1
|
Li Y, Ma X, Xiao LD, Yu YN, Gong ZH. CaWRKY20 Negatively Regulates Plant Resistance to Colletotrichum scovillei in Pepper. PLANT, CELL & ENVIRONMENT 2025; 48:1514-1534. [PMID: 39462903 DOI: 10.1111/pce.15205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/09/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024]
Abstract
Chili anthracnose, a fungal disease caused by Colletotrichum scovillei, is among the most devastating diseases affecting pepper (Capsicum annuum L.). Although WRKY transcription factors play important roles in plant immunity, it is unknown how WRKY gene family members contribute to pepper plant resistance to C. scovillei. Here, CaWRKY20 was found to negatively regulate pepper resistance to C. scovillei, which was demonstrated by virus-induced gene silencing and transient overexpression in pepper. Moreover, overexpression of CaWRKY20 enhanced susceptibility to C. scovillei in tomato. Additionally, our findings demonstrated that CaWRKY20 can indirectly regulate the expression of salicylic acid (SA)-related defense genes (CaPR1, CaPR10 and CaSAR8.2) as well as reactive oxygen species (ROS)-scavenging enzyme genes (CaCAT, CaPOD and CaSOD) in response to C. scovillei. In addition, CaWRKY20 was found to interact with CaMIEL1 in the nucleus to regulate the defense response to C. scovillei in pepper. Furthermore, CaWRKY20 directly bound to the W-box in the promoter of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (CaSARD1) and suppressed its expression, resulting in reduced resistance to C. scovillei. These results will clarify the mechanism by which WRKY transcription factors are involved in pepper disease resistance and can thus facilitate molecular breeding for anthracnose-resistant varieties.
Collapse
Affiliation(s)
- Yang Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin, People's Republic of China
| | - Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Luo-Dan Xiao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Yibin Research Institute of Tea Industry, Yibin, People's Republic of China
| | - Ya-Nan Yu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
2
|
Tan Z, Lu D, Yu Y, Li L, Xu L, Dong W, Yang Q, Li C, Wan X, Liang H. Genome-wide identification, characterization and expression analysis of WRKY transcription factors under abiotic stresses in Carthamus tinctorius L. BMC PLANT BIOLOGY 2025; 25:81. [PMID: 39838282 PMCID: PMC11748509 DOI: 10.1186/s12870-025-06079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND WRKY transcription factors constitute one of the largest families of plant transcriptional regulators, playing pivotal roles in plant responses to biotic and abiotic stresses, as well as in hormonal signaling and secondary metabolism regulation. However, a comprehensive analysis of the WRKY family in Carthamus tinctorius (safflower) is lacking. This study aims to identify and characterize WRKY genes in safflower to enhance understanding of their roles in stress responses and metabolic regulation. Safflower, valued for its ornamental, medicinal, and culinary uses, exhibits significant resilience to salt, alkali, and drought. By elucidating the functions and expression patterns of WRKY genes, we aim to enhance breeding strategies for improved stress tolerance and metabolic traits in crops. RESULTS In this study, we identified 84 WRKY genes within the safflower genome, and classified them into three primary groups (Groups I, II, and III) based on molecular structure and phylogenetic relationships. Group II was further subdivided into five subgroups (II-a, II-b, II-c, II-d, and II-e). Gene structure, conserved domain, motif, cis-elements, and expression profiling were performed. Syntenic analysis revealed that there were 27 pairs of repetitive fragments. Expression profiles of CtWRKY genes were assessed across diverse tissues, colored cultivars, and abiotic stresses such as ABA, drought, and cold conditions. Several CtWRKY genes (e.g., CtWRKY44, CtWRKY63, CtWRKY65, CtWRKY70 and CtWRKY72) exhibited distinct expression patterns in response to cold stress and during different developmental stages. Additionally, CtWRKY13, CtWRKY69, CtWRKY29, CtWRKY56, and CtWRKY36 were upregulated across different flower colors. The expression patterns of CtWRKY48, CtWRKY58, and CtWRKY70 varied among safflower cultivars and flower colors. After exposure to drought stress, the expression levels of CtWRKY29 and CtWRKY58 were downregulated, while those of CtWRKY56 and CtWRKY62 were upregulated. CONCLUSION This study identified 84 WRKY genes in Carthamus tinctorius and classified them into three groups, with detailed analyses of their structure, conserved domains, motifs, and expression profiles under various stresses. Notably, several WRKY genes such as CtWRKY44, CtWRKY63, and CtWRKY72 displayed significant expression changes under cold stress, while CtWRKY56 and CtWRKY62 were responsive to drought stress. These findings highlight the critical roles of specific WRKY genes in abiotic stress tolerance and developmental regulation in safflower.
Collapse
Affiliation(s)
- Zhengwei Tan
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Dandan Lu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
| | - Yongliang Yu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
| | - Lei Li
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Lanjie Xu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Wei Dong
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Qing Yang
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Chunming Li
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Xiufu Wan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China, Academy of Chinese Medical Sciences , Beijng, 100700, China
| | - Huizhen Liang
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China.
