1
|
Maguire C, Wang C, Ramasamy A, Fonken C, Morse B, Lopez N, Wylie D, Melamed E. Molecular mimicry as a mechanism of viral immune evasion and autoimmunity. Nat Commun 2024; 15:9403. [PMID: 39477943 PMCID: PMC11526117 DOI: 10.1038/s41467-024-53658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Mimicry of host protein structures, or 'molecular mimicry', is a common mechanism employed by viruses to evade the host's immune system. Short linear amino acid (AA) molecular mimics can elicit cross-reactive antibodies and T cells from the host, but the prevalence of such mimics throughout the human virome has not been fully explored. Here we evaluate 134 human-infecting viruses and find significant usage of linear mimicry across the virome, particularly those in the Herpesviridae and Poxviridae families. Furthermore, host proteins related to cellular replication and inflammation, autosomes, the X chromosome, and thymic cells are enriched as viral mimicry targets. Finally, we find that short linear mimicry from Epstein-Barr virus (EBV) is higher in auto-antibodies found in patients with multiple sclerosis than previously appreciated. Our results thus hint that human-infecting viruses leverage mimicry in the course of their infection, and that such mimicry may contribute to autoimmunity, thereby prompting potential targets for therapies.
Collapse
Affiliation(s)
- Cole Maguire
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Chumeng Wang
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Akshara Ramasamy
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Cara Fonken
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Brinkley Morse
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Nathan Lopez
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Dennis Wylie
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX, USA
| | - Esther Melamed
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Cieri N, Hookeri N, Stromhaug K, Li L, Keating J, Díaz-Fernández P, Gómez-García de Soria V, Stevens J, Kfuri-Rubens R, Shao Y, Kooshesh KA, Powell K, Ji H, Hernandez GM, Abelin J, Klaeger S, Forman C, Clauser KR, Sarkizova S, Braun DA, Penter L, Kim HT, Lane WJ, Oliveira G, Kean LS, Li S, Livak KJ, Carr SA, Keskin DB, Muñoz-Calleja C, Ho VT, Ritz J, Soiffer RJ, Neuberg D, Stewart C, Getz G, Wu CJ. Systematic identification of minor histocompatibility antigens predicts outcomes of allogeneic hematopoietic cell transplantation. Nat Biotechnol 2024:10.1038/s41587-024-02348-3. [PMID: 39169264 PMCID: PMC11912513 DOI: 10.1038/s41587-024-02348-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/02/2024] [Indexed: 08/23/2024]
Abstract
T cell alloreactivity against minor histocompatibility antigens (mHAgs)-polymorphic peptides resulting from donor-recipient (D-R) disparity at sites of genetic polymorphisms-is at the core of the therapeutic effect of allogeneic hematopoietic cell transplantation (allo-HCT). Despite the crucial role of mHAgs in graft-versus-leukemia (GvL) and graft-versus-host disease (GvHD) reactions, it remains challenging to consistently link patient-specific mHAg repertoires to clinical outcomes. Here we devise an analytic framework to systematically identify mHAgs, including their detection on HLA class I ligandomes and functional verification of their immunogenicity. The method relies on the integration of polymorphism detection by whole-exome sequencing of germline DNA from D-R pairs with organ-specific transcriptional- and proteome-level expression. Application of this pipeline to 220 HLA-matched allo-HCT D-R pairs demonstrated that total and organ-specific mHAg load could independently predict the occurrence of acute GvHD and chronic pulmonary GvHD, respectively, and defined promising GvL targets, confirmed in a validation cohort of 58 D-R pairs, for the prevention or treatment of post-transplant disease recurrence.
