1
|
Shin HJ, Kwak M, Kwon IH, Kim SH, Lee JY. Quantification of cellular uptake of gold nanoparticles via scattering intensity changes in flow cytometry. NANOSCALE ADVANCES 2025; 7:3558-3567. [PMID: 40336583 PMCID: PMC12053468 DOI: 10.1039/d4na00918e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/10/2025] [Indexed: 05/09/2025]
Abstract
Quantifying cellular uptake of nanoparticles is critical for understanding their biological interactions and optimizing their applications in nanomedicine. In this study, we developed a flow cytometry-based method to quantify the uptake of gold nanoparticles (AuNPs) using A549 cells. Taking advantage of the scattering properties of AuNPs, this method uses side scatter intensity to estimate the number of nanoparticles internalized by cells. However, directly measuring the exact number of internalized nanoparticles remains challenging due to the tendency of AuNPs to aggregate within cells. To address this, we introduce a new unit, molecules of equivalent gold nanoparticle (MEAuNP), which expresses side scatter intensity as a standardized unit based on the scattering of a single AuNP. While this method does not directly solve the problem of accurately measuring the exact number of internalized nanoparticles, it provides a semi-quantitative approach for estimating nanoparticle uptake. The obtained MEAuNP values are consistent with literature reports, suggesting that the approach yields reliable and comparable data. Moreover, the use of calibrated values ensures that consistent results can be obtained across different acquisition settings and potentially across different instruments. We further examined uptake dynamics and validated the method across multiple cell lines including HeLa, Beas-2B, Jurkat, and RPMI8226. This approach provides a robust tool for quantifying metal nanoparticle uptake, supporting the standardization of estimating uptake levels in various biological systems.
Collapse
Affiliation(s)
- Hye Ji Shin
- Biometrology Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University 99 Daehak-ro, Yuseong-gu Daejeon 34134 Republic of Korea
| | - Minjeong Kwak
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| | - Ik Hwan Kwon
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| | - Sook Heun Kim
- Inorganic Metrology Group, Division of Chemical and Materials Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| | - Ji Youn Lee
- Biometrology Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University 99 Daehak-ro, Yuseong-gu Daejeon 34134 Republic of Korea
| |
Collapse
|
2
|
Wehbe M, Kadah El Habbal R, Kaj J, Karam P. Synergistic Dual Antibacterial Activity of Magnetite Hydrogels Doped with Silver. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22865-22874. [PMID: 39417300 PMCID: PMC11526350 DOI: 10.1021/acs.langmuir.4c02964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
In this work, we utilized poly-N-isopropylacrylamide (NIPAM), magnetic nanoparticles (MNPs), and silver nitrate to prepare magnetic hydrogel microparticles doped with silver, which exhibited a dual antimicrobial effect. The antibacterial effect of these composites was mediated by the antimicrobial activity of silver and the magnetic hyperthermic induction, which we believe increased biofilm disruption and silver release into the surrounding bacterial biofilms. The prepared particles were characterized by using several analytical techniques. The particles exhibited a porous morphology impregnated evenly with silver nanoparticles, as observed by scanning electron microscopy (SEM). Furthermore, we examined the antibacterial activity of our microparticles against Escherichia coli by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Our findings revealed that the composites demonstrated significant antibacterial activity of up to 81% under magnetic hyperthermia as compared to 45% when samples were heated to the same temperature in a water bath at constant silver concentration. This demonstrates the distinctive inhibitory features of MNPs in enhancing bacterial killing when a magnetic field is applied. The findings of this study lay the groundwork for further exploration of microparticle-based antimicrobial therapies, which can contribute to the development of more advanced wound healing devices and better sterilization methods for medical devices.
Collapse
Affiliation(s)
- Mohamad Wehbe
- Chemistry Department, American University of Beirut, P.O.Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| | - Rayan Kadah El Habbal
- Chemistry Department, American University of Beirut, P.O.Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| | - Jad Kaj
- Chemistry Department, American University of Beirut, P.O.Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| | - Pierre Karam
- Chemistry Department, American University of Beirut, P.O.Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| |
Collapse
|
3
|
Li Z, Zhu Z, Qian K, Tang B, Han B, Zhong Z, Fu T, Zhou P, Stukenbrock EH, Martin FM, Yuan Z. Intraspecific diploidization of a halophyte root fungus drives heterosis. Nat Commun 2024; 15:5872. [PMID: 38997287 PMCID: PMC11245560 DOI: 10.1038/s41467-024-49468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/03/2024] [Indexed: 07/14/2024] Open
Abstract
How organisms respond to environmental stress is a key topic in evolutionary biology. This study focused on the genomic evolution of Laburnicola rhizohalophila, a dark-septate endophytic fungus from roots of a halophyte. Chromosome-level assemblies were generated from five representative isolates from structured subpopulations. The data revealed significant genomic plasticity resulting from chromosomal polymorphisms created by fusion and fission events, known as dysploidy. Analyses of genomic features, phylogenomics, and macrosynteny have provided clear evidence for the origin of intraspecific diploid-like hybrids. Notably, one diploid phenotype stood out as an outlier and exhibited a conditional fitness advantage when exposed to a range of abiotic stresses compared with its parents. By comparing the gene expression patterns in each hybrid parent triad under the four growth conditions, the mechanisms underlying growth vigor were corroborated through an analysis of transgressively upregulated genes enriched in membrane glycerolipid biosynthesis and transmembrane transporter activity. In vitro assays suggested increased membrane integrity and lipid accumulation, as well as decreased malondialdehyde production under optimal salt conditions (0.3 M NaCl) in the hybrid. These attributes have been implicated in salinity tolerance. This study supports the notion that hybridization-induced genome doubling leads to the emergence of phenotypic innovations in an extremophilic endophyte.
Collapse
Affiliation(s)
- Zhongfeng Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 100091, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Zhiyong Zhu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 100091, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
- Nanjing Forestry University, Nanjing, 100071, China
| | - Kun Qian
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Boping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng, 224002, China
| | - Baocai Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Zhenhui Zhong
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Tao Fu
- Shenzhen Zhuoyun Haizhi Medical Research Center Co., Ltd, Shenzhen, 518063, China
| | - Peng Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University, 24118, Kiel, Germany
- Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Francis M Martin
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China.
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganisms, Centre INRAE Grand Est-Nancy, 54280, Champenoux, France.
| | - Zhilin Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 100091, Beijing, China.
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China.
| |
Collapse
|
4
|
Haddad M, Frickenstein A, Wilhelm S. High-Throughput Single-Cell Analysis of Nanoparticle-Cell Interactions. Trends Analyt Chem 2023; 166:117172. [PMID: 37520860 PMCID: PMC10373476 DOI: 10.1016/j.trac.2023.117172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Understanding nanoparticle-cell interactions at single-nanoparticle and single-cell resolutions is crucial to improving the design of next-generation nanoparticles for safer, more effective, and more efficient applications in nanomedicine. This review focuses on recent advances in the continuous high-throughput analysis of nanoparticle-cell interactions at the single-cell level. We highlight and discuss the current trends in continual flow high-throughput methods for analyzing single cells, such as advanced flow cytometry techniques and inductively coupled plasma mass spectrometry methods, as well as their intersection in the form of mass cytometry. This review further discusses the challenges and opportunities with current single-cell analysis approaches and provides proposed directions for innovation in the high-throughput analysis of nanoparticle-cell interactions.