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China.
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
3
|
Zhang X, Ma X, Wang S, Liu S, Shi S. Physiological and Genetic Aspects of Resistance to Abiotic Stresses in Capsicum Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:3013. [PMID: 39519932 PMCID: PMC11548056 DOI: 10.3390/plants13213013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Abiotic stress is one of the key factors harming global agriculture today, seriously affecting the growth and yield of vegetables. Pepper is the most widely grown vegetable in the world, with both high nutritional and economic values. Currently, the increase in global extreme weather events has heightened the frequency of abiotic stresses, such as drought, high and low temperatures, waterlogging, and high salt levels, which impairs pepper growth and development, leading to its reduced yield and quality. In this review, we summarize the research progress on the responses of pepper to abiotic stress in recent years in terms of physiology, biochemistry, molecular level, and mitigation measures. We then explore the existing problems and propose future research directions. This work provides a reference for the cultivation and development of new pepper varieties resistant to abiotic stress.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiuming Ma
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shihui Wang
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shumei Liu
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shaochuan Shi
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
4
|
Rehman S, Bahadur S, Xia W. Unlocking nature's secrets: The pivotal role of WRKY transcription factors in plant flowering and fruit development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112150. [PMID: 38857658 DOI: 10.1016/j.plantsci.2024.112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
The WRKY transcription factor family is a key player in the regulatory mechanisms of flowering plants, significantly influencing both their biotic and abiotic response systems as well as being vital to numerous physiological and biological functions. Over the past two decades, the functionality of WRKY proteins has been the subject of extensive research in over 50 plant species, with a strong focus on their roles in responding to various stresses. Despite this extensive research, there remains a notable gap in comprehensive studies aimed at understanding how specific WRKY genes directly influence the timing of flowering and fruit development. This review offers an up-to-date look at WRKY family genes and provides insights into the key genes of WRKY to control flowering, enhance fruit ripening and secondary metabolism synthesis, and maintain fruit quality of various plants, including annuals, perennials, medicinal, and crop plants. The WRKY transcription factors serve as critical regulators within the transcriptional regulatory network, playing a crucial role in the precise enhancement of flowering processes. It is also involved in the up-regulation of fruit ripening was strongly demonstrated by combined transcriptomics and metabolomic investigation. Therefore, we speculated that the WRKY family is known to be a key regulator of flowering and fruiting in plants. This detailed insight will enable the identification of the series of molecular occurrences featuring WRKY proteins throughout the stages of flowering and fruiting.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution, Hainan University, Sanya, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228, China; College of Life and Health Sciences, Hainan University, Haikou 570228, China.
| | - Wei Xia
- Sanya Nanfan Research Institution, Hainan University, Sanya, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
5
|
Huang C, Cheng W, Feng Y, Zhang T, Yan T, Jiang Z, Cheng P. Identification of WRKY transcription factors in Rosa chinensis and analysis of their expression response to alkali stress response. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23077. [PMID: 39298655 DOI: 10.1071/fp23077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
Breeding abiotic stress-tolerant varieties of Rosa chinensis is a paramount goal in horticulture. WRKY transcription factors, pivotal in plant responses to diverse stressors, offer potential targets for enhancing stress resilience in R. chinensis . Using bioinformatics and genomic data, we identified RcWRKY transcription factor genes, characterised their chromosomal distribution, phylogenetic relationships, structural attributes, collinearity, and expression patterns in response to saline stress. Leveraging bidirectional database searches, we pinpointed 66 RcWRKY genes, categorised into three groups. All except RcWRKY60 encoded DNA Binding Domain and Zinc Finger Motif regions of the WRKY domain. Expansion of the RcWRKY gene family was propelled by 19 segmental, and 2 tandem, duplications. We unveiled 41 and 15 RcWRKY genes corresponding to 50 AtWRKY and 17 OsWRKY orthologs respectively, indicating postdivergence expansion. Expression analyses under alkaline stress pinpointed significant alterations in 54 RcWRKY genes. Integration of functional roles from their Arabidopsis orthologs and cis -acting elements within their promoters, along with quantitative reverse transcription PCR validation, underscored the importance of RcWRKY27 and 29 in R. chinensis ' alkaline stress response. These findings offer insights into the biological roles of RcWRKY transcription factors, as well as the regulatory dynamics governing R. chinensis ' growth, development, and stress resilience.