Collapse
Affiliation(s)
- Nicoletta Cieri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nidhi Hookeri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kari Stromhaug
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Liang Li
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Julia Keating
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paula Díaz-Fernández
- Department of Immunology, Instituto de Investigación Sanitaria Princesa (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain
| | - Valle Gómez-García de Soria
- Department of Hematology, Instituto de Investigación Sanitaria Princesa (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain
| | - Jonathan Stevens
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Raphael Kfuri-Rubens
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Yiren Shao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Kaila Powell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Helen Ji
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gabrielle M Hernandez
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Jennifer Abelin
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Susan Klaeger
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Proteomic and Genomic Technologies, Genentech Inc, South San Francisco, CA, USA
| | - Cleo Forman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Siranush Sarkizova
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - David A Braun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Haesook T Kim
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - William J Lane
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Giacomo Oliveira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Leslie S Kean
- Harvard Medical School, Boston, MA, USA
- Division Hematology/Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Shuqiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kenneth J Livak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Derin B Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Computer Science, Metropolitan College, Boston University, Boston, MA, USA
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Cecilia Muñoz-Calleja
- Department of Immunology, Instituto de Investigación Sanitaria Princesa (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Vincent T Ho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Robert J Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Donna Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Chip Stewart
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Won T, Song EJ, Kalinoski HM, Moslehi JJ, Čiháková D. Autoimmune Myocarditis, Old Dogs and New Tricks. Circ Res 2024; 134:1767-1790. [PMID: 38843292 DOI: 10.1161/circresaha.124.323816] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
Autoimmunity significantly contributes to the pathogenesis of myocarditis, underscored by its increased frequency in autoimmune diseases such as systemic lupus erythematosus and polymyositis. Even in cases of myocarditis caused by viral infections, dysregulated immune responses contribute to pathogenesis. However, whether triggered by existing autoimmune conditions or viral infections, the precise antigens and immunologic pathways driving myocarditis remain incompletely understood. The emergence of myocarditis associated with immune checkpoint inhibitor therapy, commonly used for treating cancer, has afforded an opportunity to understand autoimmune mechanisms in myocarditis, with autoreactive T cells specific for cardiac myosin playing a pivotal role. Despite their self-antigen recognition, cardiac myosin-specific T cells can be present in healthy individuals due to bypassing the thymic selection stage. In recent studies, novel modalities in suppressing the activity of pathogenic T cells including cardiac myosin-specific T cells have proven effective in treating autoimmune myocarditis. This review offers an overview of the current understanding of heart antigens, autoantibodies, and immune cells as the autoimmune mechanisms underlying various forms of myocarditis, along with the latest updates on clinical management and prospects for future research.
Collapse
Affiliation(s)
- Taejoon Won
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign (T.W.)
| | - Evelyn J Song
- Section of Cardio-Oncology and Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco (E.J.S., J.J.M.)
| | - Hannah M Kalinoski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (H.M.K., D.Č)
| | - Javid J Moslehi
- Section of Cardio-Oncology and Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco (E.J.S., J.J.M.)
| | - Daniela Čiháková
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (H.M.K., D.Č)
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD (D.Č)
| |
Collapse
|
4
|
Maguire C, Wang C, Ramasamy A, Fonken C, Morse B, Lopez N, Wylie D, Melamed E. Molecular Mimicry as a Mechanism of Viral Immune Evasion and Autoimmunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.583134. [PMID: 38496443 PMCID: PMC10942439 DOI: 10.1101/2024.03.08.583134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Mimicry of host protein structures ("molecular mimicry") is a common mechanism employed by viruses to evade the host's immune system. To date, studies have primarily evaluated molecular mimicry in the context of full protein structural mimics. However, recent work has demonstrated that short linear amino acid (AA) molecular mimics can elicit cross-reactive antibodies and T-cells from the host, which may contribute to development and progression of autoimmunity. Despite this, the prevalence of molecular mimics throughout the human virome has not been fully explored. In this study, we evaluate 134 human infecting viruses and find significant usage of linear mimicry across the virome, particularly those in the herpesviridae and poxviridae families. Furthermore, we identify that proteins involved in cellular replication and inflammation, those expressed from autosomes, the X chromosome, and in thymic cells are over-enriched in viral mimicry. Finally, we demonstrate that short linear mimicry from Epstein-Barr virus (EBV) is significantly higher in auto-antibodies found in multiple sclerosis patients to a greater degree than previously appreciated. Our results demonstrate that human-infecting viruses frequently leverage mimicry in the course of their infection, point to substantial evolutionary pressure for mimicry, and highlight mimicry's important role in human autoimmunity. Clinically, our findings could translate to development of novel therapeutic strategies that target viral infections linked to autoimmunity, with the goal of eliminating disease-associated latent viruses and preventing their reactivation.