Collapse
Affiliation(s)
- Majood Haddad
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alex Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma, Norman, Oklahoma, 73019, USA
| |
Collapse
|
5
|
Mihailescu M, Miclea LC, Pleava AM, Tarba N, Scarlat EN, Negoita RD, Moisescu MG, Savopol T. Method for nanoparticles uptake evaluation based on double labeled fluorescent cells scanned in enhanced darkfield microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:2796-2810. [PMID: 37342715 PMCID: PMC10278607 DOI: 10.1364/boe.490136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023]
Abstract
We present a method that integrates the standard imaging tools for locating and detecting unlabeled nanoparticles (NPs) with computational tools for partitioning cell volumes and NPs counting within specified regions to evaluate their internal traffic. The method uses enhanced dark field CytoViva optical system and combines 3D reconstructions of double fluorescently labeled cells with hyperspectral images. The method allows the partitioning of each cell image into four regions: nucleus, cytoplasm, and two neighboring shells, as well as investigations across thin layers adjacent to the plasma membrane. MATLAB scripts were developed to process the images and to localize NPs in each region. Specific parameters were computed to assess the uptake efficiency: regional densities of NPs, flow densities, relative accumulation indices, and uptake ratios. The results of the method are in line with biochemical analyses. It was shown that a sort of saturation limit for intracellular NPs density is reached at high extracellular NPs concentrations. Higher NPs densities were found in the proximity of the plasma membranes. A decrease of the cell viability with increasing extracellular NPs concentration was observed and explained the negative correlation of the cell eccentricity with NPs number.
Collapse
Affiliation(s)
- Mona Mihailescu
- Holographic Imaging and Processing Laboratory, Physics Department, Politehnica University Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
- Centre for Research in Fundamental Sciences Applied in Engineering, Politehnica University Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Luminita C Miclea
- Department of Biophysics and Cellular Biotechnology, Research Center of Excellence in Biophysics and Cellular Biotechnology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Ana M Pleava
- CAMPUS Research Center, University "Politehnica" of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Nicolae Tarba
- Doctoral School of Automatic Control and Computers, Physics Department, Faculty of Applied Sciences, University "Politehnica" of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Eugen N Scarlat
- Holographic Imaging and Processing Laboratory, Physics Department, Politehnica University Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Raluca D Negoita
- Applied Sciences Doctoral School, Politehnica University of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Mihaela G Moisescu
- Department of Biophysics and Cellular Biotechnology, Research Center of Excellence in Biophysics and Cellular Biotechnology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Tudor Savopol
- Department of Biophysics and Cellular Biotechnology, Research Center of Excellence in Biophysics and Cellular Biotechnology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| |
Collapse
|
6
|
Wang Z, Ma Z, Cheng X, Li X, Wang N, Zhang F, Wei B, Li Q, An Z, Wu W, Liu S. Effects of silver nanoparticles on maternal mammary glands and offspring development under lactation exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114869. [PMID: 37037110 DOI: 10.1016/j.ecoenv.2023.114869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
The widespread applications of silver nanoparticles (AgNPs) throughout our daily lives have raised concerns regarding their environmental health and safety (EHS). Despite an increasing number of studies focused on the EHS impacts of AgNPs, there remain significant knowledge gaps with respect to their potential health impacts on susceptible populations, such as lactating mothers and infants. Herein, we aimed to investigate the deleterious effects of AgNPs with different sizes (20 and 40 nm) and surface coatings (PVP and BPEI) on maternal mice and their offspring following lactation exposure at doses of 20, 100 and 400 μg/kg body weight. We discovered that AgNPs could accumulate in the maternal mammary glands and disrupt the epithelial barrier in a dose-dependent manner. Notably, BPEI-coated AgNPs caused more damage to the mammary glands than PVP-coated particles. Importantly, we observed that, while AgNPs were distributed throughout the blood and main tissues, they were particularly enriched in the brains of breastfed offspring after maternal exposure during lactation, exhibiting exposure dosage- and particle coating-dependent patterns. Compared to PVP-coated nanoparticles, BPEI-coated AgNPs were more readily transferred to the offspring, possibly due to their enhanced deposition in maternal mammary glands. Moreover, we observed reduced body weight, blood cell toxicity, and tissue injuries in breastfed offspring whose dams received AgNPs. As a whole, these results reveal that maternal exposure to AgNPs results in the translocation of AgNPs into offspring via breastfeeding, inducing developmental impairments in these breastfed offspring. This study provides important new insights into the EHS impacts of AgNP consumption during lactation.
Collapse
Affiliation(s)
- Zhe Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Zhenzhu Ma
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xiaodie Cheng
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xiaoya Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Ning Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Fengquan Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Bing Wei
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Qingqing Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Vis B, Powell JJ, Hewitt RE. Label-Free Identification of Persistent Particles in Association with Primary Immune Cells by Imaging Flow Cytometry. Methods Mol Biol 2023; 2635:135-148. [PMID: 37074661 DOI: 10.1007/978-1-0716-3020-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The frequency of human exposure to persistent particles via consumer products, air pollution, and work environments is a modern-day hazard and an active area of research. Particle density and crystallinity, which often dictate their persistence in biological systems, are associated with strong light absorption and reflectance. These attributes allow several persistent particle types to be identified without the use of additional labels using laser light-based techniques such as microscopy, flow cytometry, and imaging flow cytometry. This form of identification allows the direct analysis of environmental persistent particles in association with biological samples after in vivo studies and real-life exposures. Microscopy and imaging flow cytometry have progressed with computing capabilities and fully quantitative imaging techniques can now plausibly detail the interactions and effects of micron and nano-sized particles with primary cells and tissues. This chapter summarises studies which have utilized the strong light absorption and reflectance characteristics of particles for their detection in biological specimens. This is followed by the description of methods for the analysis of whole blood samples and the use of imaging flow cytometry to identify particles in association with primary peripheral blood phagocytic cells, using brightfield and darkfield parameters.
