1
|
Holliday LS, Neubert JK, Yang X. Gas-powered extracellular vesicles promote bone regeneration. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2025; 6:158-165. [PMID: 40206801 PMCID: PMC11977345 DOI: 10.20517/evcna.2024.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025]
Abstract
The signaling gas hydrogen sulfide (H2S) has recently been implicated in the regulation of bone remodeling and the maintenance of periodontal health. Exploring the underlying mechanisms for this regulation holds promise for the development of new treatment strategies to block bone resorption and stimulate bone regeneration. A recent study by Zhou et al. (Bioactive Materials, 2024) showed that treatment with H2S stimulated changes in the extracellular vesicles (EVs) released by M2 macrophages, enhancing their capacity to promote the osteogenic differentiation of mesenchymal stem cells in vitro. The H2S-stimulated EVs, given together with mesenchymal stem cells (MSCs), also promoted bone regeneration in vivo in a mouse calvarial critical-size defect model. This activity was linked to augmented expression of moesin, a membrane-cytoskeletal linkage protein, which was found at increased levels in EVs from cells stimulated by H2S. The study identifies a new strategy for generating EVs that are pro-osteogenic. It also uncovers a surprising role for moesin in stimulating osteogenesis in MSCs.
Collapse
Affiliation(s)
- Lexie Shannon Holliday
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
2
|
Kotecha RS, Trinder SM, Hughes AM, Mullin BH, Rashid S, Yuan J, Xu J, Duncan O, Skut P, Chua GA, Singh S, Oommen J, Lock RB, Kees UR, Malinge S, Kuek V, Cheung LC. Targeting osteoclasts for treatment of high-risk B-cell acute lymphoblastic leukemia. Blood Cancer J 2025; 15:25. [PMID: 40016188 PMCID: PMC11868389 DOI: 10.1038/s41408-025-01239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 01/30/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Affiliation(s)
- Rishi S Kotecha
- Leukaemia Translational Research Laboratory, WA Kids Cancer Centre, The Kids Research Institute Australia, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Sarah M Trinder
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, WA, Australia
| | - Anastasia M Hughes
- Leukaemia Translational Research Laboratory, WA Kids Cancer Centre, The Kids Research Institute Australia, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Benjamin H Mullin
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Sarah Rashid
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jinbo Yuan
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Owen Duncan
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, WA, Australia
| | - Patrycja Skut
- Leukaemia Translational Research Laboratory, WA Kids Cancer Centre, The Kids Research Institute Australia, Perth, WA, Australia
| | - Grace-Alyssa Chua
- Leukaemia Translational Research Laboratory, WA Kids Cancer Centre, The Kids Research Institute Australia, Perth, WA, Australia
| | - Sajla Singh
- Leukaemia Translational Research Laboratory, WA Kids Cancer Centre, The Kids Research Institute Australia, Perth, WA, Australia
| | - Joyce Oommen
- Leukaemia Translational Research Laboratory, WA Kids Cancer Centre, The Kids Research Institute Australia, Perth, WA, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW, Australia
- UNSW Centre for Childhood Cancer Research, University of New South Wales, Sydney, NSW, Australia
| | - Ursula R Kees
- Leukaemia Translational Research Laboratory, WA Kids Cancer Centre, The Kids Research Institute Australia, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Sebastien Malinge
- Leukaemia Translational Research Laboratory, WA Kids Cancer Centre, The Kids Research Institute Australia, Perth, WA, Australia
| | - Vincent Kuek
- Leukaemia Translational Research Laboratory, WA Kids Cancer Centre, The Kids Research Institute Australia, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Laurence C Cheung
- Leukaemia Translational Research Laboratory, WA Kids Cancer Centre, The Kids Research Institute Australia, Perth, WA, Australia.
- Curtin Medical School, Curtin University, Perth, WA, Australia.