Collapse
Affiliation(s)
- Cole Maguire
- The University of Texas at Austin, Department of Neurology
| | - Chumeng Wang
- The University of Texas at Austin, Department of Neurology
| | | | - Cara Fonken
- The University of Texas at Austin, Department of Neurology
| | - Brinkley Morse
- The University of Texas at Austin, Department of Neurology
| | - Nathan Lopez
- The University of Texas at Austin, Department of Neurology
| | - Dennis Wylie
- The University of Texas at Austin, Center for Biomedical Research Support
| | - Esther Melamed
- The University of Texas at Austin, Department of Neurology
| |
Collapse
|
5
|
Vargas Aguilar S, Cui M, Tan W, Sanchez-Ortiz E, Bassel-Duby R, Liu N, Olson EN. The PD-1-PD-L1 pathway maintains an immunosuppressive environment essential for neonatal heart regeneration. NATURE CARDIOVASCULAR RESEARCH 2024; 3:389-402. [PMID: 38737787 PMCID: PMC11086661 DOI: 10.1038/s44161-024-00447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/05/2024] [Indexed: 05/14/2024]
Abstract
The adult mouse heart responds to injury by scarring with consequent loss of contractile function, whereas the neonatal heart possesses the ability to regenerate. Activation of the immune system is among the first events upon tissue injury. It has been shown that immune response kinetics differ between regeneration and pathological remodeling, yet the underlying mechanisms of the distinct immune reactions during tissue healing remain unclear. Here we show that the immunomodulatory PD-1-PD-L1 pathway is highly active in regenerative neonatal hearts but rapidly silenced later in life. Deletion of the PD-1 receptor or inactivation of its ligand PD-L1 prevented regeneration of neonatal hearts after injury. Disruption of the pathway during neonatal cardiac injury led to increased inflammation and aberrant T cell activation, which ultimately impaired cardiac regeneration. Our findings reveal an immunomodulatory and cardioprotective role for the PD-1-PD-L1 pathway in heart regeneration and offer potential avenues for the control of adult tissue regeneration.
Collapse
Affiliation(s)
- Stephanie Vargas Aguilar
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- These authors contributed equally: Stephanie Vargas Aguilar, Miao Cui
| | - Miao Cui
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cardiology, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA, USA
- These authors contributed equally: Stephanie Vargas Aguilar, Miao Cui
| | - Wei Tan
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Efrain Sanchez-Ortiz
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ning Liu
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric N Olson
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
6
|
Thomas OG, Olsson T. Mimicking the brain: Epstein-Barr virus and foreign agents as drivers of neuroimmune attack in multiple sclerosis. Front Immunol 2023; 14:1304281. [PMID: 38022632 PMCID: PMC10655090 DOI: 10.3389/fimmu.2023.1304281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
T cells have an essential role in adaptive immunity against pathogens and cancer, but failure of thymic tolerance mechanisms can instead lead to escape of T cells with the ability to attack host tissues. Multiple sclerosis (MS) occurs when structures such as myelin and neurons in the central nervous system (CNS) are the target of autoreactive immune responses, resulting in lesions in the brain and spinal cord which cause varied and episodic neurological deficits. A role for autoreactive T cell and antibody responses in MS is likely, and mounting evidence implicates Epstein-Barr virus (EBV) in disease mechanisms. In this review we discuss antigen specificity of T cells involved in development and progression of MS. We examine the current evidence that these T cells can target multiple antigens such as those from pathogens including EBV and briefly describe other mechanisms through which viruses could affect disease. Unravelling the complexity of the autoantigen T cell repertoire is essential for understanding key events in the development and progression of MS, with wider implications for development of future therapies.
Collapse
Affiliation(s)
- Olivia G. Thomas
- Therapeutic Immune Design, Centre for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Neuroimmunology Unit, Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Tomas Olsson
- Therapeutic Immune Design, Centre for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
7
|
Orlova E, Loginova O, Shirshev S. Leptin regulates thymic plasmacytoid dendritic cell ability to influence the thymocyte distribution in vitro. Int Immunopharmacol 2023; 117:109912. [PMID: 36857934 DOI: 10.1016/j.intimp.2023.109912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
Leptin, the adipocyte-derived hormone, involved in regulating food intake and body weight, plays an important role in immunity and reproduction. Leptin signals via the specific membrane receptors expressed in most types of immune cells including dendritic cells (DCs) and thymocytes. Leptin enhances thymopoiesis and modulates T-cell-mediated immunity. Thymic plasmacytoid DCs (pDCs) are predominated in the thymus. They play an important role in thymocyte differentiation. We have analyzed whether leptin mediates its effects on human thymocytes by influencing on pDCs. We used leptin at concentration corresponding to its level during II-III trimesters of physiological pregnancy. We cultivated leptin-primed pDCs with autologous thymocytes and estimated the main thymocyte subsets expressing αβ chains of the T-cell receptor (αβTCR), natural regulatory T-cells (tTreg), natural T-helpers producing interleukin-17 (nTh17) and invariant natural killer T-cells (iNKT) in vitro. We have shown that leptin augmented CD86, CD276 expressions and depressed IL-10 productions by pDCs. Leptin-primed pDCs decreased the percentage of CD4+CD8+αβTCR+ thymocytes, increased CD4hiCD8-/loαβTCR+ cells. pDCs cultivated with leptin decreased the number of iNKT precursors, and did not change the number of tTreg and nTh17 precursors. Thus, leptin's important role in regulation of thymic pDC abilities to influence on the thymocyte distribution was indicated in vitro.