Collapse
Affiliation(s)
- Changbing Huang
- Jiangsu Engineering Research Center for Distinctive Floriculture, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China
| | - Wenhui Cheng
- Jiangsu Engineering Research Center for Distinctive Floriculture, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China; and School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Yu Feng
- Jiangsu Engineering Research Center for Distinctive Floriculture, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China
| | - Tongyu Zhang
- Jiangsu Engineering Research Center for Distinctive Floriculture, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China
| | - Taotao Yan
- Jiangsu Engineering Research Center for Distinctive Floriculture, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China
| | - Zhengzhi Jiang
- Suzhou Huaguan Yuanchuang Horticulture Technology Co., Ltd, Suzhou 215505, China
| | - Peilei Cheng
- Jiangsu Engineering Research Center for Distinctive Floriculture, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China
| |
Collapse
|
6
|
Liu D, Cui W, Bo C, Wang R, Zhu Y, Duan Y, Wang D, Xue J, Xue T. PtWRKY2, a WRKY transcription factor from Pinellia ternata confers heat tolerance in Arabidopsis. Sci Rep 2024; 14:13807. [PMID: 38877055 PMCID: PMC11178784 DOI: 10.1038/s41598-024-64560-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
High temperatures are a major stress factor that limit the growth of Pinellia ternata. WRKY proteins widely distribute in plants with the important roles in plant growth and stress responses. However, WRKY genes have not been identified in P. ternata thus far. In this study, five PtWRKYs with four functional subgroups were identified in P. ternata. One group III WRKY transcription factor, PtWRKY2, was strongly induced by high temperatures, whereas the other four PtWRKYs were suppressed. Analysis of transcription factor characteristics revealed that PtWRKY2 localized to the nucleus and specifically bound to W-box elements without transcriptional activation activity. Overexpression of PtWRKY2 increased the heat tolerance of Arabidopsis, as shown by the higher percentage of seed germination and survival rate, and the longer root length of transgenic lines under high temperatures compared to the wild-type. Moreover, PtWRKY2 overexpression significantly decreased reactive oxygen species accumulation by increasing the catalase, superoxide dismutase, and peroxidase activities. Furthermore, the selected heat shock-associated genes, including five transcription factors (HSFA1A, HSFA7A, bZIP28, DREB2A, and DREB2B), two heat shock proteins (HSP70 and HSP17.4), and three antioxidant enzymes (POD34, CAT1, and SOD1), were all upregulated in transgenic Arabidopsis. The study identifies that PtWRKY2 functions as a key transcriptional regulator in the heat tolerance of P. ternata, which might provide new insights into the genetic improvement of P. ternata.
Collapse
Affiliation(s)
- Dan Liu
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, Huaibei, China
| | - Wanning Cui
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
- Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, Huaibei, China
| | - Chen Bo
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, Huaibei, China
- Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, Huaibei, China
| | - Ru Wang
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
- Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, Huaibei, China
| | - Yanfang Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, Huaibei, China
| | - Yongbo Duan
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, Huaibei, China
| | - Dexin Wang
- College of Agriculture and Engineering, Heze University, Heze, 274015, China.
| | - Jianping Xue
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, Huaibei, China.
- Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, Huaibei, China.
| | - Tao Xue
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, Huaibei, China.
- Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, Huaibei, China.
| |
Collapse
|
7
|
Vodiasova E, Sinchenko A, Khvatkov P, Dolgov S. Genome-Wide Identification, Characterisation, and Evolution of the Transcription Factor WRKY in Grapevine ( Vitis vinifera): New View and Update. Int J Mol Sci 2024; 25:6241. [PMID: 38892428 PMCID: PMC11172563 DOI: 10.3390/ijms25116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
WRKYs are a multigenic family of transcription factors that are plant-specific and involved in the regulation of plant development and various stress response processes. However, the evolution of WRKY genes is not fully understood. This family has also been incompletely studied in grapevine, and WRKY genes have been named with different numbers in different studies, leading to great confusion. In this work, 62 Vitis vinifera WRKY genes were identified based on six genomes of different cultivars. All WRKY genes were numbered according to their chromosomal location, and a complete revision of the numbering was performed. Amino acid variability between different cultivars was assessed for the first time and was greater than 5% for some WRKYs. According to the gene structure, all WRKYs could be divided into two groups: more exons/long length and fewer exons/short length. For the first time, some chimeric WRKY genes were found in grapevine, which may play a specific role in the regulation of different processes: VvWRKY17 (an N-terminal signal peptide region followed by a non-cytoplasmic domain) and VvWRKY61 (Frigida-like domain). Five phylogenetic clades A-E were revealed and correlated with the WRKY groups (I, II, III). The evolution of WRKY was studied, and we proposed a WRKY evolution model where there were two dynamic phases of complexity and simplification in the evolution of WRKY.