- Curtin Medical Research Institute, Curtin University, Perth, WA, Australia.
| |
Collapse
|
3
|
Hu B, Chen Y, Li Y, Deng C, Niu Y, Hu Z, Li Y, Sun S, Huang Y, Deng X, Wei Y. Substrate-Mediated Regulation of Src Expression Drives Osteoclastogenesis Divergence. Genes (Basel) 2024; 15:1217. [PMID: 39336808 PMCID: PMC11431296 DOI: 10.3390/genes15091217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/08/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Glass, bone, and dentin are commonly applied substrates for osteoclast cultures; however, the impact of these substrates on osteoclastogenesis remains underexplored. This study aimed to address a significant gap in understanding how different substrates influence the process of osteoclastogenesis. METHODS RAW 264.7 cells were cultured and induced with RANKL on glass, bone, and dentin slides. Histological and molecular techniques were used to identify patterns and differences in osteoclast behavior on each substrate. RESULTS Osteoclasts cultured on glass slides possessed the greatest number of nuclei and the highest expression levels of ACP5 (TRAP) and CTSK, with osteoclasts on bone and dentin slides displaying progressively lower levels. Src expression was also most pronounced in osteoclasts on glass slides, with decreased levels observed on bone and dentin. This variation in Src expression likely contributed to differences in cytoskeletal remodeling and oxidative phosphorylation (OXPHOS), resulting in substrate-dependent divergences in osteoclastogenesis. CONCLUSIONS Glass slides were the most favorable substrate for inducing osteoclastogenesis, while bone and dentin slides were less effective. The substrate-induced expression of Src played a fundamental role in shaping the phenotypic divergence of osteoclasts. These insights fill important knowledge gaps and have significant implications for the development and selection of in vitro models for bone-related diseases and drug screening platforms.
Collapse
Affiliation(s)
- Bo Hu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (B.H.); (Y.C.); (Y.L.); (Y.N.); (Z.H.); (Y.L.); (Y.H.); (X.D.)
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Yiming Chen
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (B.H.); (Y.C.); (Y.L.); (Y.N.); (Z.H.); (Y.L.); (Y.H.); (X.D.)
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Yuman Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (B.H.); (Y.C.); (Y.L.); (Y.N.); (Z.H.); (Y.L.); (Y.H.); (X.D.)
| | - Chenyu Deng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China;
| | - Yuting Niu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (B.H.); (Y.C.); (Y.L.); (Y.N.); (Z.H.); (Y.L.); (Y.H.); (X.D.)
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Zhewen Hu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (B.H.); (Y.C.); (Y.L.); (Y.N.); (Z.H.); (Y.L.); (Y.H.); (X.D.)
| | - Yao Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (B.H.); (Y.C.); (Y.L.); (Y.N.); (Z.H.); (Y.L.); (Y.H.); (X.D.)
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Shiyu Sun
- Department of General Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China;
| | - Ying Huang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (B.H.); (Y.C.); (Y.L.); (Y.N.); (Z.H.); (Y.L.); (Y.H.); (X.D.)
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (B.H.); (Y.C.); (Y.L.); (Y.N.); (Z.H.); (Y.L.); (Y.H.); (X.D.)
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (B.H.); (Y.C.); (Y.L.); (Y.N.); (Z.H.); (Y.L.); (Y.H.); (X.D.)
| |
Collapse
|
4
|
Liu Y, Pierre CJ, Joshi S, Sun L, Li Y, Guan J, Favor JDL, Holmes C. Cell-Specific Impacts of Surface Coating Composition on Extracellular Vesicle Secretion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29737-29759. [PMID: 38805212 DOI: 10.1021/acsami.4c03213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Biomaterial properties have recently been shown to modulate extracellular vesicle (EV) secretion and cargo; however, the effects of substrate composition on EV production remain underexplored. This study investigates the impacts of surface coatings composed of collagen I (COLI), fibronectin (FN), and poly l-lysine (PLL) on EV secretion for applications in therapeutic EV production and to further understanding of how changes in the extracellular matrix microenvironment affect EVs. EV secretion from primary bone marrow-derived mesenchymal stromal cells (BMSCs), primary adipose-derived stem cells (ASCs), HEK293 cells, NIH3T3 cells, and RAW264.7 cells was characterized on the different coatings. Expression of EV biogenesis genes and cellular adhesion genes was also analyzed. COLI coatings significantly decreased EV secretion in RAW264.7 cells, with associated decreases in cell viability and changes in EV biogenesis-related and cell adhesion genes at day 4. FN coatings increased EV secretion in NIH3T3 cells, while PLL coatings increased EV secretion in ASCs. Surface coatings had significant effects on the capacity of EVs derived from RAW264.7 and NIH3T3 cells to impact in vitro macrophage proliferation. Overall, surface coatings had different cell-specific effects on EV secretion and in vitro functional capacity, thus highlighting the potential of substrate coatings to further the development of clinical EV production systems.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
| | - Clifford J Pierre
- Department of Health, Nutrition, and Food Science, College of Education, Health and Human Sciences, Florida State University, 1114 West Call Street, Tallahasee, Florida 32306, United States
| | - Sailesti Joshi
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