Collapse
Affiliation(s)
- Bradley Vis
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jonathan J Powell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Rachel E Hewitt
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Kumar R, Nain V, Duhan JS. An Ecological Approach to Control Pathogens of Lycopersicon esculentum L. by Slow Release of Mancozeb from Biopolymeric Conjugated Nanoparticles. J Xenobiot 2022; 12:329-343. [PMID: 36412767 PMCID: PMC9680232 DOI: 10.3390/jox12040023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
To control insects, weeds, and infections in crops, old-fashioned pesticide formulations (with massive quantities of heavy metals and a variety of chemicals) are used. By biological amplification via the food chain, many of these established pesticide formulations have accumulated in living systems and caused environmental pollution. To form a nanoparticulate matrix with a diameter ranging from 322.2 ± 0.9 to 403.7 ± 0.7 nm, mancozeb was embedded in chitosan-gum acacia (CSGA) biopolymers and loadings were confirmed via TEM and FTIR. Differential scanning calorimetry analyses were carried out as part of the investigation. Inhibition of Alternaria alternata by nanoparticles (NPs) with 1.0 mg/mL mancozeb (CSGA-1.0) was 85.2 ± 0.7 % at 0.5 ppm, whereas for Stemphylium lycopersici it was 62.1 ± 0.7% in the mycelium inhibition method. NPs demonstrated antimicrobial action in pot house environments. After ten hours, the mancozeb was liberated from the nanoformulations due to polymer matrix diffusion and relaxation, compared to 2 h for commercial mancozeb. Even while drug-loaded conjugated nanoparticles have equivalent antifungal activities, they have a lower release rate and, hence, reduced toxicology compared to commercial mancozeb. Therefore, this method can be employed to implement sustainable farming techniques in the future.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India
- Correspondence: (R.K.); (J.S.D.); Tel.: +91-9416072588 (R.K.); +91-9416725009 (J.S.D.)
| | - Vikash Nain
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Joginder Singh Duhan
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India
- Correspondence: (R.K.); (J.S.D.); Tel.: +91-9416072588 (R.K.); +91-9416725009 (J.S.D.)
| |
Collapse
|
9
|
Silver Nanoparticles Biocomposite Films with Antimicrobial Activity: In Vitro and In Vivo Tests. Int J Mol Sci 2022; 23:ijms231810671. [PMID: 36142584 PMCID: PMC9503464 DOI: 10.3390/ijms231810671] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Overuse of antimicrobials by the population has contributed to genetic modifications in bacteria and development of antimicrobial resistance, which is very difficult to combat nowadays. To solve this problem, it is necessary to develop new systems for the administration of antimicrobial active principles. Biocomposite systems containing silver nanoparticles can be a good medical alternative. In this context, the main objective of this study was to obtain a complex system in the form of a biocomposite film with antimicrobial properties based on chitosan, poly (vinyl alcohol) and silver nanoparticles. This new system was characterized from a structural and morphological point of view. The swelling degree, the mechanical properties and the efficiency of loading and release of an anti-inflammatory drug were also evaluated. The obtained biocomposite films are biocompatibles, this having been demonstrated by in vitro tests on HDFa cell lines, and have antimicrobial activity against S. aureus. The in vivo tests, carried out on rabbit subjects, highlighted the fact that signs of reduced fibrosis were specific to the C2P4.10.Ag1-IBF film sample, demonstrated by: intense expression of TNFAIP8 factors; as an anti-apoptotic marker, MHCII that favors immune cooperation among local cells; αSMA, which marks the presence of myofibroblasts involved in approaching the interepithelial spaces for epithelialization; and reduced expression of the Cox2 indicator of inflammation, Col I.
Collapse
|
10
|
Friedrich RP, Kappes M, Cicha I, Tietze R, Braun C, Schneider-Stock R, Nagy R, Alexiou C, Janko C. Optical Microscopy Systems for the Detection of Unlabeled Nanoparticles. Int J Nanomedicine 2022; 17:2139-2163. [PMID: 35599750 PMCID: PMC9115408 DOI: 10.2147/ijn.s355007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/27/2022] [Indexed: 12/01/2022] Open
Abstract
Label-free detection of nanoparticles is essential for a thorough evaluation of their cellular effects. In particular, nanoparticles intended for medical applications must be carefully analyzed in terms of their interactions with cells, tissues, and organs. Since the labeling causes a strong change in the physicochemical properties and thus also alters the interactions of the particles with the surrounding tissue, the use of fluorescently labeled particles is inadequate to characterize the effects of unlabeled particles. Further, labeling may affect cellular uptake and biocompatibility of nanoparticles. Thus, label-free techniques have been recently developed and implemented to ensure a reliable characterization of nanoparticles. This review provides an overview of frequently used label-free visualization techniques and highlights recent studies on the development and usage of microscopy systems based on reflectance, darkfield, differential interference contrast, optical coherence, photothermal, holographic, photoacoustic, total internal reflection, surface plasmon resonance, Rayleigh light scattering, hyperspectral and reflectance structured illumination imaging. Using these imaging modalities, there is a strong enhancement in the reliability of experiments concerning cellular uptake and biocompatibility of nanoparticles, which is crucial for preclinical evaluations and future medical applications.
Collapse
Affiliation(s)
- Ralf P Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Mona Kappes
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Iwona Cicha
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Christian Braun
- Institute of Legal Medicine, Ludwig-Maximilians-Universität München, München, 80336, Germany
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, Institute of Pathology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Roland Nagy
- Department Elektrotechnik-Elektronik-Informationstechnik (EEI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Correspondence: Christina Janko, Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Glückstrasse 10a, Erlangen, 91054, Germany, Tel +49 9131 85 33142, Fax +49 9131 85 34808, Email
| |
Collapse
|
11
|
The Influence of Silver Nanoparticle Form on the Toxicity in Freshwater Mussels. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The contribution of the form of silver nanomaterials (nAg) towards toxicity in aquatic organisms is not well understood. The purpose of this study was to examine the toxicity of various structures (sphere, cube and prism) of nAg in Dreissena bugensis mussels. Mussels were exposed to increasing concentrations of polyvinyl-coated nAg of the same size for 96 h at 15 °C. They were then analyzed for biophysical changes in the cytoplasm (viscosity, protein aggregation and lipids), neuro-activity (fractal kinetics of acetylcholinesterase (AChE)), oxidative stress (labile zinc (Zn) and lipid peroxidation) and inflammation (arachidonate cyclooxygenase). Although some decreasing effects in protein aggregation were observed, viscosity was more strongly decreased in mussels exposed to spheric and prismatic nAg. The activity of AChE was significantly decreased in the following form-dependent manner: prismatic > cubic > spheric nAg. The fractal dimension of AChE reactions was reduced by all geometries of nAg, while dissolved Ag had no effects. For nanoparticles with the same coating and relative size, spheric nAg produced more significant changes towards the fractal dimension of AChE, while prismatic nAg increased both protein aggregation and viscosity, whereas cubic nAg decreased protein aggregation in the cytoplasm. It is concluded that the geometries of nanoparticles could influence toxicity in aquatic organisms.
