1
|
Fonseca PHM, Martinelli AG, Gill PG, Rayfield EJ, Schultz CL, Kerber L, Ribeiro AM, Soares MB. Anatomy of the maxillary canal of Riograndia guaibensis (Cynodontia, Probainognathia)-A prozostrodont from the Late Triassic of southern Brazil. Anat Rec (Hoboken) 2025; 308:827-843. [PMID: 39039851 PMCID: PMC11791385 DOI: 10.1002/ar.25540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024]
Abstract
Investigating the evolutionary trajectory of synapsid sensory and cephalic systems is pivotal for understanding the emergence and diversification of mammals. Recent studies using CT-scanning to analyze the rostral foramina and maxillary canals morphology in fossilized specimens of probainognathian cynodonts have contributed to clarifying the homology and paleobiological interpretations of these structures. In the present work, μCT-scannings of three specimens of Riograndia guaibensis, an early Norian cynodont from southern Brazil, were analyzed and revealed an incomplete separation between the lacrimal and maxillary canals, with points of contact via non-ossified areas. While the maxillary canal exhibits a consistent morphological pattern with other Prozostrodontia, featuring three main branches along the lateral region of the snout, the rostral alveolar canal in Riograndia displays variability in the number of extra branches terminating in foramina on the lateral surface of the maxilla, showing differences among individuals and within the same skull. Additionally, pneumatization is observed in the anterior region of the skull, resembling similar structures found in reptiles and mammals. Through this pneumatization, certain branches originating from the maxillary canal extend to the canine alveolus. Further investigation is warranted to elucidate the functionality of this structure and its occurrence in other cynodont groups.
Collapse
Affiliation(s)
- Pedro Henrique Morais Fonseca
- Programa de Pós‐Graduação em Geociências, Instituto de GeociênciasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Agustín Guillermo Martinelli
- CONICET‐Sección Paleontología de VertebradosMuseo Argentino de Ciencias Naturales “Bernardino Rivadavia”Buenos AiresArgentina
- Núcleo Milenio EVOTEM‐Evolutionary Transitions of Early Mammals‐ANIDSantiagoChile
| | - Pamela G. Gill
- Palaeobiology Research Group, School of Earth SciencesUniversity of Bristol, Life Sciences BuildingBristolUK
- Earth Sciences DepartmentThe Natural History MuseumLondonUK
| | - Emily J. Rayfield
- Palaeobiology Research Group, School of Earth SciencesUniversity of Bristol, Life Sciences BuildingBristolUK
| | - Cesar Leandro Schultz
- Programa de Pós‐Graduação em Geociências, Instituto de GeociênciasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Leonardo Kerber
- Centro de Apoio à Pesquisa PaleontológicaUniversidade Federal de Santa MariaSão João do PolêsineBrazil
| | - Ana Maria Ribeiro
- Programa de Pós‐Graduação em Geociências, Instituto de GeociênciasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Seção de Paleontologia, Museu de Ciências Naturais, Secretaria do Meio Ambiente e Infraestrutura do Rio Grande do SulPorto AlegreBrazil
| | - Marina Bento Soares
- Departamento de Geologia e Paleontologia, Museu NacionalUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
| |
Collapse
|
2
|
Liu J, Xu X, Clark JM, Bi S. Bienotheroides wucaiensis sp. nov., a new tritylodontid (Cynodontia, Mammaliamorpha) from the Late Jurassic Shishugou Formation of Xinjiang, China. Anat Rec (Hoboken) 2025. [PMID: 39905961 DOI: 10.1002/ar.25631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/29/2024] [Accepted: 11/27/2024] [Indexed: 02/06/2025]
Abstract
The Shishugou Formation of the Middle to Late Jurassic in Xinjiang, China, has produced abundant tetrapod fossils including dinosaurs and tritylodontids. Bienotheroides is a genus of highly specialized tritylodontids, characterized by a short and wide snout, ventrally expanded zygomatic process, strongly reduced maxilla, short and flat basisphenoid, and maxillary teeth cusp formula 2-3-3. Here, we report a new tritylodontid, Bienotheroides wucaiensis sp. nov. from the lower Upper Jurassic level of the formation at Wucaiwan, Xinjiang, Northwest China, represented by a well-preserved cranium and associated postcranial skeleton. Micro-computed tomography and 3D reconstruction reveal the medial view of the cranial structure and the replacement upper incisors, providing new anatomical information of Bienotheroides. The absence of a septomaxilla in B. wucaiensis reveals the homoplastic evolution of this feature within tritylodontids, as it remains in basal mammaliaforms but is lost in later descendants.
