient due to their high antioxidant capacity, ascorbic acid content, and rich content in secondary metabolites such as phenolics and flavonoids. The first objective of this study was to evaluate eighteen genotypes derived from different regions of Greece regarding the phytochemical contents of their soluble extracts in total phenolics, total flavonoids, and individual polyphenols as determined by LC-MS analysis, as well as ascorbic acid content and their antioxidant capacity as determined by different assays, including ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid), DPPH (2,2-diphenyl-1-picrylhydrazyl radical scavenging activity), and FRAP (ferric reducing antioxidant power) assays. The second objective of the study was the molecular characterization of native Greek C. maritimum genotypes. Great variation among genotypes was observed in terms of the antioxidant capacity, ascorbic acid content, and phenolic compounds (total phenolic content and total flavonoid content), as well as in caffeolquinic acids and flavonoids. The principal component analysis highlighted genotypes with a higher potential in antioxidants and polyphenolics. The most promising genotypes were G9 from Kefalonia, followed by G4 from Ikaria, where both clearly exhibited a similar response with high values of evaluated traits. The molecular characterization of genotypes revealed low variability and low to moderate genetic diversity between populations. Our data indicated that the rock samphire germplasm collection from the Balkan Botanic Garden of Kroussia could serve as an important source of documented genetic material and, thus, it is suggested for further investigation to provide insight regarding cultivation and agro-processing aspects, artificial selection, or plant breeding aimed at developing C. maritimum genotypes of high-bioactive value.
Collapse
Affiliation(s)
- Kalliopi Kadoglidou
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
- Correspondence: (K.K.); (I.G.)
| | - Maria Irakli
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
| | - Anastasia Boutsika
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
| | - Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
| | - Nikolas Maninis
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
| | - Eirini Sarrou
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
| | - Vasiliki Georgiadou
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
| | - Nikolaos Tourvas
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
| | - Nikos Krigas
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
| | - Theodoros Moysiadis
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
- Department of Computer Science, School of Sciences and Engineering, University of Nicosia, Nicosia 2417, Cyprus
| | - Katerina Grigoriadou
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
| | - Eleni Maloupa
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
| | - Aliki Xanthopoulou
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
- Correspondence: (K.K.); (I.G.)
| |
Collapse
|
12
|
Havrlentová M, Ondreičková K, Hozlár P, Gregusová V, Mihálik D, Kraic J. Formation of Potential Heterotic Groups of Oat Using Variation at Microsatellite Loci. PLANTS 2021; 10:plants10112462. [PMID: 34834825 PMCID: PMC8621079 DOI: 10.3390/plants10112462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/06/2023]
Abstract
An evaluation of polymorphism at the microsatellite loci was applied in distinguishing 85 oat (Avena sativa L.) genotypes selected from the collection of genetic resources. The set of genotypes included oats with white, yellow, and brown seeds as well as a subgroup of naked oat (Avena sativa var. nuda Koern). Variation at these loci was used to form potential heterotic groups potentially used in the oat breeding program. Seven from 20 analyzed microsatellite loci revealed polymorphism. Altogether, 35 microsatellite alleles were detected (2–10 per locus). Polymorphic patterns completely differentiated all genotypes within the subgroups of white, brown, and naked oats, respectively. Only within the greatest subgroup of yellow genotypes, four pairs of genotypes remained unseparated. Genetic differentiation between the oat subgroups allowed the formation of seven potential heterotic groups using the STRUCTURE analysis. The overall value of the fixation index (Fst) suggested a high genetic differentiation between the subgroups and validated a heterotic grouping. This approach can be implemented as a simple predictor of heterosis in parental crosses prior to extensive field testing or development and implementation of more accurate genomic selection.
Collapse
Affiliation(s)
- Michaela Havrlentová
- National Agricultural and Food Center, Research Institute of Plant Production, Bratislavská Cesta 122, 92168 Piešťany, Slovakia; (K.O.); (P.H.); (D.M.); (J.K.)