Collapse
|
12
|
Lujan H, Mulenos MR, Carrasco D, Zechmann B, Hussain SM, Sayes CM. Engineered aluminum nanoparticle induces mitochondrial deformation and is predicated on cell phenotype. Nanotoxicology 2022; 15:1215-1232. [PMID: 35077653 DOI: 10.1080/17435390.2021.2011974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The main role of mitochondria is to generate the energy necessary for the cell to survive and adapt to different environmental stresses. Energy demand varies depending on the phenotype of the cell. To efficiently meet metabolic demands, mitochondria require a specific proton homeostasis and defined membrane structures to facilitate adenosine triphosphate production. This homeostatic environment is constantly challenged as mitochondria are a major target for damage after exposure to environmental contaminants. Here we report changes in mitochondrial structure profiles in different cell types using electron microscopy in response to particle stress exposure in three different representative lung cell types. Endpoint analyses include nanoparticle intracellular uptake; quantitation of mitochondrial size, shape, and ultrastructure; and confirmation of autophagosome formation. Results show that low-dose aluminum nanoparticles exposure (1 ppm; 1 µg/mL; 1.6 × 1 0-7 µg/cell)) to primary and asthma cells incurred significant mitochondrial deformation and increases in mitophagy, while cancer cells exhibited only slight changes in mitochondrial morphology and an increase in lipid body formation. These results show low-dose aluminum nanoparticle exposure induces subtle changes in the mitochondria of specific lung cells that can be quantified with microscopy techniques. Furthermore, within the lung, cell type by the nature of origin (i.e. primary vs. cancer vs. asthma) dictates mitochondrial morphology, metabolic health, and the metabolic stress response of the cell.
Collapse
Affiliation(s)
- Henry Lujan
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Marina R Mulenos
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Desirae Carrasco
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, TX, USA
| | - Saber M Hussain
- Biotechnology Branch, Airman Biosciences Division, 711th Human Performance Wing, Air Force Research Laboratory, Dayton, OH, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
13
|
Portilla Y, Mulens-Arias V, Paradela A, Ramos-Fernández A, Pérez-Yagüe S, Morales MP, Barber DF. The surface coating of iron oxide nanoparticles drives their intracellular trafficking and degradation in endolysosomes differently depending on the cell type. Biomaterials 2022; 281:121365. [PMID: 35038611 DOI: 10.1016/j.biomaterials.2022.121365] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
Magnetic nanoparticles (MNPs) are potential theranostic tools that are biodegraded through different endocytic pathways. However, little is known about the endolysosomal network through which MNPs transit and the influence of the surface coating in this process. Here, we studied the intracellular transit of two MNPs with identical iron oxide core size but with two distinct coatings: 3-aminopropyl-trietoxysilane (APS) and dimercaptosuccinic acid (DMSA). Using endolysosomal markers and a high throughput analysis of the associated proteome, we tracked the MNPs intracellularly in two different mouse cell lines, RAW264.7 (macrophages) and Pan02 (tumor cells). We did not detect differences in the MNP trafficking kinetics nor in the MNP-containing endolysosome phenotype in Pan02 cells. Nonetheless, DMSA-MNPs transited at slower rate than APS-MNPs in macrophages as measured by MNP accumulation in Rab7+ endolysosomes. Macrophage DMSA-MNP-containing endolysosomes had a higher percentage of lytic enzymes and catalytic proteins than their APS-MNP counterparts, concomitantly with a V-type ATPase enrichment, suggesting an acidic nature. Consequently, more autophagic vesicles are induced by DMSA-MNPs in macrophages, enhancing the expression of iron metabolism-related genes and proteins. Therefore, unlike Pan02 cells, the MNP coating appears to influence the intracellular trafficking rate and the endolysosome nature in macrophages. These results highlight how the MNP coating can determine the nanoparticle intracellular fate and biodegradation in a cell-type bias.
Collapse
Affiliation(s)
- Yadileiny Portilla
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Vladimir Mulens-Arias
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain; Current address: Integrative Biomedical Materials and Nanomedicine Lab, Department of Experimental and Health Sciences (DCEXS), Pompeu Fabra University, PRBB, Carrer Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Alberto Paradela
- Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Antonio Ramos-Fernández
- Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Sonia Pérez-Yagüe
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - M Puerto Morales
- Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Domingo F Barber
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain.
| |
Collapse
|
14
|
Rohde MM, Snyder CM, Sloop J, Solst SR, Donati GL, Spitz DR, Furdui CM, Singh R. The mechanism of cell death induced by silver nanoparticles is distinct from silver cations. Part Fibre Toxicol 2021; 18:37. [PMID: 34649580 PMCID: PMC8515661 DOI: 10.1186/s12989-021-00430-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/21/2021] [Indexed: 01/21/2023] Open
Abstract
Background Precisely how silver nanoparticles (AgNPs) kill mammalian cells still is not fully understood. It is not clear if AgNP-induced damage differs from silver cation (Ag+), nor is it known how AgNP damage is transmitted from cell membranes, including endosomes, to other organelles. Cells can differ in relative sensitivity to AgNPs or Ag+, which adds another layer of complexity to identifying specific mechanisms of action. Therefore, we determined if there were specific effects of AgNPs that differed from Ag+ in cells with high or low sensitivity to either toxicant. Methods Cells were exposed to intact AgNPs, Ag+, or defined mixtures of AgNPs with Ag+, and viability was assessed. The level of dissolved Ag+ in AgNP suspensions was determined using inductively coupled plasma mass spectrometry. Changes in reactive oxygen species following AgNP or Ag+ exposure were quantified, and treatment with catalase, an enzyme that catalyzes the decomposition of H2O2 to water and oxygen, was used to determine selectively the contribution of H2O2 to AgNP and Ag+ induced cell death. Lipid peroxides, formation of 4-hydroxynonenol protein adducts, protein thiol oxidation, protein aggregation, and activation of the integrated stress response after AgNP or Ag+ exposure were quantified. Lastly, cell membrane integrity and indications of apoptosis or necrosis in AgNP and Ag+ treated cells were examined by flow cytometry. Results We identified AgNPs with negligible Ag+ contamination. We found that SUM159 cells, which are a triple-negative breast cancer cell line, were more sensitive to AgNP exposure less sensitive to Ag+ compared to iMECs, an immortalized, breast epithelial cell line. This indicates that high sensitivity to AgNPs was not predictive of similar sensitivity to Ag+. Exposure to AgNPs increased protein thiol oxidation, misfolded proteins, and activation of the integrated stress response in AgNP sensitive SUM159 cells but not in iMEC cells. In contrast, Ag+ cause similar damage in Ag+ sensitive iMEC cells but not in SUM159 cells. Both Ag+ and AgNP exposure increased H2O2 levels; however, treatment with catalase rescued cells from Ag+ cytotoxicity but not from AgNPs. Instead, our data support a mechanism by which damage from AgNP exposure propagates through cells by generation of lipid peroxides, subsequent lipid peroxide mediated oxidation of proteins, and via generation of 4-hydroxynonenal (4-HNE) protein adducts. Conclusions There are distinct differences in the responses of cells to AgNPs and Ag+. Specifically, AgNPs drive cell death through lipid peroxidation leading to proteotoxicity and necrotic cell death, whereas Ag+ increases H2O2, which drives oxidative stress and apoptotic cell death. This work identifies a previously unknown mechanism by which AgNPs kill mammalian cells that is not dependent upon the contribution of Ag+ released in extracellular media. Understanding precisely which factors drive the toxicity of AgNPs is essential for biomedical applications such as cancer therapy, and of importance to identifying consequences of unintended exposures. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00430-1.