Collapse
Affiliation(s)
- Ekaterina Vodiasova
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 299011 Sevastopol, Russia
| | - Anastasiya Sinchenko
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
| | - Pavel Khvatkov
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
| | - Sergey Dolgov
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 142290 Puschino, Russia
| |
Collapse
|
8
|
Cheng W, Wang N, Li Y, Zhou X, Bai X, Liu L, Ma X, Wang S, Li X, Gong B, Jiang Y, Azeem M, Zhu L, Chen L, Wang H, Chu M. CaWRKY01-10 and CaWRKY08-4 Confer Pepper's Resistance to Phytophthora capsici Infection by Directly Activating a Cluster of Defense-Related Genes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11682-11693. [PMID: 38739764 DOI: 10.1021/acs.jafc.4c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Phytophthora blight of pepper, which is caused by the notorious oomycete pathogen Phytophthora capsici, is a serious disease in global pepper production regions. Our previous study had identified two WRKY transcription factors (TFs), CaWRKY01-10 and CaWRKY08-4, which are prominent modulators in the resistant pepper line CM334 against P. capsici infection. However, their functional mechanisms and underlying signaling networks remain unknown. Herein, we determined that CaWRKY01-10 and CaWRKY08-4 are localized in plant nuclei. Transient overexpression assays indicated that both CaWRKY01-10 and CaWRKY08-4 act as positive regulators in pepper resistance to P. capsici. Besides, the stable overexpression of CaWRKY01-10 and CaWRKY08-4 in transgenic Nicotiana benthamiana plants also significantly enhanced the resistance to P. capsici. Using comprehensive approaches including RNA-seq, CUT&RUN-qPCR, and dual-luciferase reporter assays, we revealed that overexpression of CaWRKY01-10 and CaWRKY08-4 can activate the expressions of the same four Capsicum annuum defense-related genes (one PR1, two PR4, and one pathogen-related gene) by directly binding to their promoters. However, we did not observe protein-protein interactions and transcriptional amplification/inhibition effects of their shared target genes when coexpressing these two WRKY TFs. In conclusion, these data suggest that both of the resistant line specific upregulated WRKY TFs (CaWRKY01-10 and CaWRKY08-4) can confer pepper's resistance to P. capsici infection by directly activating a cluster of defense-related genes and are potentially useful for genetic improvement against Phytophthora blight of pepper and other crops.
Collapse
Affiliation(s)
- Wei Cheng
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Normal University, Wuhu 241000, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, Anhui Normal University, Wuhu 241000, China
| | - Nan Wang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yuan Li
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xianjun Zhou
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xueyi Bai
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Li Liu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xinqiao Ma
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Shuai Wang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xueqi Li
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Beibei Gong
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yan Jiang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Muhammad Azeem
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Liyun Zhu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Lin Chen
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Hui Wang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Moli Chu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
9
|
Zeng X, Wu C, Zhang L, Lan L, Fu W, Wang S. Molecular Mechanism of Resistance to Alternaria alternata Apple Pathotype in Apple by Alternative Splicing of Transcription Factor MdMYB6-like. Int J Mol Sci 2024; 25:4353. [PMID: 38673937 PMCID: PMC11050356 DOI: 10.3390/ijms25084353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/26/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
As a fruit tree with great economic value, apple is widely cultivated in China. However, apple leaf spot disease causes significant damage to apple quality and economic value. In our study, we found that MdMYB6-like is a transcription factor without auto-activation activity and with three alternative spliced variants. Among them, MdMYB6-like-β responded positively to the pathogen infection. Overexpression of MdMYB6-like-β increased the lignin content of leaves and improved the pathogenic resistance of apple flesh callus. In addition, all three alternative spliced variants of MdMYB6-like could bind to the promoter of MdBGLU H. Therefore, we believe that MdMYB6-like plays an important role in the infection process of the pathogen and lays a solid foundation for breeding disease-resistant cultivars of apple in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Sanhong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.Z.); (C.W.); (L.Z.); (L.L.); (W.F.)
| |
Collapse
|
10
|
Alhabsi A, Butt H, Kirschner GK, Blilou I, Mahfouz MM. SCR106 splicing factor modulates abiotic stress responses by maintaining RNA splicing in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:802-818. [PMID: 37924151 PMCID: PMC10837019 DOI: 10.1093/jxb/erad433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Plants employ sophisticated molecular machinery to fine-tune their responses to growth, developmental, and stress cues. Gene expression influences plant cellular responses through regulatory processes such as transcription and splicing. Pre-mRNA is alternatively spliced to increase the genome coding potential and further regulate expression. Serine/arginine-rich (SR) proteins, a family of pre-mRNA splicing factors, recognize splicing cis-elements and regulate both constitutive and alternative splicing. Several studies have reported SR protein genes in the rice genome, subdivided into six subfamilies based on their domain structures. Here, we identified a new splicing factor in rice with an RNA recognition motif (RRM) and SR-dipeptides, which is related to the SR proteins, subfamily SC. OsSCR106 regulates pre-mRNA splicing under abiotic stress conditions. It localizes to the nuclear speckles, a major site for pre-mRNA splicing in the cell. The loss-of-function scr106 mutant is hypersensitive to salt, abscisic acid, and low-temperature stress, and harbors a developmental abnormality indicated by the shorter length of the shoot and root. The hypersensitivity to stress phenotype was rescued by complementation using OsSCR106 fused behind its endogenous promoter. Global gene expression and genome-wide splicing analysis in wild-type and scr106 seedlings revealed that OsSCR106 regulates its targets, presumably through regulating the alternative 3'-splice site. Under salt stress conditions, we identified multiple splice isoforms regulated by OsSCR106. Collectively, our results suggest that OsSCR106 is an important splicing factor that plays a crucial role in accurate pre-mRNA splicing and regulates abiotic stress responses in plants.