Collapse
Affiliation(s)
- Jiawen Liu
- Centre for Vertebrate Evolutionary Biology, School of Life Sciences, Yunnan University, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Xing Xu
- Centre for Vertebrate Evolutionary Biology, School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - James M Clark
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Shundong Bi
- Centre for Vertebrate Evolutionary Biology, School of Life Sciences, Yunnan University, Kunming, China
- Department of Biology, Indiana University of Pennsylvania, Indiana, Pennsylvania, USA
| |
Collapse
|
3
|
Rawson JRG, Martinelli AG, Gill PG, Soares MB, Schultz CL, Rayfield EJ. Brazilian fossils reveal homoplasy in the oldest mammalian jaw joint. Nature 2024; 634:381-388. [PMID: 39322670 PMCID: PMC11464377 DOI: 10.1038/s41586-024-07971-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
The acquisition of the load-bearing dentary-squamosal jaw joint was a key step in mammalian evolution1-5. Although this innovation has received decades of study, questions remain over when and how frequently a mammalian-like skull-jaw contact evolved, hindered by a paucity of three-dimensional data spanning the non-mammaliaform cynodont-mammaliaform transition. New discoveries of derived non-mammaliaform probainognathian cynodonts from South America have much to offer to this discussion. Here, to address this issue, we used micro-computed-tomography scanning to reconstruct the jaw joint anatomy of three key probainognathian cynodonts: Brasilodon quadrangularis, the sister taxon to Mammaliaformes6-8, the tritheledontid-related Riograndia guaibensis9 and the tritylodontid Oligokyphus major. We find homoplastic evolution in the jaw joint in the approach to mammaliaforms, with ictidosaurs (Riograndia plus tritheledontids) independently evolving a dentary-squamosal contact approximately 17 million years before this character first appears in mammaliaforms of the Late Triassic period10-12. Brasilodon, contrary to previous descriptions6-8, lacks an incipient dentary condyle and squamosal glenoid and the jaws articulate solely using a plesiomorphic quadrate-articular joint. We postulate that the jaw joint underwent marked evolutionary changes in probainognathian cynodonts. Some probainognathian clades independently acquired 'double' craniomandibular contacts, with mammaliaforms attaining a fully independent dentary-squamosal articulation with a conspicuous dentary condyle and squamosal glenoid in the Late Triassic. The dentary-squamosal contact, which is traditionally considered to be a typical mammalian feature, therefore evolved more than once and is more evolutionary labile than previously considered.
Collapse
Affiliation(s)
- James R G Rawson
- Palaeobiology Research Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| | - Agustín G Martinelli
- Museo Argentino Ciencias Naturales "Bernardino Rivadavia"-CONICET, Buenos Aires, Argentina.
| | - Pamela G Gill
- Palaeobiology Research Group, School of Earth Sciences, University of Bristol, Bristol, UK
- Natural History Museum, London, UK
| | - Marina B Soares
- Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cesar L Schultz
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Emily J Rayfield
- Palaeobiology Research Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
4
|
Harano T, Asahara M. Evolution of tooth morphological complexity and its association with the position of tooth eruption in the jaw in non-mammalian synapsids. PeerJ 2024; 12:e17784. [PMID: 39148681 PMCID: PMC11326432 DOI: 10.7717/peerj.17784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/30/2024] [Indexed: 08/17/2024] Open
Abstract
Heterodonty and complex molar morphology are important characteristics of mammals acquired during the evolution of early mammals from non-mammalian synapsids. Some non-mammalian synapsids had only simple, unicuspid teeth, whereas others had complex, multicuspid teeth. In this study, we reconstructed the ancestral states of tooth morphological complexity across non-mammalian synapsids to show that morphologically complex teeth evolved independently multiple times within Therapsida and that secondary simplification of tooth morphology occurred in some non-mammalian Cynodontia. In some mammals, secondary evolution of simpler teeth from complex molars has been previously reported to correlate with an anterior shift of tooth eruption position in the jaw, as evaluated by the dentition position relative to the ends of component bones used as reference points in the upper jaw. Our phylogenetic comparative analyses showed a significant correlation between an increase in tooth complexity and a posterior shift in the dentition position relative to only one of the three specific ends of component bones that we used as reference points in the upper jaw of non-mammalian synapsids. The ends of component bones depend on the shape and relative area of each bone, which appear to vary considerably among the synapsid taxa. Quantification of the dentition position along the anteroposterior axis in the overall cranium showed suggestive evidence of a correlation between an increase in tooth complexity and a posterior shift in the dentition position among non-mammalian synapsids. This correlation supports the hypothesis that a posterior shift of tooth eruption position relative to the morphogenetic fields that determine tooth form have contributed to the evolution of morphologically complex teeth in non-mammalian synapsids, if the position in the cranium represents a certain point in the morphogenetic fields.
Collapse
Affiliation(s)
- Tomohiro Harano
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Aichi, Japan
| | - Masakazu Asahara
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Aichi, Japan
| |
Collapse
|
5
|
Smith CM, Curthoys IS, Laitman JT. A morphometric comparison of the ductus reuniens in humans and guinea pigs, with a note on its evolutionary importance. Anat Rec (Hoboken) 2024. [PMID: 38965777 DOI: 10.1002/ar.25534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
The mammalian inner ear contains the sensory organs responsible for balance (semicircular canals, utricle, and saccule) and hearing (cochlea). While these organs are functionally distinct, there exists a critical structural connection between the two: the ductus reuniens (DR). Despite its functional importance, comparative descriptions of DR morphology are limited, hindering our understanding of the evolutionary diversification of hearing and balance systems among mammals. Using virtual 3D models derived from micro-CT, we examine the morphology of the DR and its relationship to the bony labyrinth in humans compared to that in a commonly used animal model, the guinea pig. Anatomical reconstructions and univariate measurements were carried out in the software 3D Slicer. Data indicate similarities in DR morphology between humans and guinea pigs in terms of overall shape. However, there are considerable differences in relative DR length and width between humans and guinea pigs. Humans possess a relatively shorter and narrower DR but with wider openings to the saccule and cochlear duct. This results in a relatively more constricted DR lumen in humans which may differentially limit fluid transfer between the saccule and cochlea. Our results reveal previously hidden morphological diversity in the communication between the hearing and balance systems of the mammalian inner ear which may indicate alternative strategies for isolating the Organ of Corti from the peripheral vestibular system throughout mammalian evolution.