Collapse
Affiliation(s)
- Monica M Rohde
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC, 27157, USA
| | - Christina M Snyder
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC, 27157, USA
| | - John Sloop
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Shane R Solst
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - George L Donati
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.,Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston Salem, NC, 27157, USA
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC, 27157, USA. .,Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston Salem, NC, 27157, USA.
| |
Collapse
|
15
|
Wang L, Mello DF, Zucker RM, Rivera NA, Rogers NMK, Geitner NK, Boyes WK, Wiesner MR, Hsu-Kim H, Meyer JN. Lack of Detectable Direct Effects of Silver and Silver Nanoparticles on Mitochondria in Mouse Hepatocytes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11166-11175. [PMID: 34346225 PMCID: PMC8814061 DOI: 10.1021/acs.est.1c02295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Silver nanoparticles (AgNPs) are well-proven antimicrobial nanomaterials, yet little is elucidated regarding the mechanism underlying cytotoxicity induced by these nanoparticles. Here, we tested the hypothesis that mitochondria are primary intracellular targets of two AgNPs and silver ions in mouse hepatocytes (AML12) cultured in glucose- and galactose-based media. AML12 cells were more sensitive to mitochondrial uncoupling when grown with galactose rather than glucose. However, 24 h treatments with 15 nm AgNPs and 6 nm GA-AgNPs (5 and 10 μg/mL) and AgNO3 (1 and 3 μg/mL), concentrations that resulted in either 10 or 30% cytotoxicity, failed to cause more toxicity to AML12 cells grown on galactose than glucose. Furthermore, colocalization analysis and subcellular Ag quantification did not show any enrichment of silver content in mitochondria in either medium. Finally, the effects of the same exposures on mitochondrial respiration were mild or undetectable, a result inconsistent with mitochondrial toxicity causing cell death. Our results suggest that neither ionic Ag nor the AgNPs that we tested specifically target mitochondria and are inconsistent with mitochondrial dysfunction being the primary cause of cell death after Ag exposure under these conditions.
Collapse
Affiliation(s)
- Lu Wang
- Department of Nicholas School of the Environment, Duke University, Durham, NC, 27708
- Department of Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Danielle F. Mello
- Department of Nicholas School of the Environment, Duke University, Durham, NC, 27708
| | - Robert M. Zucker
- Department of U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, 27709
| | - Nelson A. Rivera
- Department of Civil & Environmental Engineering, Duke University, Durham, NC, 27708
| | - Nicholas M K Rogers
- Department of Civil & Environmental Engineering, Duke University, Durham, NC, 27708
| | - Nicholas K. Geitner
- Department of U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, 27709
| | - William K. Boyes
- Department of U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, 27709
| | - Mark R. Wiesner
- Department of Civil & Environmental Engineering, Duke University, Durham, NC, 27708
| | - Heileen Hsu-Kim
- Department of Civil & Environmental Engineering, Duke University, Durham, NC, 27708
| | - Joel N. Meyer
- Department of Nicholas School of the Environment, Duke University, Durham, NC, 27708
| |
Collapse
|
16
|
Pangli H, Vatanpour S, Hortamani S, Jalili R, Ghahary A. Incorporation of Silver Nanoparticles in Hydrogel Matrices for Controlling Wound Infection. J Burn Care Res 2021; 42:785-793. [PMID: 33313805 PMCID: PMC8335948 DOI: 10.1093/jbcr/iraa205] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
For centuries, silver has been recognized for its antibacterial properties. With the development of nanotechnology, silver nanoparticles (AgNPs) have garnered significant attention for their diverse uses in antimicrobial gel formulations, dressings for wound healing, orthopedic applications, medical catheters and instruments, implants, and contact lens coatings. A major focus has been determining AgNPs' physical, chemical, and biological characteristics and their potential to be incorporated in biocomposite materials, particularly hydrogel scaffolds, for burn and wound healing. Though AgNPs have been rigorously explored and extensively utilized in medical and nonmedical applications, important research is still needed to elucidate their antibacterial activity when incorporated in wound-healing scaffolds. In this review, we provide an up-to-date, 10-yr (2010-2019), comprehensive literature review on advancements in the understanding of AgNP characteristics, including the particles' preparation and mechanisms of activity, and we explore various hydrogel scaffolds for delivering AgNPs.
Collapse
Affiliation(s)
- Harpreet Pangli
- BC Professional Firefighters’ Burn and Wound Healing Research Group, Department of Surgery, Division of Plastic Surgery, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Division of Plastic Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Saba Vatanpour
- BC Professional Firefighters’ Burn and Wound Healing Research Group, Department of Surgery, Division of Plastic Surgery, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| | - Shamim Hortamani
- BC Professional Firefighters’ Burn and Wound Healing Research Group, Department of Surgery, Division of Plastic Surgery, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| | - Reza Jalili
- BC Professional Firefighters’ Burn and Wound Healing Research Group, Department of Surgery, Division of Plastic Surgery, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| | - Aziz Ghahary
- BC Professional Firefighters’ Burn and Wound Healing Research Group, Department of Surgery, Division of Plastic Surgery, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| |
Collapse
|
17
|
RoŽanc J, Finšgar M, Maver U. Progressive use of multispectral imaging flow cytometry in various research areas. Analyst 2021; 146:4985-5007. [PMID: 34337638 DOI: 10.1039/d1an00788b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Multi-spectral imaging flow cytometry (MIFC) has become one of the most powerful technologies for investigating general analytics, molecular and cell biology, biotechnology, medicine, and related fields. It combines the capabilities of the morphometric and photometric analysis of single cells and micrometer-sized particles in flux with regard to thousands of events. It has become the tool of choice for a wide range of research and clinical applications. By combining the features of flow cytometry and fluorescence microscopy, it offers researchers the ability to couple the spatial resolution of multicolour images of cells and organelles with the simultaneous analysis of a large number of events in a single system. This provides the opportunity to visually confirm findings and collect novel data that would otherwise be more difficult to obtain. This has led many researchers to design innovative assays to gain new insight into important research questions. To date, it has been successfully used to study cell morphology, surface and nuclear protein co-localization, protein-protein interactions, cell signaling, cell cycle, cell death, and cytotoxicity, intracellular calcium, drug uptake, pathogen internalization, and other applications. Herein we describe some of the recent advances in the field of multiparametric imaging flow cytometry methods in various research areas.
Collapse
Affiliation(s)
- Jan RoŽanc
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, SI-2000 Maribor, Slovenia.
| | | | | |
Collapse
|
18
|
Cortez‐Jugo C, Czuba‐Wojnilowicz E, Tan A, Caruso F. A Focus on "Bio" in Bio-Nanoscience: The Impact of Biological Factors on Nanomaterial Interactions. Adv Healthc Mater 2021; 10:e2100574. [PMID: 34170631 DOI: 10.1002/adhm.202100574] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Indexed: 12/17/2022]
Abstract
Bio-nanoscience research encompasses studies on the interactions of nanomaterials with biological structures or what is commonly referred to as the biointerface. Fundamental studies on the influence of nanomaterial properties, including size, shape, composition, and charge, on the interaction with the biointerface have been central in bio-nanoscience to assess nanomaterial efficacy and safety for a range of biomedical applications. However, the state of the cells, tissues, or biological models can also influence the behavior of nanomaterials at the biointerface and their intracellular processing. Focusing on the "bio" in bio-nano, this review discusses the impact of biological properties at the cellular, tissue, and whole organism level that influences nanomaterial behavior, including cell type, cell cycle, tumor physiology, and disease states. Understanding how the biological factors can be addressed or exploited to enhance nanomaterial accumulation and uptake can guide the design of better and suitable models to improve the outcomes of materials in nanomedicine.