Collapse
Affiliation(s)
- Abdulrahman Alhabsi
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Gwendolyn K Kirschner
- Laboratory of Plant Cell and Developmental Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
11
|
Thanapipatpong P, Vuttipongchaikij S, Chomtong T, Puangtame W, Napaumpaipond P, Gomez LD, Suttangkakul A. Alternative splicing regulates autophagy in response to environmental stresses in cucumber ( Cucumis sativus). ALL LIFE 2023. [DOI: 10.1080/26895293.2023.2195987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Affiliation(s)
| | - Supachai Vuttipongchaikij
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Thitikorn Chomtong
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Wilasinee Puangtame
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | | | - Anongpat Suttangkakul
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| |
Collapse
|
12
|
Chen Y, Zhang M, Sui D, Jiang J, Wang L. Role of bZIP Transcription Factors in Response to NaCl Stress in Tamarix ramosissima under Exogenous Potassium (K +). Genes (Basel) 2023; 14:2203. [PMID: 38137025 PMCID: PMC10743189 DOI: 10.3390/genes14122203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/19/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Salt stress is a significant environmental factor affecting plant growth and development, with NaCl stress being one of the most common types of salt stress. The halophyte, Tamarix ramosissima Ledeb (T. ramosissima), is frequently utilized for the afforestation of saline-alkali soils. Indeed, there has been limited research and reports by experts and scholars on the regulatory mechanisms of basic leucine zipper (bZIP) genes in T. ramosissima when treated with exogenous potassium (K+) to alleviate the effects of NaCl stress. This study focused on the bZIP genes in T. ramosissima roots under NaCl stress with additional KCl applied. We identified key candidate genes and metabolic pathways related to bZIP and validated them through quantitative real-time PCR (qRT-PCR). The results revealed that under NaCl stress with additional KCl applied treatments at 0 h, 48 h, and 168 h, based on Pfam protein domain prediction and physicochemical property analysis, we identified 20 related bZIP genes. Notably, four bZIP genes (bZIP_2, bZIP_6, bZIP_16, and bZIP_18) were labeled with the plant hormone signal transduction pathway, showing a predominant up-regulation in expression levels. The results suggest that these genes may mediate multiple physiological pathways under NaCl stress with additional KCl applied at 48 h and 168 h, enhancing signal transduction, reducing the accumulation of ROS, and decreasing oxidative damage, thereby enhancing the tolerance of T. ramosissima to NaCl stress. This study provides gene resources and a theoretical basis for further breeding of salt-tolerant Tamarix species and the involvement of bZIP transcription factors in mitigating NaCl toxicity.
Collapse
Affiliation(s)
- Yahui Chen
- Jiangsu Academy of Forestry, Nanjing 211153, China; (Y.C.); (M.Z.); (D.S.)
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Min Zhang
- Jiangsu Academy of Forestry, Nanjing 211153, China; (Y.C.); (M.Z.); (D.S.)
| | - Dezong Sui
- Jiangsu Academy of Forestry, Nanjing 211153, China; (Y.C.); (M.Z.); (D.S.)
| | - Jiang Jiang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Wang
- Jiangsu Academy of Forestry, Nanjing 211153, China; (Y.C.); (M.Z.); (D.S.)
| |
Collapse
|
13
|
Li Y, Ma X, Xiao LD, Yu YN, Yan HL, Gong ZH. CaWRKY50 Acts as a Negative Regulator in Response to Colletotrichum scovillei Infection in Pepper. PLANTS (BASEL, SWITZERLAND) 2023; 12:1962. [PMID: 37653879 PMCID: PMC10221478 DOI: 10.3390/plants12101962] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 09/02/2023]
Abstract
Chili anthracnose is one of the most common and destructive fungal pathogens that affects the yield and quality of pepper. Although WRKY proteins play crucial roles in pepper resistance to a variety of pathogens, the mechanism of their resistance to anthracnose is still unknown. In this study, we found that CaWRKY50 expression was obviously induced by Colletotrichum scovillei infection and salicylic acid (SA) treatments. CaWRKY50-silencing enhanced pepper resistance to C. scovillei, while transient overexpression of CaWRKY50 in pepper increased susceptibility to C. scovillei. We further found that overexpression of CaWRKY50 in tomatoes significantly decreased resistance to C. scovillei by SA and reactive oxygen species (ROS) signaling pathways. Moreover, CaWRKY50 suppressed the expression of two SA-related genes, CaEDS1 (enhanced disease susceptibility 1) and CaSAMT1 (salicylate carboxymethyltransferase 1), by directly binding to the W-box motif in their promoters. Additionally, we demonstrated that CaWRKY50 interacts with CaWRKY42 and CaMIEL1 in the nucleus. Thus, our findings revealed that CaWRKY50 plays a negative role in pepper resistance to C. scovillei through the SA-mediated signaling pathway and the antioxidant defense system. These results provide a theoretical foundation for molecular breeding of pepper varieties resistant to anthracnose.