Collapse
Affiliation(s)
- Christopher M Smith
- Division of Anthropology, American Museum of Natural History, New York City, New York, USA
- New York Consortium in Evolutionary Primatology, New York, USA
| | - Ian S Curthoys
- Vestibular Research Laboratory, School of Psychology, University of Sydney, Sydney, New South Wales, Australia
| | - Jeffrey T Laitman
- New York Consortium in Evolutionary Primatology, New York, USA
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
6
|
Fonseca PHM, Martinelli AG, Gill PG, Rayfield EJ, Schultz CL, Kerber L, Ribeiro AM, Francischini H, Soares MB. New evidence from high-resolution computed microtomography of Triassic stem-mammal skulls from South America enhances discussions on turbinates before the origin of Mammaliaformes. Sci Rep 2024; 14:13817. [PMID: 38879680 PMCID: PMC11180108 DOI: 10.1038/s41598-024-64434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
The nasal cavity of living mammals is a unique structural complex among tetrapods, acquired along a series of major morphological transformations that occurred mainly during the Mesozoic Era, within the Synapsida clade. Particularly, non-mammaliaform cynodonts document several morphological changes in the skull, during the Triassic Period, that represent the first steps of the mammalian bauplan. We here explore the nasal cavity of five cynodont taxa, namely Thrinaxodon, Chiniquodon, Prozostrodon, Riograndia, and Brasilodon, in order to discuss the main changes within this skull region. We did not identify ossified turbinals in the nasal cavity of these taxa and if present, as non-ossified structures, they would not necessarily be associated with temperature control or the development of endothermy. We do, however, notice a complexification of the cartilage anchoring structures that divide the nasal cavity and separate it from the brain region in these forerunners of mammals.
Collapse
Affiliation(s)
- Pedro H M Fonseca
- Programa de Pós-Graduação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil.
| | - Agustín G Martinelli
- CONICET-Sección Paleontología de Vertebrados, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Av. Ángel Gallardo 470, C1405DJR, Buenos Aires, CABA, Argentina.
- Núcleo Milenio EVOTEM-Evolutionary Transitions of Early Mammals-ANID, Santiago, Chile.
| | - Pamela G Gill
- Palaeobiology Research Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Bristol, BS8 1TQ, UK.
- Science Department, Natural History Museum, Cromwell Road, London, SW7 5HD, UK.
| | - Emily J Rayfield
- Palaeobiology Research Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Bristol, BS8 1TQ, UK.
| | - Cesar L Schultz
- Programa de Pós-Graduação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - Leonardo Kerber
- Centro de Apoio à Pesquisa Paleontológica, Universidade Federal de Santa Maria, São João do Polêsine, Brazil
| | - Ana Maria Ribeiro
- Programa de Pós-Graduação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
- Museu de Ciências Naturais/SEMA, Porto Algre, RS, Brazil
| | - Heitor Francischini
- Programa de Pós-Graduação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - Marina B Soares
- Departamento de Geologia e Paleontologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista s/n, São Cristovão, Rio de Janeiro, RJ, 20940-040, Brazil.
| |
Collapse
|
7
|
Benoit J, Araujo R, Lund ES, Bolton A, Lafferty T, Macungo Z, Fernandez V. Early synapsids neurosensory diversity revealed by CT and synchrotron scanning. Anat Rec (Hoboken) 2024. [PMID: 38600433 DOI: 10.1002/ar.25445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Non-mammaliaform synapsids (NMS) represent the closest relatives of today's mammals among the early amniotes. Exploring their brain and nervous system is key to understanding how mammals evolved. Here, using CT and Synchrotron scanning, we document for the first time three extreme cases of neurosensory and behavioral adaptations that probe into the wide range of unexpected NMS paleoneurological diversity. First, we describe adaptations to low-frequency hearing and low-light conditions in the non-mammalian cynodont Cistecynodon parvus, supporting adaptations to an obligatory fossorial lifestyle. Second, we describe the uniquely complex and three-dimensional maxillary canal morphology of the biarmosuchian Pachydectes elsi, which suggests that it may have used its cranial bosses for display or low-energy combat. Finally, we introduce a paleopathology found in the skull of Moschognathus whaitsi. Since the specimen was not fully grown, this condition suggests the possibility that this species might have engaged in playful fighting as juveniles-a behavior that is both social and structured. Additionally, this paper discusses other evidence that could indicate that tapinocephalid dinocephalians were social animals, living and interacting closely with one another. Altogether, these examples evidence the wide range of diversity of neurological structures and complex behavior in NMS.