Collapse
Affiliation(s)
- Christina Cortez‐Jugo
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Ewa Czuba‐Wojnilowicz
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Abigail Tan
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
19
|
Sola F, Canonico B, Montanari M, Volpe A, Barattini C, Pellegrino C, Cesarini E, Guescini M, Battistelli M, Ortolani C, Ventola A, Papa S. Uptake and Intracellular Trafficking Studies of Multiple Dye-Doped Core-Shell Silica Nanoparticles in Lymphoid and Myeloid Cells. Nanotechnol Sci Appl 2021; 14:29-48. [PMID: 33727804 PMCID: PMC7954439 DOI: 10.2147/nsa.s290867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/22/2021] [Indexed: 12/27/2022] Open
Abstract
Introduction Since most biologically active macromolecules are natural nanostructures, operating in the same scale of biomolecules gives the great advantage to enhance the interaction with cellular components. Noteworthy efforts in nanotechnology, particularly in biomedical and pharmaceutical fields, have propelled a high number of studies on the biological effects of nanomaterials. Moreover, the determination of specific physicochemical properties of nanomaterials is crucial for the evaluation and design of novel safe and efficient therapeutics and diagnostic tools. In this in vitro study, we report a physicochemical characterisation of fluorescent silica nanoparticles (NPs), interacting with biological models (U937 and PBMC cells), describing the specific triggered biologic response. Methods Flow Cytometric and Confocal analyses are the main method platforms. However TEM, NTA, DLS, and chemical procedures to synthesize NPs were employed. Results NTB700 NPs, employed in this study, are fluorescent core-shell silica nanoparticles, synthesized through a micelle-assisted method, where the fluorescence energy transfer process, known as FRET, occurs at a high efficiency rate. Using flow cytometry and confocal microscopy, we observed that NTB700 NP uptake seemed to be a rapid, concentration-, energy- and cell type-dependent process, which did not induce significant cytotoxic effects. We did not observe a preferred route of internalization, although their size and the possible aggregated state could influence their extrusion. At this level of analysis, our investigation focuses on lysosome and mitochondria pathways, highlighting that both are involved in NP co-localization. Despite the main mitochondria localization, NPs did not induce a significant increase of intracellular ROS, known inductors of apoptosis, during the time course of analyses. Finally, both lymphoid and myeloid cells are able to release NPs, essential to their biosafety. Discussion These data allow to consider NTB700 NPs a promising platform for future development of a multifunctional system, by combining imaging and localized therapeutic applications in a unique tool.
Collapse
Affiliation(s)
- Federica Sola
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy.,AcZon Srl, Monte San Pietro, BO, 40050, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy
| | | | - Chiara Barattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy.,AcZon Srl, Monte San Pietro, BO, 40050, Italy
| | | | - Erica Cesarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy
| | - Michela Battistelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy
| | | | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy
| |
Collapse
|
20
|
Reis DS, de Oliveira VL, Silva ML, Paniago RM, Ladeira LO, Andrade LM. Gold nanoparticles enhance fluorescence signals by flow cytometry at low antibody concentrations. J Mater Chem B 2021; 9:1414-1423. [PMID: 33464273 DOI: 10.1039/d0tb02309d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Flow cytometry is a universally applied technique in many biological and clinical assays to evaluate cells, bacteria, parasites, and particles at a micrometre scale. More advanced flow cytometers can detect small molecules down to the nanometre scale that may identify intracellular nanostructures. Advancements in the field of nanobiotechnology have led to techniques that allow the study of cellular behaviour after exposure to nanomaterials, particularly, metal nanoparticles. The optical properties of gold nanoparticles regarding surface plasmon resonance (SPR) are established to increase the fluorescence quantum yields of several dyes working as optical antennas, enabling the enhancement of light emission in fluorescent emitters. In this work we constructed a nanoprobe using gold nanoparticles coated with primary antibody Cetuximab. Then, we investigated whether this nanoprobe labelled with secondary fluorescent antibody Alexa Fluor 488, at low concentrations, could promote fluorescent signal enhancement, associated with SPR, and detected by the flow cytometry technique. Our results showed an enhanced fluorescent signal likely due to the proximity between the extinction coefficient of gold nanoparticles and the emission peak of Alexa Fluor 488, at exceptionally low concentrations, occurring within a high level of specificity. Moreover, the nanoprobe did not alter the cellular viability suggesting gold nanoparticles as a feasible approach for cell labelling using low concentrations of secondary antibodies for routine flow cytometry applications.
Collapse
Affiliation(s)
- Daniela S Reis
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Brazil
| | | | - Misael L Silva
- Merck Life Science Research & Applied, Alphaville industrial, Barueri, Brazil
| | - Roberto M Paniago
- Departamento de Física, Nanobiomedical Research Group, Universidade Federal de Minas Gerais, Brazil.
| | - Luiz O Ladeira
- Departamento de Física, Nanobiomedical Research Group, Universidade Federal de Minas Gerais, Brazil.
| | - Lidia M Andrade
- Departamento de Física, Nanobiomedical Research Group, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
21
|
Ilić K, Hartl S, Galić E, Tetyczka C, Pem B, Barbir R, Milić M, Vinković Vrček I, Roblegg E, Pavičić I. Interaction of Differently Coated Silver Nanoparticles With Skin and Oral Mucosal Cells. J Pharm Sci 2021; 110:2250-2261. [PMID: 33539871 DOI: 10.1016/j.xphs.2021.01.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022]
Abstract
Silver nanoparticles (AgNP) can be found in different consumer products and various medical devices due to their excellent biocidal properties. Despite extensive scientific literature reporting biological effects of AgNP, there is still a lack of scientific evidence on how different surface functionalization affects AgNP interaction with the human skin and the oral epithelium. This study aimed to investigate biological consequences following the treatment of HaCaT and TR146 cells with AgNP stabilized with negatively charged sodium bis(2-ethylhexyl)-sulfosuccinate (AOT), neutral polyvinylpyrrolidone (PVP), and positively charged poly-l-lysine (PLL). All AgNP were characterized by means of size, shape and surface charge. Interactions with biological barriers were investigated in vitro by determining cell viability, particle uptake, oxidative stress response and DNA damages following AgNP treatment. Results showed a significant difference in cytotoxicity depending on the surface coating used for AgNP stabilization. All three types of AgNP induced apoptosis, oxidative stress response and DNA damages in cells, but AOT- and PVP-coated AgNP exhibited lower toxicity than positively charged PLL-AgNP. Considering the number of data gaps related to the safe use of nanomaterials in biomedicine, this study highlights the importance of particle surface functionalization that should be considered during design and development of future AgNP-based medical products.