Collapse
Affiliation(s)
- Yang Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Y.L.); (X.M.); (Y.-N.Y.)
| | - Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Y.L.); (X.M.); (Y.-N.Y.)
| | - Luo-Dan Xiao
- Yibin Research Institute of Tea Industry, Yibin 644000, China;
| | - Ya-Nan Yu
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Y.L.); (X.M.); (Y.-N.Y.)
| | - Hui-Ling Yan
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Y.L.); (X.M.); (Y.-N.Y.)
| |
Collapse
|
14
|
Hazra A, Pal A, Kundu A. Alternative splicing shapes the transcriptome complexity in blackgram [Vigna mungo (L.) Hepper]. Funct Integr Genomics 2023; 23:144. [PMID: 37133618 DOI: 10.1007/s10142-023-01066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Vigna mungo, a highly consumed crop in the pan-Asian countries, is vulnerable to several biotic and abiotic stresses. Understanding the post-transcriptional gene regulatory cascades, especially alternative splicing (AS), may underpin large-scale genetic improvements to develop stress-resilient varieties. Herein, a transcriptome based approach was undertaken to decipher the genome-wide AS landscape and splicing dynamics in order to establish the intricacies of their functional interactions in various tissues and stresses. RNA sequencing followed by high-throughput computational analyses identified 54,526 AS events involving 15,506 AS genes that generated 57,405 transcripts isoforms. Enrichment analysis revealed their involvement in diverse regulatory functions and demonstrated that transcription factors are splicing-intensive, splice variants of which are expressed differentially across tissues and environmental cues. Increased expression of a splicing regulator NHP2L1/SNU13 was found to co-occur with lower intron retention events. The host transcriptome is significantly impacted by differential isoform expression of 1172 and 765 AS genes that resulted in 1227 (46.8% up and 53.2% downregulated) and 831 (47.5% up and 52.5% downregulated) transcript isoforms under viral pathogenesis and Fe2+ stressed condition, respectively. However, genes experiencing AS operate differently from the differentially expressed genes, suggesting AS is a unique and independent mode of regulatory mechanism. Therefore, it can be inferred that AS mediates a crucial regulatory role across tissues and stressful situations and the results would provide an invaluable resource for future endeavours in V. mungo genomics.
Collapse
Affiliation(s)
- Anjan Hazra
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Amita Pal
- Division of Plant Biology, Bose Institute, Kolkata, 700091, India.
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India.
| |
Collapse
|
15
|
Liu H, Tang X, Zhang N, Li S, Si H. Role of bZIP Transcription Factors in Plant Salt Stress. Int J Mol Sci 2023; 24:ijms24097893. [PMID: 37175598 PMCID: PMC10177800 DOI: 10.3390/ijms24097893] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Soil salinity has become an increasingly serious problem worldwide, greatly limiting crop development and yield, and posing a major challenge to plant breeding. Basic leucine zipper (bZIP) transcription factors are the most widely distributed and conserved transcription factors and are the main regulators controlling various plant response processes against external stimuli. The bZIP protein contains two domains: a highly conserved, DNA-binding alkaline region, and a diverse leucine zipper, which is one of the largest transcription factor families in plants. Plant bZIP is involved in many biological processes, such as flower development, seed maturation, dormancy, and senescence, and plays an important role in abiotic stresses such as salt damage, drought, cold damage, osmotic stress, mechanical damage, and ABA signal response. In addition, bZIP is involved in the regulation of plant response to biological stresses such as insect pests and pathogen infection through salicylic acid, jasmonic acid, and ABA signal transduction pathways. This review summarizes and discusses the structural characteristics and functional characterization of the bZIP transcription factor group, the bZIP transcription factor complex and its molecular regulation mechanisms related to salt stress resistance, and the regulation of transcription factors in plant salt stress resistance. This review provides a theoretical basis and research ideas for further exploration of the salt stress-related functions of bZIP transcription factors. It also provides a theoretical basis for crop genetic improvement and green production in agriculture.