Collapse
Affiliation(s)
- J Benoit
- Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - R Araujo
- Instituto de Plasmas e Fusão Nuclear, InstitutoSuperior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - E S Lund
- Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - A Bolton
- Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - T Lafferty
- Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Z Macungo
- Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - V Fernandez
- European Synchrotron Radiation Facility, Grenoble, France
| |
Collapse
|
8
|
Martinelli AG, Ezcurra MD, Fiorelli LE, Escobar J, Hechenleitner EM, von Baczko MB, Taborda JRA, Desojo JB. A new early-diverging probainognathian cynodont and a revision of the occurrence of cf. Aleodon from the Chañares Formation, northwestern Argentina: New clues on the faunistic composition of the latest Middle-?earliest Late Triassic Tarjadia Assemblage Zone. Anat Rec (Hoboken) 2024; 307:818-850. [PMID: 38282519 DOI: 10.1002/ar.25388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
The Chañares Formation (Ischigualasto-Villa Unión Basin) is worldwide known by its exquisitely preserved fossil record of latest Middle-to-early Late Triassic tetrapods, including erpetosuchids, "rauisuchians," proterochampsids, gracilisuchids, dinosauromorphs, pterosauromorphs, kannemeyeriiform dicynodonts, and traversodontid, chiniquodontid and probainognathid cynodonts, coming from the Tarjadia (bottom) and Massetognathus-Chanaresuchus (top) Assemblage Zones of its lower member. Regarding cynodonts, most of its profuse knowledge comes from the traditional layers discovered by Alfred Romer and his team in the 1960s that are now enclosed in the Massetognathus-Chanaresuchus Assemblage Zone (AZ). In this contribution we focus our study on the probainognathian cynodonts discovered in levels of the Tarjadia Assemblage Zone. We describe a new chiniquodontid cynodont with transversely broad postcanine teeth (Riojanodon nenoi gen. et sp. nov.) which is related to the genus Aleodon. In addition, the specimen CRILAR-Pv 567 previously referred to cf. Aleodon is here described, compared, and included in a phylogenetic analysis. It is considered as an indeterminate Aleodontinae nov., a clade here proposed to included chiniquodontids with transversely broad upper and lower postcanines, by having a cuspidated sectorial labial margin and a lingual platform that is twice broader than a lingual cingulum. Cromptodon mamiferoides, from the Cerro de Las Cabras Formation (Cuyo Basin), was also included in the phylogenetic analysis and recovered as an Aleodontinae. The new cynodont and the record of Aleodontinae indet. reinforce the faunal differentiation between the Tarjadia and Massetognathus-Chanaresuchus Assemblage Zones, in the lower member of the Chañares Formation, and inform on the diverse chiniquodontid clade with both sectorial and transversely broad postcanine teeth.
Collapse
Affiliation(s)
- Agustín G Martinelli
- Sección Paleontología de Vertebrados, CONICET-Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Martín D Ezcurra
- Sección Paleontología de Vertebrados, CONICET-Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucas E Fiorelli
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (Prov. de La Rioja-UNLaR-SEGEMAR-UNCa-CONICET), La Rioja, Argentina
| | - Juan Escobar
- Sección Paleontología de Vertebrados, CONICET-Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - E Martín Hechenleitner
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (Prov. de La Rioja-UNLaR-SEGEMAR-UNCa-CONICET), La Rioja, Argentina
| | - M Belén von Baczko
- Sección Paleontología de Vertebrados, CONICET-Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jeremías R A Taborda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- CICTERRA, Ciudad Universitaria, Córdoba, Argentina
| | - Julia B Desojo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- División Paleontología Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Buenos Aires, Argentina
| |
Collapse
|
9
|
Kerber L, Pretto FA, Müller RT. New information on the mandibular anatomy of Agudotherium gassenae, a Late Triassic non-mammaliaform probainognathian from Brazil. Anat Rec (Hoboken) 2024; 307:1515-1523. [PMID: 37767852 DOI: 10.1002/ar.25317] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Agudotherium gassenae is a poorly known non-mammaliaform probainognathian cynodont from the Late Triassic of southern Brazil. It is known only by mandibular remains, and its affinities within Probainognathia are unclear. Furthermore, its phylogenetic affinities were never investigated through computational analyses. In this study, we described new lower jaw remains excavated from the type locality and performed the first phylogenetic investigation of this taxon. The new specimen provides further anatomical information. The rostral region of the lower jaw was poorly preserved in the type series, leading to the interpretation that A. gassenae had three lower incisors. The new specimen demonstrates the presence of four incisors. The phylogenetic analysis positioned A. gassenae as the sister group of Prozostrodontia. This hypothesis differs from that previously presented in the former description of the taxon, in which it was considered a non-mammaliaform prozostrodont by means of character-state comparisons.
Collapse
Affiliation(s)
- Leonardo Kerber
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, Brazil
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Flávio A Pretto
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, Brazil
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Rodrigo T Müller
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, Brazil
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
10
|
Mao F, Li Z, Wang Z, Zhang C, Rich T, Vickers-Rich P, Meng J. Jurassic shuotheriids show earliest dental diversification of mammaliaforms. Nature 2024; 628:569-575. [PMID: 38570681 DOI: 10.1038/s41586-024-07258-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Shuotheriids are Jurassic mammaliaforms that possess pseudotribosphenic teeth in which a pseudotalonid is anterior to the trigonid in the lower molar, contrasting with the tribosphenic pattern of therian mammals (placentals, marsupials and kin) in which the talonid is posterior to the trigonid1-4. The origin of the pseudotribosphenic teeth remains unclear, obscuring our perception of shuotheriid affinities and the early evolution of mammaliaforms1,5-9. Here we report a new Jurassic shuotheriid represented by two skeletal specimens. Their complete pseudotribosphenic dentitions allow reidentification of dental structures using serial homology and the tooth occlusal relationship. Contrary to the conventional view1,2,6,10,11, our findings show that dental structures of shuotheriids can be homologized to those of docodontans and partly support homologous statements for some dental structures between docodontans and other mammaliaforms6,12. The phylogenetic analysis based on new evidence removes shuotheriids from the tribosphenic ausktribosphenids (including monotremes) and clusters them with docodontans to form a new clade, Docodontiformes, that is characterized by pseudotribosphenic features. In the phylogeny, docodontiforms and 'holotherians' (Kuehneotherium, monotremes and therians)13 evolve independently from a Morganucodon-like ancestor with triconodont molars by labio-lingual widening their posterior teeth for more efficient food processing. The pseudotribosphenic pattern passed a cusp semitriangulation stage9, whereas the tribosphenic pattern and its precursor went through a stage of cusp triangulation. The two different processes resulted in complex tooth structures and occlusal patterns that elucidate the earliest diversification of mammaliaforms.
Collapse
Affiliation(s)
- Fangyuan Mao
- Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.