Collapse
Affiliation(s)
- Krunoslav Ilić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Sonja Hartl
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Emerik Galić
- Faculty of Agrobiotechnical Sciences, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Carolin Tetyczka
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Barbara Pem
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Rinea Barbir
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Eva Roblegg
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| |
Collapse
|
22
|
Auclair J, Peyrot C, Wilkinson KJ, Gagné F. The geometry of the toxicity of silver nanoparticles to freshwater mussels. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108841. [PMID: 32781291 DOI: 10.1016/j.cbpc.2020.108841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/27/2020] [Indexed: 12/01/2022]
Abstract
The question about the influence of the geometry of silver nanoparticle (nAg) towards toxicity in aquatic organisms is largely unanswered. The purpose of this study was to examine if different geometries of nAg could initiate biophysical stress in the soft tissues of mussels. Freshwater Dreissenna bugensis mussels were exposed for 48 h at 15 °C to 10 and 50 μg/L of ionic Ag and to 3 forms of polyvinylpyrrolidone (PVP)-coated nAg of similar size: sphere, cube and prism. At the end of the exposure period, mussels were allowed to depurate overnight and the post-mitochondrial fraction of the soft tissues were analyzed for the levels of liquid crystals (LCs), changes in the activity and fractal dimensions of pyruvate kinase-lactate dehydrogenase (PK-LDH), F-actin and protein-ubiquitin (UB) levels. The data revealed that exposure to nAg forms lead to increased formation of LCs in increasing order of intensity: prismatic > cubic > spherical nAg. The activity in PK-LDH was decreased by all forms of nAg but not by ionic Ag+ (as with the following effects). Fractal kinetics of the PK-LDH system revealed that the nAg forms increased the spectral dimension (sD) in increasing order: spherical > cubic > prismatic nAg. A decrease in the fractal diffusion rate (fDR) with small changes in the fractal dimension (fD) was also obtained. The levels of F-actin and protein-UB were significantly affected for most forms of nAg and followed a pattern similar to LCs levels. In conclusion, the geometry of nAg could influence the formation of LCs, alter the fractal kinetics of the PK-LDH system, F-actin levels and protein damage in the soft tissues of freshwater mussels.
Collapse
Affiliation(s)
- J Auclair
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, Québec H2Y 2E7, Canada; Chemistry Department, Montréal University, Montreal, QC H3C 3J7, Canada
| | - C Peyrot
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, Québec H2Y 2E7, Canada; Chemistry Department, Montréal University, Montreal, QC H3C 3J7, Canada
| | - K J Wilkinson
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, Québec H2Y 2E7, Canada; Chemistry Department, Montréal University, Montreal, QC H3C 3J7, Canada
| | - F Gagné
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, Québec H2Y 2E7, Canada; Chemistry Department, Montréal University, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
23
|
Zucker RM, Ortenzio J, Degn LL, Boyes WK. Detection of large extracellular silver nanoparticle rings observed during mitosis using darkfield microscopy. PLoS One 2020; 15:e0240268. [PMID: 33259485 PMCID: PMC7707489 DOI: 10.1371/journal.pone.0240268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
During studies on the absorption and interactions between silver nanoparticles and mammalian cells grown in vitro it was observed that large extracellular rings of silver nanoparticles were deposited on the microscope slide, many located near post-mitotic cells. Silver nanoparticles (AgNP, 80nm), coated with citrate, were incubated at concentrations of 0.3 to 30 μg/ml with a human-derived culture of retinal pigment epithelial cells (ARPE-19) and observed using darkfield and fluorescent microscopy, 24 h after treatment. Approximately cell-sized extracellular rings of deposited AgNP were observed on the slides among a field of dispersed individual AgNP. The mean diameter of 45 nanoparticles circles was 62.5 +/-12 microns. Ring structures were frequently observed near what appeared to be post-mitotic daughter cells, giving rise to the possibility that cell membrane fragments were deposited on the slide during mitosis, and those fragments selectively attracted and retained silver nanoparticles from suspension in the cell culture medium. These circular structures were observable for the following technical reasons: 1) darkfield microscope could observe single nanoparticles below 100 nm in size, 2) a large concentration (108 and 109) of nanoparticles was used in these experiments 3) negatively charged nanoparticles were attracted to adhesion membrane proteins remaining on the slide from mitosis. The observation of silver nanoparticles attracted to apparent remnants of cellular mitosis could be a useful tool for the study of normal and abnormal mitosis.
Collapse
Affiliation(s)
- Robert M. Zucker
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, United States of America
| | - Jayna Ortenzio
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, United States of America
| | - Laura L. Degn
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, United States of America
| | - William K. Boyes
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, United States of America
| |
Collapse
|
24
|
Gherasim O, Puiu RA, Bîrcă AC, Burdușel AC, Grumezescu AM. An Updated Review on Silver Nanoparticles in Biomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2318. [PMID: 33238486 PMCID: PMC7700255 DOI: 10.3390/nano10112318] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
Silver nanoparticles (AgNPs) represent one of the most explored categories of nanomaterials for new and improved biomaterials and biotechnologies, with impressive use in the pharmaceutical and cosmetic industry, anti-infective therapy and wound care, food and the textile industry. Their extensive and versatile applicability relies on the genuine and easy-tunable properties of nanosilver, including remarkable physicochemical behavior, exceptional antimicrobial efficiency, anti-inflammatory action and antitumor activity. Besides commercially available and clinically safe AgNPs-based products, a substantial number of recent studies assessed the applicability of nanosilver as therapeutic agents in augmented and alternative strategies for cancer therapy, sensing and diagnosis platforms, restorative and regenerative biomaterials. Given the beneficial interactions of AgNPs with living structures and their nontoxic effects on healthy human cells, they represent an accurate candidate for various biomedical products. In the present review, the most important and recent applications of AgNPs in biomedical products and biomedicine are considered.
Collapse
Affiliation(s)
- Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Rebecca Alexandra Puiu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri Road, 050657 Bucharest, Romania
| |
Collapse
|
25
|
Silver Nanoparticles Agglomerate Intracellularly Depending on the Stabilizing Agent: Implications for Nanomedicine Efficacy. NANOMATERIALS 2020; 10:nano10101953. [PMID: 33007984 PMCID: PMC7601179 DOI: 10.3390/nano10101953] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 12/12/2022]
Abstract
Engineered nanoparticles are utilized as drug delivery carriers in modern medicine due to their high surface area and tailorable surface functionality. After in vivo administration, nanoparticles distribute and interact with biomolecules, such as polar proteins in serum, lipid membranes in cells, and high ionic conditions during digestion. Electrostatic forces and steric hindrances in a nanoparticle population are disturbed and particles agglomerate in biological fluids. Little is known about the stability of nanoparticles in relation to particle surface charge. Here, we compared three different surface-stabilized silver nanoparticles (50 nm) for intracellular agglomeration in human hepatocellular carcinoma cells (HepG2). Nanoparticles stabilized with branched polyethyleneimine conferred a positive surface charge, particles stabilized with lipoic acid conferred a negative surface charge, and particles stabilized with polyethylene glycol conferred a neutral surface charge. Particles were incubated in fetal bovine serum, simulated lung surfactant fluid, and simulated stomach digestion fluid. Each nanoparticle system was characterized via microscopic (transmission electron, fluorescence, and enhanced darkfield) and spectroscopic (hyperspectral, dynamic light scattering, and ultraviolet-visible absorption) techniques. Results showed that nanoparticle transformation included cellular internalization, agglomeration, and degradation and that these changes were dependent upon surface charge and incubation matrix. Hyperspectral analyses showed that positively charged silver nanoparticles red-shifted in spectral analysis after transformations, whereas negatively charged silver nanoparticles blue-shifted. Neutrally charged silver nanoparticles did not demonstrate significant spectral shifts. Spectral shifting indicates de-stabilization in particle suspension, which directly affects agglomeration intracellularly. These characteristics are translatable to critical quality attributes and can be exploited when developing nano-carriers for nanomedicine.