| | - Li Sun
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahasee, Florida 32306-4300, United States
| | - Yan Li
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
| | - Jingjiao Guan
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
| | - Justin D La Favor
- Department of Health, Nutrition, and Food Science, College of Education, Health and Human Sciences, Florida State University, 1114 West Call Street, Tallahasee, Florida 32306, United States
| | - Christina Holmes
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
| |
Collapse
|
5
|
Rody WJ, Reuter NG, Brooks SE, Hammadi LI, Martin ML, Cagmat JG, Garrett TJ, Holliday LS. Metabolomic signatures distinguish extracellular vesicles from osteoclasts and odontoclasts. Orthod Craniofac Res 2023; 26:632-641. [PMID: 36997279 PMCID: PMC10542960 DOI: 10.1111/ocr.12658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/15/2023] [Accepted: 03/19/2023] [Indexed: 04/01/2023]
Abstract
AIMS Pathological dental root resorption and alveolar bone loss are often detected only after irreversible damage. Biomarkers in the gingival crevicular fluid or saliva could provide a means for early detection; however, such biomarkers have proven elusive. We hypothesize that a multiomic approach might yield reliable diagnostic signatures for root resorption and alveolar bone loss. Previously, we showed that extracellular vesicles (EVs) from osteoclasts and odontoclasts differ in their protein composition. In this study, we investigated the metabolome of EVs from osteoclasts, odontoclasts and clasts (non-resorbing clastic cells). MATERIALS AND METHODS Mouse haematopoietic precursors were cultured on dentine, bone or plastic, in the presence of recombinant RANKL and CSF-1 to trigger differentiation along the clastic line. On Day 7, the cells were fixed and the differentiation state and resorptive status of the clastic cells were confirmed. EVs were isolated from the conditioned media on Day 7 and characterized by nanoparticle tracking and electron microscopy to ensure quality. Global metabolomic profiling was performed using a Thermo Q-Exactive Orbitrap mass spectrometer with a Dionex UHPLC and autosampler. RESULTS We identified 978 metabolites in clastic EVs. Of those, 79 are potential biomarkers with Variable Interdependent Parameters scores of 2 or greater. Known metabolites cytidine, isocytosine, thymine, succinate and citrulline were found at statistically higher levels in EVs from odontoclasts compared with osteoclasts. CONCLUSION We conclude that numerous metabolites found in odontoclast EVs differ from those in osteoclast EVs, and thus represent potential biomarkers for root resorption and periodontal tissue destruction.
Collapse
Affiliation(s)
- Wellington J Rody
- Department of Orthodontics and Dentofacial Orthopedics, University of Pittsburgh, School of Dental Medicine, Pittsburgh, Pennsylvania, 15261, USA
| | - Nathan G Reuter
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, 32610, USA
| | - Shannen E Brooks
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, 32610, USA
| | - Lina I Hammadi
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, 32610, USA
| | - Macey L Martin
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, 32610, USA
| | - Joy G Cagmat
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - L Shannon Holliday
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, 32610, USA
- Department of Anatomy & Cell Biology, University of Florida, Gainesville, Florida, 32610, USA
| |
Collapse
|
6
|
Ruan S, Rody WJ, Patel SS, Hammadi LI, Martin ML, de Faria LP, Daaboul G, Anderson LS, He M, Holliday LS. Receptor activator of nuclear factor-kappa B is enriched in CD9-positive extracellular vesicles released by osteoclasts. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:518-529. [PMID: 37936884 PMCID: PMC10629932 DOI: 10.20517/evcna.2023.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Aim Receptor activator of nuclear factor-kappa B (RANK)-containing extracellular vesicles (EVs) bind RANK-Ligand (RANKL) on osteoblasts, and thereby simultaneously inhibit bone resorption and promote bone formation. Because of this, they are attractive candidates for therapeutic bone anabolic agents. Previously, RANK was detected in 1 in every 36 EVs from osteoclasts by immunogold electron microscopy. Here, we have sought to characterize the subpopulation of EVs from osteoclasts that contains RANK in more detail. Methods The tetraspanins CD9 and CD81 were localized in osteoclasts by immunofluorescence. EVs were visualized by transmission electron microscopy. A Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS) and immunoaffinity isolations examined whether RANK is enriched in specific types of EVs. Results Immunofluorescence showed CD9 was mostly on or near the plasma membrane of osteoclasts. In contrast, CD81 was localized deeper in the osteoclast's cytosolic vesicular network. By interferometry, both CD9 and CD81 positive EVs from osteoclasts were small (56-83 nm in diameter), consistent with electron microscopy. The CD9 and CD81 EV populations were mostly distinct, and only 22% of the EVs contained both markers. RANK was detected by SP-IRIS in 2%-4% of the CD9-containing EVs, but not in CD81-positive EVs, from mature osteoclasts. Immunomagnetic isolation of CD9-containing EVs from conditioned media of osteoclasts removed most of the RANK. A trace amount of RANK was isolated with CD81. Conclusion RANK was enriched in a subset of the CD9-positive EVs. The current study provides the first report of selective localization of RANK in subsets of EVs.