Collapse
Affiliation(s)
- Haotian Liu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xun Tang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Shigui Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Huaijun Si
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
16
|
Rawoof A, Ahmad I, Islam K, Momo J, Kumar A, Jaiswal V, Ramchiary N. Integrated omics analysis identified genes and their splice variants involved in fruit development and metabolites production in Capsicum species. Funct Integr Genomics 2022; 22:1189-1209. [PMID: 36173582 DOI: 10.1007/s10142-022-00902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022]
Abstract
To date, several transcriptomic studies during fruit development have been reported; however, no comprehensive integrated study on expression diversity, alternative splicing, and metabolomic profiling was reported in Capsicum. This study analyzed RNA-seq data and untargeted metabolomic profiling from early green (EG), mature green (MG), and breaker (Br) fruit stages from two Capsicum species, i.e., C. annuum (Cann) and C. frutescens (Cfrut) from Northeast India. A total of 117,416 and 96,802 alternatively spliced events (AltSpli-events) were identified from Cann and Cfrut, respectively. Among AltSpli-events, intron retention (IR; 32.2% Cann and 25.75% Cfrut) followed by alternative acceptor (AA; 15.4% Cann and 18.9% Cfrut) were the most abundant in Capsicum. Around 7600 genes expressed in at least one fruit stage of Cann and Cfrut were AltSpli. The study identified spliced variants of genes including transcription factors (TFs) potentially involved in fruit development/ripening (Aux/IAA 16-like, ETR, SGR1, ARF, CaGLK2, ETR, CaAGL1, MADS-RIN, FUL1, SEPALLATA1), carotenoid (PDS, CA1, CCD4, NCED3, xanthoxin dehydrogenase, CaERF82, CabHLH100, CaMYB3R-1, SGR1, CaWRKY28, CaWRKY48, CaWRKY54), and capsaicinoids or flavonoid biosynthesis (CaMYB48, CaWRKY51), which were significantly differentially spliced (DS) between consecutive Capsicum fruit stages. Also, this study observed that differentially expressed isoforms (DEiso) from 38 genes with differentially spliced events (DSE) were significantly enriched in various metabolic pathways such as starch and sucrose metabolism, amino acid metabolism, cysteine cutin suberin and wax biosynthesis, and carotenoid biosynthesis. Furthermore, the metabolomic profiling revealed that metabolites from aforementioned pathways such as carbohydrates (mainly sugars such as D-fructose, D-galactose, maltose, and sucrose), organic acids (carboxylic acids), and peptide groups significantly altered during fruit development. Taken together, our findings could help in alternative splicing-based targeted studies of candidate genes involved in fruit development and ripening in Capsicum crop.
Collapse
Affiliation(s)
- Abdul Rawoof
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ilyas Ahmad
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Khushbu Islam
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - John Momo
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Vandana Jaiswal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Nirala Ramchiary
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
17
|
Price L, Han Y, Angessa T, Li C. Molecular Pathways of WRKY Genes in Regulating Plant Salinity Tolerance. Int J Mol Sci 2022; 23:10947. [PMID: 36142857 PMCID: PMC9502527 DOI: 10.3390/ijms231810947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Salinity is a natural and anthropogenic process that plants overcome using various responses. Salinity imposes a two-phase effect, simplified into the initial osmotic challenges and subsequent salinity-specific ion toxicities from continual exposure to sodium and chloride ions. Plant responses to salinity encompass a complex gene network involving osmotic balance, ion transport, antioxidant response, and hormone signaling pathways typically mediated by transcription factors. One particular transcription factor mega family, WRKY, is a principal regulator of salinity responses. Here, we categorize a collection of known salinity-responding WRKYs and summarize their molecular pathways. WRKYs collectively play a part in regulating osmotic balance, ion transport response, antioxidant response, and hormone signaling pathways in plants. Particular attention is given to the hormone signaling pathway to illuminate the relationship between WRKYs and abscisic acid signaling. Observed trends among WRKYs are highlighted, including group II WRKYs as major regulators of the salinity response. We recommend renaming existing WRKYs and adopting a naming system to a standardized format based on protein structure.
Collapse
Affiliation(s)
- Lewis Price
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | - Yong Han
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
- Department of Primary Industries and Regional Development, Perth, WA 6151, Australia
| | - Tefera Angessa
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
18
|
Identification of the WRKY Gene Family and Characterization of Stress-Responsive Genes in Taraxacum kok-saghyz Rodin. Int J Mol Sci 2022; 23:ijms231810270. [PMID: 36142183 PMCID: PMC9499643 DOI: 10.3390/ijms231810270] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
WRKY transcription factors present unusual research value because of their critical roles in plant physiological processes and stress responses. Taraxacum kok-saghyz Rodin (TKS) is a perennial herb of dandelion in the Asteraceae family. However, the research on TKS WRKY TFs is limited. In this study, 72 TKS WRKY TFs were identified and named. Further comparison of the core motifs and the structure of the WRKY motif was analyzed. These TFs were divided into three groups through phylogenetic analysis. Genes in the same group of TkWRKY usually exhibit a similar exon-intron structure and motif composition. In addition, virtually all the TKS WRKY genes contained several cis-elements related to stress response. Expression profiling of the TkWRKY genes was assessed using transcriptome data sets and Real-Time RT-PCR data in tissues during physiological development, under abiotic stress and hormonal treatments. For instance, the TkWRKY18, TkWRKY23, and TkWRKY38 genes were significantly upregulated during cold stress, whereas the TkWRKY21 gene was upregulated under heat-stress conditions. These results could provide a basis for further studies on the function of the TKS WRKY gene family and genetic amelioration of TKS germplasm.