Collapse
|
26
|
Willis C, Nyffeler J, Harrill J. Phenotypic Profiling of Reference Chemicals across Biologically Diverse Cell Types Using the Cell Painting Assay. SLAS DISCOVERY 2020; 25:755-769. [PMID: 32546035 DOI: 10.1177/2472555220928004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cell Painting is a high-throughput phenotypic profiling assay that uses fluorescent cytochemistry to visualize a variety of organelles and high-content imaging to derive a large number of morphological features at the single-cell level. Most Cell Painting studies have used the U-2 OS cell line for chemical or functional genomics screening. The Cell Painting assay can be used with many other human-derived cell types, given that the assay is based on the use of fluoroprobes that label organelles that are present in most (if not all) human cells. Questions remain, however, regarding the optimization steps required and overall ease of deployment of the Cell Painting assay to novel cell types. Here, we used the Cell Painting assay to characterize the phenotypic effects of 14 phenotypic reference chemicals in concentration-response screening mode across six biologically diverse human-derived cell lines (U-2 OS, MCF7, HepG2, A549, HTB-9 and ARPE-19). All cell lines were labeled using the same cytochemistry protocol, and the same set of phenotypic features was calculated. We found it necessary to optimize image acquisition settings and cell segmentation parameters for each cell type, but did not adjust the cytochemistry protocol. For some reference chemicals, similar subsets of phenotypic features corresponding to a particular organelle were associated with the highest-effect magnitudes in each affected cell type. Overall, for certain chemicals, the Cell Painting assay yielded qualitatively similar biological activity profiles among a group of diverse, morphologically distinct human-derived cell lines without the requirement for cell type-specific optimization of cytochemistry protocols.
Collapse
Affiliation(s)
- Clinton Willis
- Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA.,Oak Ridge Associated Universities (ORAU), Oak Ridge, TN, USA
| | - Johanna Nyffeler
- Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA.,Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | - Joshua Harrill
- Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA
| |
Collapse
|
27
|
Abstract
The remarkable advances coming about through nanotechnology promise to revolutionize many aspects of modern life; however, these advances come with a responsibility for due diligence to ensure that they are not accompanied by adverse consequences for human health or the environment. Many novel nanomaterials (having at least one dimension <100 nm) could be highly mobile if released into the environment and are also very reactive, which has raised concerns for potential adverse impacts including, among others, the potential for neurotoxicity. Several lines of evidence led to concerns for neurotoxicity, but perhaps none more than observations that inhaled nanoparticles impinging on the mucosal surface of the nasal epithelium could be internalized into olfactory receptor neurons and transported by axoplasmic transport into the olfactory bulbs without crossing the blood-brain barrier. From the olfactory bulb, there is concern that nanomaterials may be transported deeper into the brain and affect other brain structures. Of course, people will not be exposed to only engineered nanomaterials, but rather such exposures will occur in a complex mixture of environmental materials, some of which are incidentally generated particles of a similar inhalable size range to engineered nanomaterials. To date, most experimental studies of potential neurotoxicity of nanomaterials have not considered the potential exposure sources and pathways that could lead to exposure, and most studies of nanomaterial exposure have not considered potential neurotoxicity. Here, we present a review of potential sources of exposures to nanoparticles, along with a review of the literature on potential neurotoxicity of nanomaterials. We employ the linked concepts of an aggregate exposure pathway (AEP) and an adverse outcome pathway (AOP) to organize and present the material. The AEP includes a sequence of key events progressing from material sources, release to environmental media, external exposure, internal exposure, and distribution to the target site. The AOP begins with toxicant at the target site causing a molecular initiating event and, like the AEP, progress sequentially to actions at the level of the cell, organ, individual, and population. Reports of nanomaterial actions are described at every key event along the AEP and AOP, except for changes in exposed populations that have not yet been observed. At this last stage, however, there is ample evidence of population level effects from exposure to ambient air particles that may act similarly to engineered nanomaterials. The data give an overall impression that current exposure levels may be considerably lower than those reported experimentally to be neurotoxic. This impression, however, is tempered by the absence of long-term exposure studies with realistic routes and levels of exposure to address concerns for chronic accumulation of materials or damage. Further, missing across the board are "key event relationships", which are quantitative expressions linking the key events of either the AEP or the AOP, making it impossible to quantitatively project the likelihood of adverse neurotoxic effects from exposure to nanomaterials or to estimate margins of exposure for such relationships.
Collapse
Affiliation(s)
- William K. Boyes
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC USA 27711
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| |
Collapse
|
28
|
Abstract
Evaluation of the potential hazard of man-made nanomaterials has been hampered by a limited ability to observe and measure nanoparticles in cells. A FACSCalibur™ flow cytometer and a Stratedigm S-1000 flow cytometer were used to measure changes in light scatter from cells after incubation with either silver nanoparticles (AgNP) or TiO2 nanoparticles. Within the range of between 0.1 μg/mL and 30 μg/mL the nanoparticles caused a proportional increase of the side scatter and decrease of the forward scatter intensity signals. At the lowest concentrations of TiO2 (ranging between 0.1 μg/mL and 0.3 μg/mL), the flow cytometer can detect as few as 5-10 nanoparticles per cell. The influence of nanoparticles on the cell cycle was detected by nonionic detergent lysis of nanoparticle incubated cells that were stained with DAPI or propidium iodide (PI). Viability of nanoparticle treated cells was determined by PI exclusion. Surface plasmonic resonance (SPR) was detected primarily in the far-red fluorescence detection channels after excitation with a 488 nm laser.Our results suggest that the uptake of nanoparticles within cells can be monitored using flow cytometry. This uptake of nanoparticle data was confirmed by viewing the nanoparticles in the cells using dark-field microscopy. The flow cytometry detection of nanoparticles approach may help fill a critical need to assess the relationship between nanoparticle dose and cellular toxicity. Such experiments using nanoparticles could potentially be performed quickly and easily using the flow cytometer to measure both nanoparticle uptake and cellular health.
Collapse
Affiliation(s)
- Robert Martin Zucker
- Reproductive and Developmental Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - William K Boyes
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|