Collapse
Affiliation(s)
- Ekaterina Orlova
- Laboratory of Immunoregulation, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina str., 614015 Perm, Russia.
| | - Olga Loginova
- Laboratory of Immunoregulation, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina str., 614015 Perm, Russia.
| | - Sergei Shirshev
- Laboratory of Immunoregulation, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina str., 614015 Perm, Russia.
| |
Collapse
|
8
|
Schossig P, Coskun E, Arsenic R, Horst D, Sehouli J, Bergmann E, Andresen N, Sigler C, Busse A, Keller U, Ochsenreither S. Target Selection for T-Cell Therapy in Epithelial Ovarian Cancer: Systematic Prioritization of Self-Antigens. Int J Mol Sci 2023; 24:ijms24032292. [PMID: 36768616 PMCID: PMC9916968 DOI: 10.3390/ijms24032292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Adoptive T cell-receptor therapy (ACT) could represent a promising approach in the targeted treatment of epithelial ovarian cancer (EOC). However, the identification of suitable tumor-associated antigens (TAAs) as targets is challenging. We identified and prioritized TAAs for ACT and other immunotherapeutic interventions in EOC. A comprehensive list of pre-described TAAs was created and candidates were prioritized, using predefined weighted criteria. Highly ranked TAAs were immunohistochemically stained in a tissue microarray of 58 EOC samples to identify associations of TAA expression with grade, stage, response to platinum, and prognosis. Preselection based on expression data resulted in 38 TAAs, which were prioritized. Along with already published Cyclin A1, the TAAs KIF20A, CT45, and LY6K emerged as most promising targets, with high expression in EOC samples and several identified peptides in ligandome analysis. Expression of these TAAs showed prognostic relevance independent of molecular subtypes. By using a systematic vetting algorithm, we identified KIF20A, CT45, and LY6K to be promising candidates for immunotherapy in EOC. Results are supported by IHC and HLA-ligandome data. The described method might be helpful for the prioritization of TAAs in other tumor entities.
Collapse
Affiliation(s)
- Paul Schossig
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ebru Coskun
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ruza Arsenic
- Department of Pathology, Universitätsklinikum Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - David Horst
- Insitute of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jalid Sehouli
- Department of Gynecology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Tumorbank Ovarian Cancer Network, 13353 Berlin, Germany
| | - Eva Bergmann
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Nadine Andresen
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christian Sigler
- Charité Comprehensive Cancer Center, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Antonia Busse
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Sebastian Ochsenreither
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Charité Comprehensive Cancer Center, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Correspondence:
| |
Collapse
|
9
|
Heimli M, Flåm ST, Hjorthaug HS, Trinh D, Frisk M, Dumont KA, Ribarska T, Tekpli X, Saare M, Lie BA. Multimodal human thymic profiling reveals trajectories and cellular milieu for T agonist selection. Front Immunol 2023; 13:1092028. [PMID: 36741401 PMCID: PMC9895842 DOI: 10.3389/fimmu.2022.1092028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023] Open
Abstract
To prevent autoimmunity, thymocytes expressing self-reactive T cell receptors (TCRs) are negatively selected, however, divergence into tolerogenic, agonist selected lineages represent an alternative fate. As thymocyte development, selection, and lineage choices are dependent on spatial context and cell-to-cell interactions, we have performed Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) and spatial transcriptomics on paediatric human thymus. Thymocytes expressing markers of strong TCR signalling diverged from the conventional developmental trajectory prior to CD4+ or CD8+ lineage commitment, while markers of different agonist selected T cell populations (CD8αα(I), CD8αα(II), T(agonist), Treg(diff), and Treg) exhibited variable timing of induction. Expression profiles of chemokines and co-stimulatory molecules, together with spatial localisation, supported that dendritic cells, B cells, and stromal cells contribute to agonist selection, with different subsets influencing thymocytes at specific developmental stages within distinct spatial niches. Understanding factors influencing agonist T cells is needed to benefit from their immunoregulatory effects in clinical use.