Collapse
Affiliation(s)
- Shaobo Ruan
- Department of Pharmaceutics, College of Pharmacy, Gainesville, FL 32610, USA
| | - Wellington J. Rody
- Department of Orthodontics and Dentofacial Orthopedics, University of Pittsburgh, School of Dental Medicine, Pittsburgh, PA 15261, USA
| | - Shivani S. Patel
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | - Lina I. Hammadi
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | - Macey L. Martin
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | - Lorraine P. de Faria
- Department of Biomaterials and Oral Biology, School of Dentistry, University of Säo Paulo, Säo Paulo - SP 05508-000, Brazil
| | | | | | - Mei He
- Department of Pharmaceutics, College of Pharmacy, Gainesville, FL 32610, USA
| | - L. Shannon Holliday
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA
- Department of Anatomy & Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Neto E, Leitão L, Mateus JC, Sousa DM, Alves CJ, Aroso M, Monteiro AC, Conceição F, Oreffo ROC, West J, Aguiar P, Lamghari M. Osteoclast-derived extracellular vesicles are implicated in sensory neurons sprouting through the activation of epidermal growth factor signaling. Cell Biosci 2022; 12:127. [PMID: 35965312 PMCID: PMC9375906 DOI: 10.1186/s13578-022-00864-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Different pathologies, affecting the skeletal system, were reported to display altered bone and/or cartilage innervation profiles leading to the deregulation of the tissue homeostasis. The patterning of peripheral innervation is achieved through the tissue-specific expression of attractive or repulsive axonal guidance cues in specific space and time frames. During the last decade, emerging findings attributed to the extracellular vesicles (EV) trading a central role in peripheral tissue innervation. However, to date, the contribution of EV in controlling bone innervation is totally unknown. RESULTS Here we show that sensory neurons outgrowth induced by the bone resorbing cells-osteoclasts-is promoted by osteoclast-derived EV. The EV induced axonal growth is achieved by targeting epidermal growth factor receptor (EGFR)/ErbB2 signaling/protein kinase C phosphorylation in sensory neurons. In addition, our data also indicate that osteoclasts promote sensory neurons electrophysiological activity reflecting a possible pathway in nerve sensitization in the bone microenvironment, however this effect is EV independent. CONCLUSIONS Overall, these results identify a new mechanism of sensory bone innervation regulation and shed the light on the role of osteoclast-derived EV in shaping/guiding bone sensory innervation. These findings provide opportunities for exploitation of osteoclast-derived EV based strategies to prevent and/or mitigate pathological uncontrolled bone innervation.
Collapse
Affiliation(s)
- Estrela Neto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal. .,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.
| | - Luís Leitão
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - José C Mateus
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - Daniela M Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal
| | - Cecília J Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal
| | - Miguel Aroso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal
| | - Ana C Monteiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal
| | - Francisco Conceição
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Tremona Rd, Southampton, SO16 6YD, UK
| | - Jonathan West
- Institute for Life Sciences and Cancer Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Paulo Aguiar
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal
| | - Meriem Lamghari
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal. .,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.