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie Jozefa Herdu 2, 91701 Trnava, Slovakia;
- Correspondence:
| | - Katarína Ondreičková
- National Agricultural and Food Center, Research Institute of Plant Production, Bratislavská Cesta 122, 92168 Piešťany, Slovakia; (K.O.); (P.H.); (D.M.); (J.K.)
| | - Peter Hozlár
- National Agricultural and Food Center, Research Institute of Plant Production, Bratislavská Cesta 122, 92168 Piešťany, Slovakia; (K.O.); (P.H.); (D.M.); (J.K.)
| | - Veronika Gregusová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie Jozefa Herdu 2, 91701 Trnava, Slovakia;
| | - Daniel Mihálik
- National Agricultural and Food Center, Research Institute of Plant Production, Bratislavská Cesta 122, 92168 Piešťany, Slovakia; (K.O.); (P.H.); (D.M.); (J.K.)
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie Jozefa Herdu 2, 91701 Trnava, Slovakia;
| | - Ján Kraic
- National Agricultural and Food Center, Research Institute of Plant Production, Bratislavská Cesta 122, 92168 Piešťany, Slovakia; (K.O.); (P.H.); (D.M.); (J.K.)
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie Jozefa Herdu 2, 91701 Trnava, Slovakia;
| |
Collapse
|
13
|
Genome-wide approaches for the identification of markers and genes associated with sugarcane yellow leaf virus resistance. Sci Rep 2021; 11:15730. [PMID: 34344928 PMCID: PMC8333424 DOI: 10.1038/s41598-021-95116-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
Sugarcane yellow leaf (SCYL), caused by the sugarcane yellow leaf virus (SCYLV) is a major disease affecting sugarcane, a leading sugar and energy crop. Despite damages caused by SCYLV, the genetic base of resistance to this virus remains largely unknown. Several methodologies have arisen to identify molecular markers associated with SCYLV resistance, which are crucial for marker-assisted selection and understanding response mechanisms to this virus. We investigated the genetic base of SCYLV resistance using dominant and codominant markers and genotypes of interest for sugarcane breeding. A sugarcane panel inoculated with SCYLV was analyzed for SCYL symptoms, and viral titer was estimated by RT-qPCR. This panel was genotyped with 662 dominant markers and 70,888 SNPs and indels with allele proportion information. We used polyploid-adapted genome-wide association analyses and machine-learning algorithms coupled with feature selection methods to establish marker-trait associations. While each approach identified unique marker sets associated with phenotypes, convergences were observed between them and demonstrated their complementarity. Lastly, we annotated these markers, identifying genes encoding emblematic participants in virus resistance mechanisms and previously unreported candidates involved in viral responses. Our approach could accelerate sugarcane breeding targeting SCYLV resistance and facilitate studies on biological processes leading to this trait.
Collapse
|
14
|
Genetic Polymorphism and Lineage of Pigeon Pea [Cajanus cajan (L.) Millsp.] inferred from Chloroplast and Nuclear DNA gene regions. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Roncallo PF, Larsen AO, Achilli AL, Pierre CS, Gallo CA, Dreisigacker S, Echenique V. Linkage disequilibrium patterns, population structure and diversity analysis in a worldwide durum wheat collection including Argentinian genotypes. BMC Genomics 2021; 22:233. [PMID: 33820546 PMCID: PMC8022437 DOI: 10.1186/s12864-021-07519-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
Background Durum wheat (Triticum turgidum L. ssp. durum Desf. Husn) is the main staple crop used to make pasta products worldwide. Under the current climate change scenarios, genetic variability within a crop plays a crucial role in the successful release of new varieties with high yields and wide crop adaptation. In this study we evaluated a durum wheat collection consisting of 197 genotypes that mainly comprised a historical set of Argentinian germplasm but also included worldwide accessions. Results We assessed the genetic diversity, population structure and linkage disequilibrium (LD) patterns in this collection using a 35 K SNP array. The level of polymorphism was considered, taking account of the frequent and rare allelic variants. A total of 1547 polymorphic SNPs was located within annotated genes. Genetic diversity in the germplasm collection increased slightly from 1915 to 2010. However, a reduction in genetic diversity using SNPs with rare allelic variants was observed after 1979. However, larger numbers of rare private alleles were observed in the 2000–2009 period, indicating that a high reservoir of rare alleles is still present among the recent germplasm in a very low frequency. The percentage of pairwise loci in LD in the durum genome was low (13.4%) in our collection. Overall LD and the high (r2 > 0.7) or complete (r2 = 1) LD presented different patterns in the chromosomes. The LD increased over three main breeding periods (1915–1979, 1980–1999 and 2000–2020). Conclusions Our results suggest that breeding and selection have impacted differently on the A and B genomes, particularly on chromosome 6A and 2A. The collection was structured in five sub-populations and modern Argentinian accessions (cluster Q4) which were clearly differentiated. Our study contributes to the understanding of the complexity of Argentinian durum wheat germplasm and to derive future breeding strategies enhancing the use of genetic diversity in a more efficient and targeted way. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07519-z.