Collapse
Affiliation(s)
- Marte Heimli
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Siri Tennebø Flåm
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | | | - Don Trinh
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Karl-Andreas Dumont
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Teodora Ribarska
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Mario Saare
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Benedicte Alexandra Lie
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway,*Correspondence: Benedicte Alexandra Lie,
| |
Collapse
|
10
|
Axelrod ML, Meijers WC, Screever EM, Qin J, Carroll MG, Sun X, Tannous E, Zhang Y, Sugiura A, Taylor BC, Hanna A, Zhang S, Amancherla K, Tai W, Wright JJ, Wei SC, Opalenik SR, Toren AL, Rathmell JC, Ferrell PB, Phillips EJ, Mallal S, Johnson DB, Allison JP, Moslehi JJ, Balko JM. T cells specific for α-myosin drive immunotherapy-related myocarditis. Nature 2022; 611:818-826. [PMID: 36385524 PMCID: PMC9930174 DOI: 10.1038/s41586-022-05432-3] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022]
Abstract
Immune-related adverse events, particularly severe toxicities such as myocarditis, are major challenges to the utility of immune checkpoint inhibitors (ICIs) in anticancer therapy1. The pathogenesis of ICI-associated myocarditis (ICI-MC) is poorly understood. Pdcd1-/-Ctla4+/- mice recapitulate clinicopathological features of ICI-MC, including myocardial T cell infiltration2. Here, using single-cell RNA and T cell receptor (TCR) sequencing of cardiac immune infiltrates from Pdcd1-/-Ctla4+/- mice, we identify clonal effector CD8+ T cells as the dominant cell population. Treatment with anti-CD8-depleting, but not anti-CD4-depleting, antibodies improved the survival of Pdcd1-/-Ctla4+/- mice. Adoptive transfer of immune cells from mice with myocarditis induced fatal myocarditis in recipients, which required CD8+ T cells. The cardiac-specific protein α-myosin, which is absent from the thymus3,4, was identified as the cognate antigen source for three major histocompatibility complex class I-restricted TCRs derived from mice with fulminant myocarditis. Peripheral blood T cells from three patients with ICI-MC were expanded by α-myosin peptides. Moreover, these α-myosin-expanded T cells shared TCR clonotypes with diseased heart and skeletal muscle, which indicates that α-myosin may be a clinically important autoantigen in ICI-MC. These studies underscore the crucial role for cytotoxic CD8+ T cells, identify a candidate autoantigen in ICI-MC and yield new insights into the pathogenesis of ICI toxicity.
Collapse
Affiliation(s)
- Margaret L Axelrod
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wouter C Meijers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Elles M Screever
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Juan Qin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Section of Cardio-Oncology and Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Mary Grace Carroll
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiaopeng Sun
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elie Tannous
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yueli Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ayaka Sugiura
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brandie C Taylor
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ann Hanna
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shaoyi Zhang
- Section of Cardio-Oncology and Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Kaushik Amancherla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Warren Tai
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Jordan J Wright
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Spencer C Wei
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susan R Opalenik
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Abigail L Toren
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P Brent Ferrell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth J Phillips
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon Mallal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James P Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Javid J Moslehi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Section of Cardio-Oncology and Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.
| | - Justin M Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
11
|
Shichkin VP, Antica M. Key Factors for Thymic Function and Development. Front Immunol 2022; 13:926516. [PMID: 35844535 PMCID: PMC9280625 DOI: 10.3389/fimmu.2022.926516] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
The thymus is the organ responsible for T cell development and the formation of the adaptive immunity function. Its multicellular environment consists mainly of the different stromal cells and maturing T lymphocytes. Thymus-specific progenitors of epithelial, mesenchymal, and lymphoid cells with stem cell properties represent only minor populations. The thymic stromal structure predominantly determines the function of the thymus. The stromal components, mostly epithelial and mesenchymal cells, form this specialized area. They support the consistent developmental program of functionally distinct conventional T cell subpopulations. These include the MHC restricted single positive CD4+ CD8- and CD4- CD8+ cells, regulatory T lymphocytes (Foxp3+), innate natural killer T cells (iNKT), and γδT cells. Several physiological causes comprising stress and aging and medical treatments such as thymectomy and chemo/radiotherapy can harm the thymus function. The present review summarizes our knowledge of the development and function of the thymus with a focus on thymic epithelial cells as well as other stromal components and the signaling and transcriptional pathways underlying the thymic cell interaction. These critical thymus components are significant for T cell differentiation and restoring the thymic function after damage to reach the therapeutic benefits.