| |
Collapse
|
8
|
Karanth DS, Martin ML, Holliday LS. Plasma Membrane Receptors Involved in the Binding and Response of Osteoclasts to Noncellular Components of the Bone. Int J Mol Sci 2021; 22:ijms221810097. [PMID: 34576260 PMCID: PMC8466431 DOI: 10.3390/ijms221810097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoclasts differentiate from hematopoietic cells and resorb the bone in response to various signals, some of which are received directly from noncellular elements of the bone. In vitro, adherence to the bone triggers the reduction of cell–cell fusion events between osteoclasts and the activation of osteoclasts to form unusual dynamic cytoskeletal and membrane structures that are required for degrading the bone. Integrins on the surface of osteoclasts are known to receive regulatory signals from the bone matrix. Regulation of the availability of these signals is accomplished by enzymatic alterations of the bone matrix by protease activity and phosphorylation/dephosphorylation events. Other membrane receptors are present in osteoclasts and may interact with as yet unidentified signals in the bone. Bone mineral has been shown to have regulatory effects on osteoclasts, and osteoclast activity is also directly modulated by mechanical stress. As understanding of how osteoclasts and other bone cells interact with the bone has emerged, increasingly sophisticated efforts have been made to create bone biomimetics that reproduce both the structural properties of the bone and the bone’s ability to regulate osteoclasts and other bone cells. A more complete understanding of the interactions between osteoclasts and the bone may lead to new strategies for the treatment of bone diseases and the production of bone biomimetics to repair defects.
Collapse
Affiliation(s)
- Divakar S. Karanth
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (D.S.K.); (M.L.M.)
| | - Macey L. Martin
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (D.S.K.); (M.L.M.)
| | - Lexie S. Holliday
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (D.S.K.); (M.L.M.)
- Department of Anatomy & Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
9
|
Chamberlain CA, Hatch M, Garrett TJ. Extracellular Vesicle Analysis by Paper Spray Ionization Mass Spectrometry. Metabolites 2021; 11:metabo11050308. [PMID: 34065030 PMCID: PMC8151837 DOI: 10.3390/metabo11050308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 12/29/2022] Open
Abstract
Paper spray ionization mass spectrometry (PSI-MS) is a direct MS analysis technique with several reported bacterial metabolomics applications. As with most MS-based bacterial studies, all currently reported PSI-MS bacterial analyses have focused on the chemical signatures of the cellular unit. One dimension of the bacterial metabolome that is often lost in such analyses is the exometabolome (extracellular metabolome), including secreted metabolites, lipids, and peptides. A key component of the bacterial exometabolome that is gaining increased attention in the microbiology and biomedical communities is extracellular vesicles (EVs). These excreted structures, produced by cells in all domains of life, contain a variety of biomolecules responsible for a wide array of cellular functions, thus representing a core component of the bacterial secreted metabolome. Although previously examined using other MS approaches, no reports currently exist for a PSI-MS analysis of bacterial EVs, nor EVs from any other organism (exosomes, ectosomes, etc.). PSI-MS holds unique analytical strengths over other commonly used MS platforms and could thus provide an advantageous approach to EV metabolomics. To address this, we report a novel application representing, to our knowledge, the first PSI-MS analysis of EVs from any organism (using the human gut resident Oxalobacter formigenes as the experimental model, a bacterium whose EVs were never previously investigated). In this report, we show how we isolated and purified EVs from bacterial culture supernatant by EV-specific affinity chromatography, confirmed and characterized these vesicles by nanoparticle tracking analysis, analyzed the EV isolate by PSI-MS, and identified a panel of EV-derived metabolites, lipids, and peptides. This work serves as a pioneering study in the field of MS-based EV analysis and provides a new, rapid, sensitive, and economical approach to EV metabolomics.
Collapse
|
10
|
Murray JB, Mikhael C, Han G, de Faria LP, Rody WJ, Holliday LS. Activation of (pro)renin by (pro)renin receptor in extracellular vesicles from osteoclasts. Sci Rep 2021; 11:9214. [PMID: 33911158 PMCID: PMC8080643 DOI: 10.1038/s41598-021-88665-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
The (pro)renin receptor (PRR) is a multifunctional integral membrane protein that serves as a component of the vacuolar H+-ATPase (V-ATPase) and also activates (pro)renin. We recently showed that full-length PRR, found as part of a V-ATPase sub-complex, is abundant in extracellular vesicles shed by osteoclasts. Here, we tested whether these extracellular vesicles stimulate (pro)renin. Extracellular vesicles isolated from the conditioned media of RAW 264.7 osteoclast-like cells or primary osteoclasts were characterized and counted by nanoparticle tracking. Immunoblotting confirmed that full-length PRR was present. Extracellular vesicles from osteoclasts dose-dependently stimulated (pro)renin activity, while extracellular vesicles from 4T1 cancer cells, in which we did not detect PRR, did not activate (pro)renin. To confirm that the ability of extracellular vesicles from osteoclasts to stimulate (pro)renin activity was due to the PRR, the "handle region peptide" from the PRR, a competitive inhibitor of PRR activity, was tested. It dose-dependently blocked the ability of extracellular vesicles to stimulate the enzymatic activity of (pro)renin. In summary, the PRR, an abundant component of extracellular vesicles shed by osteoclasts, stimulates (pro)renin activity. This represents a novel mechanism by which extracellular vesicles can function in intercellular regulation, with direct implications for bone biology.