- Division of Paleontology, American Museum of Natural History, New York, NY, USA.
| | - Zhiyu Li
- Inner Mongolia Museum of Natural History, Hohhot, China
| | - Zhili Wang
- Inner Mongolia Museum of Natural History, Hohhot, China
| | - Chi Zhang
- Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Thomas Rich
- Museums Victoria, Melbourne, Victoria, Australia
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
| | - Patricia Vickers-Rich
- Museums Victoria, Melbourne, Victoria, Australia
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
- School of Earth and Planetary Sciences, Curtin University, Perth, Western Australia, Australia
| | - Jin Meng
- Division of Paleontology, American Museum of Natural History, New York, NY, USA.
- Earth and Environmental Sciences, City University of New York, New York, NY, USA.
| |
Collapse
|
11
|
Kerber L, Roese-Miron L, Bubadué JM, Martinelli AG. Endocranial anatomy of the early prozostrodonts (Eucynodontia: Probainognathia) and the neurosensory evolution in mammal forerunners. Anat Rec (Hoboken) 2024; 307:1442-1473. [PMID: 37017195 DOI: 10.1002/ar.25215] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 04/06/2023]
Abstract
Prozostrodon brasiliensis and Therioherpeton cargnini are non-mammaliaform cynodonts that lived ~233 million years ago (late Carnian, Late Triassic) in western Gondwana. They represent some of the earliest divergent members of the clade Prozostrodontia, which includes "tritheledontids", tritylodontids, "brasilodontids", and mammaliaforms (including Mammalia as crown group). Here, we studied the endocranial anatomy (cranial endocast, nerves, vessels, ducts, ear region, and nasal cavity) of these two species. Our findings suggest that during the Carnian, early prozostrodonts had a brain with well-developed olfactory bulbs, expanded cerebral hemispheres divided by the interhemispheric sulcus, and absence of an unossified zone and pineal body. The morphology of the maxillary canal represents the necessary condition for the presence of facial vibrissae. A slight decrease in encephalization is observed at the origin of the clade Prozostrodontia. This new anatomical information provides evidence for the evolution of endocranial traits of the first prozotrodonts, a Late Triassic lineage that culminated in the origin of mammals.
Collapse
Affiliation(s)
- Leonardo Kerber
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria (CAPPA/UFSM), São João do Polêsine, RS, Brazil
| | - Lívia Roese-Miron
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria (CAPPA/UFSM), São João do Polêsine, RS, Brazil
| | - Jamile M Bubadué
- Laboratorio de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Agustín G Martinelli
- Sección Paleontologia de Vertebrados, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina
| |
Collapse
|
12
|
Lund ES, Norton LA, Benoit J. First CT-assisted study of the palate and postcrania of Diarthrognathus broomi (Cynodontia, Probainognathia). Anat Rec (Hoboken) 2024; 307:1538-1558. [PMID: 38131650 DOI: 10.1002/ar.25363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Diarthrognathus broomi is a transitional taxon between non-mammaliaform cynodonts and Mammaliaformes that occurred during the Late Triassic to Early Jurassic. All known specimens of Diarthrognathus represent juveniles, and the postcrania have not been thoroughly described. The palatal, basicranial and postcranial elements of the referred specimen NMQR 1535 are described here for the first time using 3D reconstructions generated from X-ray micro-computed tomography (μCT) data. The presence of a large interpterygoid vacuity, open medial suture between the vomers and medially unossified secondary palate all support the interpretation that NMQR 1535 is a juvenile. In addition, Diarthrognathus uniquely possesses "suborbital" vacuities, which distinguishes it from every other known cynodont. The presence of an ossified olecranon process, among other features, suggests that Diarthrognathus may have been a scratch-digger. The postcranial skeleton of Diarthrognathus appears to be more plesiomorphic than tritylodontids, Brasilodon and other tritheledontids as, among other traits, it retains amphicoelous vertebrae. However, this taxon also displays synapomorphies with the more derived cynodonts, such as the mammalian pattern of neurocentral ossification and possible absence of an ectepicondylar foramen.
Collapse
Affiliation(s)
- Erin S Lund
- Evolutionary Studies Institute (ESI), School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Luke A Norton
- Evolutionary Studies Institute (ESI), School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Julien Benoit
- Evolutionary Studies Institute (ESI), School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
13
|
Laaß M, Kaestner A. Nasal turbinates of the dicynodont Kawingasaurus fossilis and the possible impact of the fossorial habitat on the evolution of endothermy. J Morphol 2023; 284:e21621. [PMID: 37585231 DOI: 10.1002/jmor.21621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023]
Abstract
The nasal region of the fossorial anomodont Kawingasaurus fossilis was virtually reconstructed from neutron-computed tomographic data and compared with the terrestrial species Pristerodon mackayi and other nonmammalian synapsids. The tomography of the Kawingasaurus skull reveals a pattern of maxillo-, naso-, fronto- and ethmoturbinal ridges that strongly resemble the mammalian condition. On both sides of the nasal cavity, remains of scrolled maxilloturbinals were preserved that were still partially articulated with maxilloturbinal ridges. Furthermore, possible remains of the lamina semicircularis as well as fronto- or ethmoturbinals were found. In Kawingasaurus, the maxilloturbinal ridges were longer and stronger than in Pristerodon. Except for the nasoturbinal ridges, no other ridges in the olfactory region and no remains of turbinates were recognized. This supports the hypothesis that naso-, fronto-, ethmo- and maxilloturbinals were a plesiomorphic feature of synapsids, but due to their cartilaginous nature in most taxa were, in almost all cases, not preserved. The well-developed maxilloturbinals in Kawingasaurus were probably an adaptation to hypoxia-induced hyperventilation in the fossorial habitat, maintaining the high oxygen demands of Kawingasaurus' large brain. The surface area of the respiratory turbinates in Kawingasaurus falls into the mammalian range, which suggests that they functioned as a countercurrent exchange system for thermoregulation and conditioning of the respiratory airflow. Our results suggest that the environmental conditions of the fossorial habitat led to specific sensory adaptations, accompanied by a pulse in brain evolution and of endothermy in cistecephalids, ~50 million years before the origin of endothermy in the mammalian stem line. This supports the Nocturnal Bottleneck Theory, in that we found evidence for a similar evolutionary scenario in cistecephalids as proposed for early mammals.