Collapse
Affiliation(s)
- Pablo Federico Roncallo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de Agronomía, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Adelina Olga Larsen
- CEI Barrow, Instituto Nacional de Tecnología Agropecuaria (INTA), Tres Arroyos, Buenos Aires, Argentina
| | - Ana Laura Achilli
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de Agronomía, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Carolina Saint Pierre
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Edo. de México, Mexico
| | - Cristian Andrés Gallo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de Agronomía, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Edo. de México, Mexico
| | - Viviana Echenique
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de Agronomía, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina.
| |
Collapse
|
16
|
Zhang W, Zhao J, He J, Kang L, Wang X, Zhang F, Hao C, Ma X, Chen D. Functional gene assessment of bread wheat: breeding implications in Ningxia Province. BMC PLANT BIOLOGY 2021; 21:103. [PMID: 33602134 PMCID: PMC7893757 DOI: 10.1186/s12870-021-02870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The overall genetic distribution and divergence of cloned genes among bread wheat varieties that have occurred during the breeding process over the past few decades in Ningxia Province, China, are poorly understood. Here, we report the genetic diversities of 44 important genes related to grain yield, quality, adaptation and resistance in 121 Ningxia and 86 introduced wheat cultivars and advanced lines. RESULTS The population structure indicated characteristics of genetic components of Ningxia wheat, including landraces of particular genetic resources, introduced varieties with rich genetic diversities and modern cultivars in different periods. Analysis of allele frequencies showed that the dwarfing alleles Rht-B1b at Rht-B1 and Rht-D1b at Rht-D1, 1BL/1RS translocation, Hap-1 at GW2-6B and Hap-H at Sus2-2B are very frequently present in modern Ningxia cultivars and in introduced varieties from other regions but absent in landraces. This indicates that the introduced wheat germplasm with numerous beneficial genes is vital for broadening the genetic diversity of Ningxia wheat varieties. Large population differentiation between modern cultivars and landraces has occurred in adaptation genes. Founder parents carry excellent allele combinations of important genes, with a higher number of favorable alleles than modern cultivars. Gene flow analysis showed that six founder parents have greatly contributed to breeding improvement in Ningxia Province, particularly Zhou 8425B, for yield-related genes. CONCLUSIONS Varieties introduced from other regions with rich genetic diversity and landraces with well-adapted genetic resources have been applied to improve modern cultivars. Founder parents, particularly Zhou 8425B, for yield-related genes have contributed greatly to wheat breeding improvement in Ningxia Province. These findings will greatly benefit bread wheat breeding in Ningxia Province as well as other areas with similar ecological environments.
Collapse
Affiliation(s)
- Weijun Zhang
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002 Ningxia China
| | - Junjie Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Jinshang He
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002 Ningxia China
| | - Ling Kang
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002 Ningxia China
| | - Xiaoliang Wang
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002 Ningxia China
| | - Fuguo Zhang
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002 Ningxia China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Dongsheng Chen
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002 Ningxia China
| |
Collapse
|
17
|
Tyrka M, Mokrzycka M, Bakera B, Tyrka D, Szeliga M, Stojałowski S, Matysik P, Rokicki M, Rakoczy-Trojanowska M, Krajewski P. Evaluation of genetic structure in European wheat cultivars and advanced breeding lines using high-density genotyping-by-sequencing approach. BMC Genomics 2021; 22:81. [PMID: 33509072 PMCID: PMC7842024 DOI: 10.1186/s12864-020-07351-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/27/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The genetic diversity and gene pool characteristics must be clarified for efficient genome-wide association studies, genomic selection, and hybrid breeding. The aim of this study was to evaluate the genetic structure of 509 wheat accessions representing registered varieties and advanced breeding lines via the high-density genotyping-by-sequencing approach. RESULTS More than 30% of 13,499 SNP markers representing 2162 clusters were mapped to genes, whereas 22.50% of 26,369 silicoDArT markers overlapped with coding sequences and were linked in 3527 blocks. Regarding hexaploidy, perfect sequence matches following BLAST searches were not sufficient for the unequivocal mapping to unique loci. Moreover, allelic variations in homeologous loci interfered with heterozygosity calculations for some markers. Analyses of the major genetic changes over the last 27 years revealed the selection pressure on orthologs of the gibberellin biosynthesis-related GA2 gene and the senescence-associated SAG12 gene. A core collection representing the wheat population was generated for preserving germplasm and optimizing breeding programs. CONCLUSIONS Our results confirmed considerable differences among wheat subgenomes A, B and D, with D characterized by the lowest diversity but the highest LD. They revealed genomic regions that have been targeted by breeding.