Collapse
Affiliation(s)
- Jonathan B Murray
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL, 32610, USA
| | - Christy Mikhael
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL, 32610, USA
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Lorraine Perciliano de Faria
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, 01000, Brazil
| | - Wellington J Rody
- Department of Orthodontics and Pediatric Dentistry, Stony Brook University School of Dental Medicine, Stony Brook, NY, 11794, USA
| | - L Shannon Holliday
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL, 32610, USA.
- Department of Anatomy & Cell Biology, University of Florida College of Medicine, Gainesville, FL, 23610, USA.
- Department of Orthodontics, University of Florida College of Dentistry, 1600 SW Archer Road, CB 1000444, Gainesville, FL, 23610, USA.
| |
Collapse
|
11
|
Holliday LS, Patel SS, Rody WJ. RANKL and RANK in extracellular vesicles: surprising new players in bone remodeling. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:18-28. [PMID: 33982033 PMCID: PMC8112638 DOI: 10.20517/evcna.2020.02] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Receptor activator of nuclear factor kappa B-ligand (RANKL), its receptor RANK, and osteoprotegerin which binds RANKL and acts as a soluble decoy receptor, are essential controllers of bone remodeling. They also play important roles in establishing immune tolerance and in the development of the lymphatic system and mammary glands. In bone, RANKL stimulates osteoclast formation by binding RANK on osteoclast precursors and osteoclasts. This is required for bone resorption. Recently, RANKL and RANK have been shown to be functional components of extracellular vesicles (EVs). Data linking RANKL and RANK in EVs to biological regulatory roles are reviewed, and crucial unanswered questions are examined. RANKL and RANK are transmembrane proteins and their presence in EVs allows them to act at a distance from their cell of origin. Because RANKL-bearing osteocytes and osteoblasts are often spatially distant from RANK-containing osteoclasts in vivo, this may be crucial for the stimulation of osteoclast formation and bone resorption. RANK in EVs from osteoclasts has the capacity to stimulate a RANKL reverse signaling pathway in osteoblasts that promotes bone formation. This serves to couple bone resorption with bone formation and has inspired novel bifunctional therapeutic agents. RANKL- and RANK- containing EVs in serum may serve as biomarkers for bone and immune pathologies. In summary, EVs containing RANKL and RANK have been identified as intercellular regulators in bone biology. They add complexity to the central signaling network responsible for maintaining bone. RANKL- and RANK-containing EVs are attractive as drug targets and as biomarkers.
Collapse
Affiliation(s)
- L Shannon Holliday
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA.,Department of Anatomy & Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Shivani S Patel
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | - Wellington J Rody
- Department of Orthodontics and Pediatric Dentistry, Stony Brook School of Dental Medicine, Stony Brook, NY 11794, USA
| |
Collapse
|
12
|
Garcia-Ceron D, Dawson CS, Faou P, Bleackley MR, Anderson MA. Size-exclusion chromatography allows the isolation of EVs from the filamentous fungal plant pathogen Fusarium oxysporum f. sp. vasinfectum (Fov). Proteomics 2021; 21:e2000240. [PMID: 33609009 DOI: 10.1002/pmic.202000240] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are nano-sized compartments involved in cell communication and macromolecule transport that are well characterized in mammalian organisms. Fungal EVs transport virulence-related cargo and modulate the host immune response, but most work has been focused on human yeast pathogens. Additionally, the study of EVs from filamentous fungi has been hindered by the lack of protein markers and efficient isolation methods. In this study we performed the isolation and proteomic characterization of EVs from the filamentous cotton pathogen Fusarium oxysporum f. sp. vasinfectum (Fov). EVs were recovered from two different growth media, Czapek Dox and Saboraud's dextrose broth, and purified by size-exclusion chromatography. Our results show that the EV proteome changes depending on the growth medium but EV production remains constant. EVs contained proteins involved in polyketide synthesis, cell wall modifications, proteases and potential effectors. These results support a role in modulation of host-pathogen interactions for Fov EVs.