Collapse
Affiliation(s)
- Michael Laaß
- Fakultät für Geowissenschaften, Geotechnik und Bergbau, TU Bergakademie Freiberg, Freiberg, Germany
- FRM II and Physics E21, Technische Universität München, Garching, Germany
| | - Anders Kaestner
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen PSI, Switzerland
| |
Collapse
|
14
|
Norton LA, Abdala F, Benoit J. Craniodental anatomy in Permian-Jurassic Cynodontia and Mammaliaformes (Synapsida, Therapsida) as a gateway to defining mammalian soft tissue and behavioural traits. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220084. [PMID: 37183903 PMCID: PMC10184251 DOI: 10.1098/rstb.2022.0084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Mammals are diagnosed by more than 30 osteological characters (e.g. squamosal-dentary jaw joint, three inner ear ossicles, etc.) that are readily preserved in the fossil record. However, it is the suite of physiological, soft tissue and behavioural characters (e.g. endothermy, hair, lactation, isocortex and parental care), the evolutionary origins of which have eluded scholars for decades, that most prominently distinguishes living mammals from other amniotes. Here, we review recent works that illustrate how evolutionary changes concentrated in the cranial and dental morphology of mammalian ancestors, the Permian-Jurassic Cynodontia and Mammaliaformes, can potentially be used to document the origin of some of the most crucial defining features of mammals. We discuss how these soft tissue and behavioural traits are highly integrated, and how their evolution is intermingled with that of craniodental traits, thus enabling the tracing of their previously out-of-reach phylogenetic history. Most of these osteological and dental proxies, such as the maxillary canal, bony labyrinth and dental replacement only recently became more easily accessible-thanks, in large part, to the widespread use of X-ray microtomography scanning in palaeontology-because they are linked to internal cranial characters. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Luke A Norton
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
| | - Fernando Abdala
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
- Unidad Ejecutora Lillo, CONICET-Fundación Miguel Lillo, Miguel Lillo 251, Tucumán 4000, Argentina
| | - Julien Benoit
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
| |
Collapse
|
15
|
Benoit J, Norton LA, Jirah S. The maxillary canal of the titanosuchid Jonkeria (Synapsida, Dinocephalia). THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:27. [PMID: 37272962 PMCID: PMC10241669 DOI: 10.1007/s00114-023-01853-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023]
Abstract
The maxillary canal of the titanosuchid dinocephalian Jonkeria is described based on digitised serial sections. We highlight that its morphology is more like that of the tapinocephalid Moschognathus than that of Anteosaurus. This is unexpected given the similarities between the dentition of Jonkeria and Anteosaurus (i.e., presence of a canine) and the fact that the branching pattern of the maxillary canal in synapsids usually co-varies with dentition. Hypotheses to account for similarities between Jonkeria and Moschognathus (common ancestry, function in social signalling or underwater sensing) are discussed. It is likely that the maxillary canal carries a strong phylogenetic signal, here supporting the clade Tapinocephalia.
Collapse
Affiliation(s)
- Julien Benoit
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa.
| | - Luke A Norton
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Sifelani Jirah
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
16
|
Bazzana-Adams KD, Evans DC, Reisz RR. Neurosensory anatomy and function in Dimetrodon, the first terrestrial apex predator. iScience 2023; 26:106473. [PMID: 37096050 PMCID: PMC10122045 DOI: 10.1016/j.isci.2023.106473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/16/2023] [Accepted: 03/19/2023] [Indexed: 04/05/2023] Open
Abstract
Dimetrodon is among the most recognizable fossil taxa, as well as the earliest terrestrial amniote apex predator. The neuroanatomy and auditory abilities of Dimetrodon has long been the subject of interest, but palaeoneurological analyses have been limited by the lack of three-dimensional endocast data. The first virtual endocasts reveal a strongly flexed brain with enlarged floccular fossae and a surprisingly well-ossified bony labyrinth clearly preserving the semicircular canals, along with an undifferentiated vestibule and putative perilymphatic duct. This first detailed palaeoneurological reconstruction reveals potential adaptations for a predatory lifestyle and suggests Dimetrodon was able to hear a wider range of frequencies than anticipated, potentially being sensitive to frequencies equal to or higher than many extant sauropsids, despite lacking an impedance matching ear. Ancestral state reconstructions support the long-standing view of Dimetrodon as representative of the ancestral state for therapsids, while underscoring the importance of validating reconstructive analyses with fossil data.