Collapse
|
12
|
Shevyrev D, Tereshchenko V, Kozlov V, Sennikov S. Phylogeny, Structure, Functions, and Role of AIRE in the Formation of T-Cell Subsets. Cells 2022; 11:194. [PMID: 35053310 PMCID: PMC8773594 DOI: 10.3390/cells11020194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
It is well known that the most important feature of adaptive immunity is the specificity that provides highly precise recognition of the self, altered-self, and non-self. Due to the high specificity of antigen recognition, the adaptive immune system participates in the maintenance of genetic homeostasis, supports multicellularity, and protects an organism from different pathogens at a qualitatively different level than innate immunity. This seemingly simple property is based on millions of years of evolution that led to the formation of diversification mechanisms of antigen-recognizing receptors and later to the emergence of a system of presentation of the self and non-self antigens. The latter could have a crucial significance because the presentation of nearly complete diversity of auto-antigens in the thymus allows for the "calibration" of the forming repertoires of T-cells for the recognition of self, altered-self, and non-self antigens that are presented on the periphery. The central role in this process belongs to promiscuous gene expression by the thymic epithelial cells that express nearly the whole spectrum of proteins encoded in the genome, meanwhile maintaining their cellular identity. This complex mechanism requires strict control that is executed by several transcription factors. One of the most important of them is AIRE. This noncanonical transcription factor not only regulates the processes of differentiation and expression of peripheral tissue-specific antigens in the thymic medullar epithelial cells but also controls intercellular interactions in the thymus. Besides, it participates in an increase in the diversity and transfer of presented antigens and thus influences the formation of repertoires of maturing thymocytes. Due to these complex effects, AIRE is also called a transcriptional regulator. In this review, we briefly described the history of AIRE discovery, its structure, functions, and role in the formation of antigen-recognizing receptor repertoires, along with other transcription factors. We focused on the phylogenetic prerequisites for the development of modern adaptive immunity and emphasized the importance of the antigen presentation system.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Research Institute for Fundamental and Clinical Immunology (RIFCI), 630099 Novosibirsk, Russia; (V.T.); (V.K.); (S.S.)
| | | | | | | |
Collapse
|
13
|
Haunerdinger V, Moccia MD, Opitz L, Vavassori S, Dave H, Hauri-Hohl MM. Novel Combination of Surface Markers for the Reliable and Comprehensive Identification of Human Thymic Epithelial Cells by Flow Cytometry: Quantitation and Transcriptional Characterization of Thymic Stroma in a Pediatric Cohort. Front Immunol 2021; 12:740047. [PMID: 34659232 PMCID: PMC8514761 DOI: 10.3389/fimmu.2021.740047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Thymic epithelial cells (TECs) are essential in supporting the development of mature T cells from hematopoietic progenitor cells and facilitate their lineage-commitment, proliferation, T-cell receptor repertoire selection and maturation. While animal model systems have greatly aided in elucidating the contribution of stromal cells to these intricate processes, human tissue has been more difficult to study, partly due to a lack of suitable surface markers comprehensively defining human TECs. Here, we conducted a flow cytometry based surface marker screen to reliably identify and quantify human TECs and delineate medullary from cortical subsets. These findings were validated by transcriptomic and histologic means. The combination of EpCAM, podoplanin (pdpn), CD49f and CD200 comprehensively identified human TECs and not only allowed their reliable distinction in medullary and cortical subsets but also their detailed quantitation. Transcriptomic profiling of each subset in comparison to fibroblasts and endothelial cells confirmed the identity of the different stromal cell subsets sorted according to the proposed strategy. Our dataset not only demonstrated transcriptional similarities between TEC and cells of mesenchymal origin but furthermore revealed a subset-specific distribution of a specific set of extracellular matrix-related genes in TECs. This indicates that TECs significantly contribute to the distinct compartmentalization - and thus function - of the human thymus. We applied the strategy to quantify TEC subsets in 31 immunologically healthy children, which revealed sex-specific differences of TEC composition early in life. As the distribution of mature CD4- or CD8-single-positive thymocytes was correspondingly altered, the composition of the thymic epithelial compartment may directly impact on the CD4-CD8-lineage choice of thymocytes. We prove that the plain, reliable strategy proposed here to comprehensively identify human TEC subpopulations by flow cytometry based on surface marker expression is suitable to determine their frequency and phenotype in health and disease and allows sorting of live cells for downstream analysis. Its use reaches from a reliable diagnostic tool for thymic biopsies to improved phenotypic characterization of thymic grafts intended for therapeutic use.