Collapse
Affiliation(s)
- Mirosław Tyrka
- Rzeszow University of Technology, Powstańców Warszawy 12, 35-959, Rzeszów, Poland
| | - Monika Mokrzycka
- Institute of Plant Genetics, Polish Academy of Science, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Beata Bakera
- Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warszawa, Poland
| | - Dorota Tyrka
- Rzeszow University of Technology, Powstańców Warszawy 12, 35-959, Rzeszów, Poland
| | - Magdalena Szeliga
- Rzeszow University of Technology, Powstańców Warszawy 12, 35-959, Rzeszów, Poland
| | - Stefan Stojałowski
- West Pomeranian University of Technology Szczecin, Słowackiego 17, 71-434, Szczecin, Poland
| | - Przemysław Matysik
- Plant Breeding Strzelce Group IHAR Ltd., Kasztanowa 5, 63-004, Tulce, Poland
| | - Michał Rokicki
- Poznań Plant Breeding Ltd., Główna 20, 99-307, Strzelce, Poland
| | | | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Science, Strzeszyńska 34, 60-479, Poznań, Poland.
| |
Collapse
|
18
|
Royo C, Ammar K, Villegas D, Soriano JM. Agronomic, Physiological and Genetic Changes Associated With Evolution, Migration and Modern Breeding in Durum Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:674470. [PMID: 34305973 PMCID: PMC8296143 DOI: 10.3389/fpls.2021.674470] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/07/2021] [Indexed: 05/04/2023]
Abstract
A panel of 172 Mediterranean durum wheat landraces and 200 modern cultivars was phenotyped during three years for 21 agronomic and physiological traits and genotyped with 46,161 DArTseq markers. Modern cultivars showed greater yield, number of grains per spike (NGS) and harvest index (HI), but similar number of spikes per unit area (NS) and grain weight than the landraces. Modern cultivars had earlier heading but longer heading-anthesis and grain-filling periods than the landraces. They had greater RUE (Radiation Use Efficiency) up to anthesis and lower canopy temperature at anthesis than the landraces, but the opposite was true during the grain-filling period. Landraces produced more biomass at both anthesis and maturity. The 120 genotypes with a membership coefficient q > 0.8 to the five genetic subpopulations (SP) that structured the panel were related with the geographic distribution and evolutionary history of durum wheat. SP1 included landraces from eastern countries, the domestication region of the "Fertile Crescent." SP2 and SP3 consisted of landraces from the north and the south Mediterranean shores, where durum wheat spread during its migration westward. Decreases in NS, grain-filling duration and HI, but increases in early soil coverage, days to heading, biomass at anthesis, grain-filling rate, plant height and peduncle length occurred during this migration. SP4 grouped modern cultivars gathering the CIMMYT/ICARDA genetic background, and SP5 contained modern north-American cultivars. SP4 was agronomically distant from the landraces, but SP5 was genetically and agronomically close to SP1. GWAS identified 2,046 marker-trait associations (MTA) and 144 QTL hotspots integrating 1,927 MTAs. Thirty-nine haplotype blocks (HB) with allelic differences among SPs and associated with 16 agronomic traits were identified within 13 QTL hotspots. Alleles in chromosomes 5A and 7A detected in landraces were associated with decreased yield. The late heading and short grain-filling period of SP2 and SP3 were associated with a hotspot on chromosome 7B. The heavy grains of SP3 were associated with hotspots on chromosomes 2A and 7A. The greater NGS and HI of modern cultivars were associated with allelic variants on chromosome 7A. A hotspot on chromosome 3A was associated with the high NGS, earliness and short stature of SP4.