Collapse
Affiliation(s)
- Kayla D. Bazzana-Adams
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - David C. Evans
- Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Robert R. Reisz
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- International Center of Future Science, Dinosaur Evolution Research Center, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
17
|
At the root of the mammalian mind: The sensory organs, brain and behavior of pre-mammalian synapsids. PROGRESS IN BRAIN RESEARCH 2023; 275:25-72. [PMID: 36841570 DOI: 10.1016/bs.pbr.2022.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
All modern mammals are descendants of the paraphyletic non-mammaliaform Synapsida, colloquially referred to as the "mammal-like reptiles." It has long been assumed that these mammalian ancestors were essentially reptile-like in their morphology, biology, and behavior, i.e., they had a small brain, displayed simple behavior, and their sensory organs were unrefined compared to those of modern mammals. Recent works have, however, revealed that neurological, sensory, and behavioral traits previously considered typically mammalian, such as whiskers, enhanced olfaction, nocturnality, parental care, and complex social interactions evolved before the origin of Mammaliaformes, among the early-diverging "mammal-like reptiles." In contrast, an enlarged brain did not evolve immediately after the origin of mammaliaforms. As such, in terms of paleoneurology, the last "mammal-like reptiles" were not significantly different from the earliest mammaliaforms. The abundant data and literature published in the last 10 years no longer supports the "three pulses" scenario of synapsid brain evolution proposed by Rowe and colleagues in 2011, but supports the new "outside-in" model of Rodrigues and colleagues proposed in 2018, instead. As Mesozoic reptiles were becoming the dominant taxa within terrestrial ecosystems, synapsids gradually adapted to smaller body sizes and nocturnality. This resulted in a sensory revolution in synapsids as olfaction, audition, and somatosensation compensated for the loss of visual cues. This altered sensory input is aligned with changes in the brain, the most significant of which was an increase in relative brain size.
Collapse
|
18
|
A complete skull of a stem mammal from the Late Triassic of Brazil illuminates the early evolution of prozostrodontian cynodonts. J MAMM EVOL 2023. [DOI: 10.1007/s10914-022-09648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
19
|
Cabreira SF, Schultz CL, da Silva LR, Lora LHP, Pakulski C, do Rêgo RCB, Soares MB, Smith M, Richter M. Diphyodont tooth replacement of Brasilodon-A Late Triassic eucynodont that challenges the time of origin of mammals. J Anat 2022; 241:1424-1440. [PMID: 36065514 PMCID: PMC9644961 DOI: 10.1111/joa.13756] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
Two sets of teeth (diphyodonty) characterise extant mammals but not reptiles, as they generate many replacement sets (polyphyodonty). The transition in long-extinct species from many sets to only two has to date only been reported in Jurassic eucynodonts. Specimens of the Late Triassic brasilodontid eucynodont Brasilodon have provided anatomical and histological data from three lower jaws of different growth stages. These reveal ordered and timed replacement of deciduous by adult teeth. Therefore, this diphyodont dentition, as contemporary of the oldest known dinosaurs, shows that Brasilodon falls within a range of wide variations of typically mammalian, diphyodont dental patterns. Importantly, these three lower jaws represent distinct ontogenetic stages that reveal classic features for timed control of replacement, by the generation of only one replacement set of teeth. This data shows that the primary premolars reveal a temporal replacement pattern, importantly from directly below each tooth, by controlled regulation of tooth resorption and regeneration. The complexity of the adult prismatic enamel structure with a conspicuous intra-structural Schmelzmuster array suggests that, as in the case of extant mammals, this extinct species would have probably sustained higher metabolic rates than reptiles. Furthermore, in modern mammals, diphyodonty and prismatic enamel are inextricably linked, anatomically and physiologically, to a set of other traits including placentation, endothermy, fur, lactation and even parental care. Our analysis of the osteodental anatomy of Brasilodon pushes back the origin of diphyodonty and consequently, its related biological traits to the Norian (225.42 ± 0.37 myr), and around 25 myr after the End-Permian mass extinction event.
Collapse
Affiliation(s)
| | - Cesar L. Schultz
- Instituto de GeociênciasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | | | | | | | | | - Marina B. Soares
- Instituto de GeociênciasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Departamento de Geologia e PaleontologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Moya Meredith Smith
- Earth Sciences DepartmentNatural History MuseumLondonUK
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonUK
| | | |
Collapse
|
20
|
Kerber L, Martinelli AG, Müller RT, Pretto FA. A new specimen provides insights into the anatomy of Irajatherium hernandezi, a poorly known probainognathian cynodont from the Late Triassic of southern Brazil. Anat Rec (Hoboken) 2021; 305:3113-3132. [PMID: 34779131 DOI: 10.1002/ar.24830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022]
Abstract
Irajatherium hernandezi is a poorly known non-mammaliaform cynodont from the Late Triassic of southern Brazil. A new specimen of this cynodont was found in recent fieldwork to the type-locality, the Linha São Luiz site (Candelária Sequence), providing new insights into the anatomy of this mammalian forerunner. This specimen comprises a partial skull preserving the left canine, two left and three right postcanines, and an isolated exoccipital; the left dentary with the canine and postcanines; a fragment of the right dentary; the proximal portion of the left partial humerus; the right scapula; and indeterminate fragments. Based on new material, it is here suggested that I. hernandezi presents: a rostrum broad and short, possibly long as the temporal region; three foramina on the lateral surface of the maxilla, that could correspond to the external openings of the rostral alveolar, infraorbital, and zygomaticofacial canals; a slender zygomatic arch and an absent postorbital bar; a posteriorly wide temporal fossa; a long secondary palate, slightly surpassing the level of the last postcanine tooth; the cerebral hemispheres of the cranial endocast divided by a median sulcus; the scapular blade long and straight, and the postscapular fossa absent in lateral aspect. Finally, I. hernandezi and other tritheledontids were included in a phylogenetic analysis of Eucynodontia. The analysis recovered unresolved relationships for ictidosaurs/tritheledontids, nested within a polytomy with Tritylodontidae and a clade composed by Pseudotherium argentinus, Botucaraitherium belarminoi, Brasilodon quadrangularis, and Mammaliaformes.