Collapse
Affiliation(s)
- Veronika Haunerdinger
- Division of Stem Cell Transplantation and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Maria Domenica Moccia
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Stefano Vavassori
- Division of Immunology and Children's Research Center, University Children's Hospital, Pediatric Immunology, Zurich, Switzerland
| | - Hitendu Dave
- Division of Congenital Cardiovascular Surgery, University Children's Hospital and Children's Research Centre, Zurich, Switzerland
| | - Mathias M Hauri-Hohl
- Division of Stem Cell Transplantation and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
14
|
Grasso C, Pierie C, Mebius RE, van Baarsen LGM. Lymph node stromal cells: subsets and functions in health and disease. Trends Immunol 2021; 42:920-936. [PMID: 34521601 DOI: 10.1016/j.it.2021.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/04/2023]
Abstract
Lymph nodes (LNs) aid the interaction between lymphocytes and antigen-presenting cells, resulting in adequate and prolonged adaptive immune responses. LN stromal cells (LNSCs) are crucially involved in steering adaptive immune responses at different levels. Most knowledge on LNSCs has been obtained from mouse studies, and few studies indicate similarities with their human counterparts. Recent advances in single-cell technologies have revealed significant LNSC heterogeneity among different subsets with potential selective functions in immunity. This review provides an overview of current knowledge of LNSCs based on human and murine studies describing the role of these cells in health and disease.
Collapse
Affiliation(s)
- C Grasso
- Department of Rheumatology and Clinical Immunology, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center (ARC), Academic Medical Center, Amsterdam, The Netherlands
| | - C Pierie
- Department of Rheumatology and Clinical Immunology, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center (ARC), Academic Medical Center, Amsterdam, The Netherlands
| | - R E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands.
| | - L G M van Baarsen
- Department of Rheumatology and Clinical Immunology, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center (ARC), Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Ghosh D, Jiang W, Mukhopadhyay D, Mellins ED. New insights into B cells as antigen presenting cells. Curr Opin Immunol 2021; 70:129-137. [PMID: 34242927 DOI: 10.1016/j.coi.2021.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 01/06/2023]
Abstract
In addition to their role as antibody producing cells, B cells make a critical contribution to adaptive immune responses by functioning as professional antigen-presenting cells (APC). Distinctive features of B cells as APC include the expression of the B cell receptor (BCR) for antigen and regulated expression of HLA-DO. Here, we discuss recent progress in investigation of B cells as APC. We start with an update on the canonical MHC class II antigen presentation pathway in B cells and alternative pathways, including generation of extracellular vesicles. Turning to APC function, we highlight the roles of B cells as thymic APC, as APC for T follicular helper (TFH), as APC for CD4 memory T cells and as presenters of idiotypic BCR determinants. We also note recent examples that link B cell Ag-presentation to disease. Emerging evidence indicates that, in addition to unique features of B cells compared to other professional APC, there is appreciable heterogeneity among B cells, arising from, for example, B cell activation state or the microenvironment.
Collapse
Affiliation(s)
- Debopam Ghosh
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wei Jiang
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dhriti Mukhopadhyay
- Department of Surgery, University of Arizona, Tucson, AZ 85724, USA; Tuba City Regional Health Care, Tuba City, AZ 86045, USA
| | - Elizabeth D Mellins
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Marx A, Yamada Y, Simon-Keller K, Schalke B, Willcox N, Ströbel P, Weis CA. Thymus and autoimmunity. Semin Immunopathol 2021; 43:45-64. [PMID: 33537838 PMCID: PMC7925479 DOI: 10.1007/s00281-021-00842-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
The thymus prevents autoimmune diseases through mechanisms that operate in the cortex and medulla, comprising positive and negative selection and the generation of regulatory T-cells (Tregs). Egress from the thymus through the perivascular space (PVS) to the blood is another possible checkpoint, as shown by some autoimmune/immunodeficiency syndromes. In polygenic autoimmune diseases, subtle thymic dysfunctions may compound genetic, hormonal and environmental cues. Here, we cover (a) tolerance-inducing cell types, whether thymic epithelial or tuft cells, or dendritic, B- or thymic myoid cells; (b) tolerance-inducing mechanisms and their failure in relation to thymic anatomic compartments, and with special emphasis on human monogenic and polygenic autoimmune diseases and the related thymic pathologies, if known; (c) polymorphisms and mutations of tolerance-related genes with an impact on positive selection (e.g. the gene encoding the thymoproteasome-specific subunit, PSMB11), promiscuous gene expression (e.g. AIRE, PRKDC, FEZF2, CHD4), Treg development (e.g. SATB1, FOXP3), T-cell migration (e.g. TAGAP) and egress from the thymus (e.g. MTS1, CORO1A); (d) myasthenia gravis as the prototypic outcome of an inflamed or disordered neoplastic ‘sick thymus’.