Collapse
Affiliation(s)
- Donovan Garcia-Ceron
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Charlotte S Dawson
- Cambridge Centre for Proteomics, Department of Biochemistry, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Pierre Faou
- La Trobe Comprehensive Proteomics Platform, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Mark R Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
13
|
Lv Y, Chen J, Hu J, Qian Y, Kong Y, Fu L. Nonmuscle Myosin Heavy Chain ⅡA-Mediated Exosome Release via Regulation of the Rho-Associated Kinase 1/Myosin Light Chains/Actin Pathway. Front Pharmacol 2020; 11:598592. [PMID: 33363470 PMCID: PMC7753194 DOI: 10.3389/fphar.2020.598592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022] Open
Abstract
Nonmuscle myosin ⅡA, a kind of ATP-dependent molecular motor, binds actin to form the molecular motors of the cell. We found that interfering with nonmuscle myosin heavy chain (NMMHC) ⅡA could affect the exosome release from microglial cells stimulated by LPS. LPS could enhance exosome release from microglial cells by increasing exosome concentration, elevating the rate of positively labeled CD9 and CD81 proteins and protein expression. The myosin inhibitor, blebbistatin, could decrease the concentration of released exosome and reduce CD9 and CD81 protein expression on the exosome surface compared with that in the LPS group. To further determine the exact subtype of myosin Ⅱ responsible for these effects, we transfected microglial cells with siRNA for MYH9, MYH10, and MYH14. The data showed that only the transfection of siRNA-MYH9, but not MYH10 or MYH14 could decrease the released exosome concentration and particle size compared with those in the LPS group. siRNA-MYH9 would also weaken the CD9 and CD81 protein positive rate and protein expression compared with that in the LPS group by the quantification of CD9 and CD81 fluorescence intensities and by western blotting. Western blots and immunofluorescence assays indicated that NMMHC ⅡA might trigger the ROCK1/MLC/actin signaling pathway of microglial cells upon stimulation by LPS, which might be the potential mechanism of exosome release. These observations demonstrated that NMMHC ⅡA might be the potential target required for exosome release.
Collapse
Affiliation(s)
- Yanni Lv
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Jin Chen
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Jinfang Hu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yisong Qian
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Ying Kong
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Longsheng Fu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| |
Collapse
|
14
|
Holliday LS, de Faria LP, Rody WJ. Actin and Actin-Associated Proteins in Extracellular Vesicles Shed by Osteoclasts. Int J Mol Sci 2019; 21:ijms21010158. [PMID: 31881680 PMCID: PMC6981389 DOI: 10.3390/ijms21010158] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are shed by all eukaryotic cells and have emerged as important intercellular regulators. EVs released by osteoclasts were recently identified as important coupling factors in bone remodeling. They are shed as osteoclasts resorb bone and stimulate osteoblasts to form bone to replace the bone resorbed. We reported the proteomic content of osteoclast EVs with data from two-dimensional, high resolution liquid chromatography/mass spectrometry. In this article, we examine in detail the actin and actin-associated proteins found in osteoclast EVs. Like EVs from other cell types, actin and various actin-associated proteins were abundant. These include components of the polymerization machinery, myosin mechanoenzymes, proteins that stabilize or depolymerize microfilaments, and actin-associated proteins that are involved in regulating integrins. The selective incorporation of actin-associated proteins into osteoclast EVs suggests that they have roles in the formation of EVs and/or the regulatory signaling functions of the EVs. Regulating integrins so that they bind extracellular matrix tightly, in order to attach EVs to the extracellular matrix at specific locations in organs and tissues, is one potential active role for actin-associated proteins in EVs.
Collapse
Affiliation(s)
- L. Shannon Holliday
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| | - Lorraine Perciliano de Faria
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo 01000, Brazil;
| | - Wellington J. Rody
- Department of Orthodontics and Pediatric Dentistry, Stony Brook University School of Dental Medicine, Stony Brook, NY 11794, USA;
| |
Collapse
|