Collapse
Affiliation(s)
- Leonardo Kerber
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, Brazil.,Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Museu Paraense Emílio Goeldi, Coordenação de Ciências da Terra e Ecologia, Belém, Brazil
| | - Agustín G Martinelli
- CONICET-Museo Argentino de Ciencias Naturales 'Bernardino Rivadavia', Buenos Aires, Argentina
| | - Rodrigo T Müller
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, Brazil.,Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Flávio A Pretto
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, Brazil.,Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
21
|
Shepherd GM, Rowe TB, Greer CA. An Evolutionary Microcircuit Approach to the Neural Basis of High Dimensional Sensory Processing in Olfaction. Front Cell Neurosci 2021; 15:658480. [PMID: 33994949 PMCID: PMC8120314 DOI: 10.3389/fncel.2021.658480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Odor stimuli consist of thousands of possible molecules, each molecule with many different properties, each property a dimension of the stimulus. Processing these high dimensional stimuli would appear to require many stages in the brain to reach odor perception, yet, in mammals, after the sensory receptors this is accomplished through only two regions, the olfactory bulb and olfactory cortex. We take a first step toward a fundamental understanding by identifying the sequence of local operations carried out by microcircuits in the pathway. Parallel research provided strong evidence that processed odor information is spatial representations of odor molecules that constitute odor images in the olfactory bulb and odor objects in olfactory cortex. Paleontology provides a unique advantage with evolutionary insights providing evidence that the basic architecture of the olfactory pathway almost from the start ∼330 million years ago (mya) has included an overwhelming input from olfactory sensory neurons combined with a large olfactory bulb and olfactory cortex to process that input, driven by olfactory receptor gene duplications. We identify a sequence of over 20 microcircuits that are involved, and expand on results of research on several microcircuits that give the best insights thus far into the nature of the high dimensional processing.
Collapse
Affiliation(s)
- Gordon M. Shepherd
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| | - Timothy B. Rowe
- Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, United States
| | - Charles A. Greer
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
22
|
Fossoriality and evolutionary development in two Cretaceous mammaliamorphs. Nature 2021; 592:577-582. [PMID: 33828300 DOI: 10.1038/s41586-021-03433-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/09/2021] [Indexed: 02/02/2023]
Abstract
Mammaliamorpha comprises the last common ancestor of Tritylodontidae and Mammalia plus all its descendants1. Tritylodontids are nonmammaliaform herbivorous cynodonts that originated in the Late Triassic epoch, diversified in the Jurassic period2-5 and survived into the Early Cretaceous epoch6,7. Eutriconodontans have generally been considered to be an extinct mammalian group, although different views exist8. Here we report a newly discovered tritylodontid and eutriconodontan from the Early Cretaceous Jehol Biota of China. Eutriconodontans are common in this biota9, but it was not previously known to contain tritylodontids. The two distantly related species show convergent features that are adapted for fossorial life, and are the first 'scratch-diggers' known from this biota. Both species also show an increased number of presacral vertebrae, relative to the ancestral state in synapsids or mammals10,11, that display meristic and homeotic changes. These fossils shed light on the evolutionary development of the axial skeleton in mammaliamorphs, which has been the focus of numerous studies in vertebrate evolution12-17 and developmental biology18-28. The phenotypes recorded by these fossils indicate that developmental plasticity in somitogenesis and HOX gene expression in the axial skeleton-similar to that observed in extant mammals-was already in place in stem mammaliamorphs. The interaction of these developmental mechanisms with natural selection may have underpinned the diverse phenotypes of body plan that evolved independently in various clades of mammaliamorph.
Collapse
|
23
|
Kligman BT, Marsh AD, Sues HD, Sidor CA. A new non-mammalian eucynodont from the Chinle Formation (Triassic: Norian), and implications for the early Mesozoic equatorial cynodont record. Biol Lett 2020; 16:20200631. [PMID: 33142088 PMCID: PMC7728676 DOI: 10.1098/rsbl.2020.0631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/12/2020] [Indexed: 11/12/2022] Open
Abstract
The Upper Triassic tetrapod fossil record of North America features a pronounced discrepancy between the assemblages of present-day Virginia and North Carolina relative to those of the American Southwest. While both are typified by large-bodied archosaurian reptiles like phytosaurs and aetosaurs, the latter notably lacks substantial representation of mammal relatives, including cynodonts. Recently collected non-mammalian eucynodontian jaws from the middle Norian Blue Mesa Member of the Chinle Formation in northeastern Arizona shed light on the Triassic cynodont record from western equatorial Pangaea. Importantly, they reveal new biogeographic connections to eastern equatorial Pangaea as well as southern portions of the supercontinent. This discovery indicates that the faunal dissimilarity previously recognized between the western and eastern portions of equatorial Pangaea is overstated and possibly reflects longstanding sampling biases, rather than a true biogeographic pattern.
Collapse
Affiliation(s)
- Ben T. Kligman
- Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA
- Petrified Forest National Park, 1 Park Road, Petrified Forest, AZ 86028, USA
| | - Adam D. Marsh
- Petrified Forest National Park, 1 Park Road, Petrified Forest, AZ 86028, USA
| | - Hans-Dieter Sues
- Department of Paleobiology, National Museum of Natural History, MRC 121, PO Box 37012, Washington, DC 20013-7012, USA
| | - Christian A. Sidor
- Department of Biology and Burke Museum, University of Washington, Seattle, WA 98195-1800, USA
| |
Collapse
|