Collapse
Affiliation(s)
- Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Yosuke Yamada
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Katja Simon-Keller
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Berthold Schalke
- Department of Neurology, Bezirkskrankenhaus, University of Regensburg, 93042, Regensburg, Germany
| | - Nick Willcox
- Neurosciences Group, Nuffield Department of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttigen, 37075, Göttingen, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
17
|
Abstract
Understanding the pathogenesis of certain viral agents is essential for developing new treatments and obtaining a clinical cure. With the onset of the new coronavirus (SARS-CoV-2) pandemic in the beginning of 2020, a rush to conduct studies and develop drugs has led to the publication of articles that seek to address knowledge gaps and contribute to the global scientific research community. There are still no reports on the infectivity or repercussions of SARS-CoV-2 infection on the central lymphoid organ, the thymus, nor on thymocytes or thymic epithelial cells. In this brief review, we present a hypothesis about lymphopenia observed in SARS patients and the probable pathological changes that the thymus may undergo due to this new virus.
Collapse
Affiliation(s)
- Marvin Paulo Lins
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas - Maceió/AL, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Salete Smaniotto
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas - Maceió/AL, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Alawam AS, Anderson G, Lucas B. Generation and Regeneration of Thymic Epithelial Cells. Front Immunol 2020; 11:858. [PMID: 32457758 PMCID: PMC7221188 DOI: 10.3389/fimmu.2020.00858] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/15/2020] [Indexed: 01/04/2023] Open
Abstract
The thymus is unique in its ability to support the maturation of phenotypically and functionally distinct T cell sub-lineages. Through its combined production of MHC-restricted conventional CD4+ and CD8+, and Foxp3+ regulatory T cells, as well as non-conventional CD1d-restricted iNKT cells and invariant γδT cells, the thymus represents an important orchestrator of immune system development and control. It is now clear that thymus function is largely determined by the availability of stromal microenvironments. These specialized areas emerge during thymus organogenesis and are maintained throughout life. They are formed from both epithelial and mesenchymal components, and collectively they support a stepwise program of thymocyte development. Of these stromal cells, cortical, and medullary thymic epithelial cells represent functional components of thymic microenvironments in both the cortex and medulla. Importantly, a key feature of thymus function is that levels of T cell production are not constant throughout life. Here, multiple physiological factors including aging, stress and pregnancy can have either short- or long-term detrimental impact on rates of thymus function. Here, we summarize our current understanding of the development and function of thymic epithelial cells, and relate this to strategies to protect and/or restore thymic epithelial cell function for therapeutic benefit.
Collapse
Affiliation(s)
- Abdullah S Alawam
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Graham Anderson
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Beth Lucas
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
19
|
Chong AS. B cells as antigen-presenting cells in transplantation rejection and tolerance. Cell Immunol 2020; 349:104061. [PMID: 32059816 DOI: 10.1016/j.cellimm.2020.104061] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/21/2022]
Abstract
Transplantation of fully allogeneic organs into immunocompetent recipients invariably elicits T cell and B cell responses that lead to the production of donor-specific antibodies (DSA). When immunosuppression is inadequate donor-specific T cell and B cell responses escape, leading to T cell-mediated rejection (TCMR), antibody mediated (ABMR) rejection, or mixed rejection (MR) exhibiting features of both TCMR and ABMR. Current literature suggests that ABMR is a major cause of late graft loss, and that new therapies to curtail the donor-specific humoral response are necessary. The majority of research into B cell responses elicited by allogeneic allografts in both preclinical models and clinical studies, has focused on the function of B cells as antibody-secreting cells and the pathogenic effects of DSA as mediators of ABMR. However, it has long been recognized that the DSA response to allografts is T cell-dependent, and that B cells engage in cognate interactions with T cells that provide "help" and promote B cell differentiation into antibody-secreting cells (ASCs). This review focusses the function of B cells as antigen-presenting cells (APCs) to T cells in lymphoid organs, how they may be critical APCs to T cell in the allograft, and the functional consequences of these interactions.
Collapse
Affiliation(s)
- Anita S Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL, United States.
| |
Collapse
|