Collapse
Affiliation(s)
- Conxita Royo
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
- *Correspondence: Conxita Royo ;
| | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Dolors Villegas
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
| | - Jose M. Soriano
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
| |
Collapse
|
19
|
Mazzucotelli E, Sciara G, Mastrangelo AM, Desiderio F, Xu SS, Faris J, Hayden MJ, Tricker PJ, Ozkan H, Echenique V, Steffenson BJ, Knox R, Niane AA, Udupa SM, Longin FCH, Marone D, Petruzzino G, Corneti S, Ormanbekova D, Pozniak C, Roncallo PF, Mather D, Able JA, Amri A, Braun H, Ammar K, Baum M, Cattivelli L, Maccaferri M, Tuberosa R, Bassi FM. The Global Durum Wheat Panel (GDP): An International Platform to Identify and Exchange Beneficial Alleles. FRONTIERS IN PLANT SCIENCE 2020; 11:569905. [PMID: 33408724 PMCID: PMC7779600 DOI: 10.3389/fpls.2020.569905] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/24/2020] [Indexed: 05/04/2023]
Abstract
Representative, broad and diverse collections are a primary resource to dissect genetic diversity and meet pre-breeding and breeding goals through the identification of beneficial alleles for target traits. From 2,500 tetraploid wheat accessions obtained through an international collaborative effort, a Global Durum wheat Panel (GDP) of 1,011 genotypes was assembled that captured 94-97% of the original diversity. The GDP consists of a wide representation of Triticum turgidum ssp. durum modern germplasm and landraces, along with a selection of emmer and primitive tetraploid wheats to maximize diversity. GDP accessions were genotyped using the wheat iSelect 90K SNP array. Among modern durum accessions, breeding programs from Italy, France and Central Asia provided the highest level of genetic diversity, with only a moderate decrease in genetic diversity observed across nearly 50 years of breeding (1970-2018). Further, the breeding programs from Europe had the largest sets of unique alleles. LD was lower in the landraces (0.4 Mbp) than in modern germplasm (1.8 Mbp) at r 2 = 0.5. ADMIXTURE analysis of modern germplasm defined a minimum of 13 distinct genetic clusters (k), which could be traced to the breeding program of origin. Chromosome regions putatively subjected to strong selection pressure were identified from fixation index (F st ) and diversity reduction index (DRI) metrics in pairwise comparisons among decades of release and breeding programs. Clusters of putative selection sweeps (PSW) were identified as co-localized with major loci controlling phenology (Ppd and Vrn), plant height (Rht) and quality (gliadins and glutenins), underlining the role of the corresponding genes as driving elements in modern breeding. Public seed availability and deep genetic characterization of the GDP make this collection a unique and ideal resource to identify and map useful genetic diversity at loci of interest to any breeding program.
Collapse
Affiliation(s)
- Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Giuseppe Sciara
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Anna M. Mastrangelo
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, Foggia, Italy
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Francesca Desiderio
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Steven S. Xu
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Fargo, ND, United States
| | - Justin Faris
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Fargo, ND, United States
| | - Matthew J. Hayden
- Agriculture Victoria, Agribio, Centre for AgriBiosciences, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Penny J. Tricker
- School of Agriculture, Food and Wine, Faculty of Sciences, Waite Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Hakan Ozkan
- Department of Field Crops, Faculty of Agriculture, Çukurova University, Adana, Turkey
| | - Viviana Echenique
- Centro de Recursos Naturales Renovables de la Zona Semiárida, Departamento de Agronomía, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | - Brian J. Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Ron Knox
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Abdoul A. Niane
- International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon
| | - Sripada M. Udupa
- International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon
| | | | - Daniela Marone
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, Foggia, Italy
| | - Giuseppe Petruzzino
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, Foggia, Italy
| | - Simona Corneti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Danara Ormanbekova
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Curtis Pozniak
- Plant Sciences and Crop Development Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - Pablo F. Roncallo
- Centro de Recursos Naturales Renovables de la Zona Semiárida, Departamento de Agronomía, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | - Diane Mather
- School of Agriculture, Food and Wine, Faculty of Sciences, Waite Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Jason A. Able
- School of Agriculture, Food and Wine, Faculty of Sciences, Waite Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Ahmed Amri
- International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon
| | - Hans Braun
- Plant Sciences and Crop Development Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - Karim Ammar
- International Maize and Wheat Improvement Center, Texcoco de Mora, Mexico
| | - Michael Baum
- International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Roberto Tuberosa
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Filippo M. Bassi
- International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon
- *Correspondence: Filippo M. Bassi,
| |
Collapse
|