Collapse
|
19
|
Mirza Z, Haque MM, Gupta M. WRKY transcription factors: a promising way to deal with arsenic stress in rice. Mol Biol Rep 2022; 49:10895-10904. [PMID: 35941412 DOI: 10.1007/s11033-022-07772-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
Arsenic (As) is a global carcinogenic contaminant, and is one of the significant environmental constraints that limits the development and yield of crop plants. It is always tagged along with rice as rice takes up As and tends to accumulate it in grains. This amassment makes a way for As to get into the food chain that leads to unforeseen human health risks. Being viewed as parallel with toxicity, As in rice is an important global risk that calls for an urgent solution. WRKY Transcription Factors (TFs) seems to be promising in this area. The classical and substantial progress in the molecular mechanism of WRKY TFs, strengthened the understanding of innovative solutions for dealing with As in rice. Here, we review the potential of WRKY TFs under As stressed rice as a genetic solution and also provide insights into As and rice. Further, we develop an understanding of WRKY TF gene family and its regulation in rice. To date, studies on the role of WRKY TFs under As stressed rice are lacking. This area needs to be explored more so that this gene family can be utilized as an effective genetic tool that can break the As cycle to develop low or As free rice cultivar.
Collapse
Affiliation(s)
- Zainab Mirza
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, 25, New Delhi, India
| | - Mohammad Mahfuzul Haque
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, 25, New Delhi, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, 25, New Delhi, India.
| |
Collapse
|
20
|
Zheng L, Qiu B, Su L, Wang H, Cui X, Ge F, Liu D. Panax notoginseng WRKY Transcription Factor 9 Is a Positive Regulator in Responding to Root Rot Pathogen Fusarium solani. FRONTIERS IN PLANT SCIENCE 2022; 13:930644. [PMID: 35909719 PMCID: PMC9331302 DOI: 10.3389/fpls.2022.930644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Panax notoginseng (Burk) F.H. Chen is a rare and valuable Chinese herb, but root rot mainly caused by Fusarium solani severely affects the yield and quality of P. notoginseng herbal materials. In this study, we isolated 30 P. notoginseng WRKY transcription factors (TFs), which were divided into three groups (I, II, and III) on the basis of a phylogenetic analysis. The expression levels of 10 WRKY genes, including PnWRKY9, in P. notoginseng roots increased in response to a methyl jasmonate (MeJA) treatment and the following F. solani infection. Additionally, PnWRKY9 was functionally characterized. The PnWRKY9 protein was localized to the nucleus. The overexpression of PnWRKY9 in tobacco (Nicotiana tabacum) considerably increased the resistance to F. solani, whereas an RNAi-mediated decrease in the PnWRKY9 expression level in P. notoginseng leaves increased the susceptibility to F. solani. The RNA sequencing and hormone content analyses of PnWRKY9-overexpression tobacco revealed that PnWRKY9 and the jasmonic acid (JA) signaling pathway synergistically enhance disease resistance. The PnWRKY9 recombinant protein was observed to bind specifically to the W-box sequence in the promoter of a JA-responsive and F. solani resistance-related defensin gene (PnDEFL1). A yeast one-hybrid assay indicated that PnWRKY9 can activate the transcription of PnDEFL1. Furthermore, a co-expression assay in tobacco using β-glucuronidase (GUS) as a reporter further verified that PnWRKY9 positively regulates PnDEFL1 expression. Overall, in this study, we identified P. notoginseng WRKY TFs and demonstrated that PnWRKY9 positively affects plant defenses against the root rot pathogen. The data presented herein provide researchers with fundamental information regarding the regulatory mechanism mediating the coordinated activities of WRKY TFs and the JA signaling pathway in P. notoginseng responses to the root rot pathogen.
Collapse
Affiliation(s)
- Lilei Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, China
| | - Bingling Qiu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, China
| | - Linlin Su
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, China
| | - Hanlin Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, China
| | - Feng Ge
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, China
| | - Diqiu Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, China
| |
Collapse
|
21
|
Yang S, Cai W, Shen L, Cao J, Liu C, Hu J, Guan D, He S. A CaCDPK29-CaWRKY27b module promotes CaWRKY40-mediated thermotolerance and immunity to Ralstonia solanacearum in pepper. THE NEW PHYTOLOGIST 2022; 233:1843-1863. [PMID: 34854082 DOI: 10.1111/nph.17891] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
CaWRKY40 in pepper (Capsicum annuum) promotes immune responses to Ralstonia solanacearum infection (RSI) and to high-temperature, high-humidity (HTHH) stress, but how it interacts with upstream signalling components remains poorly understood. Here, using approaches of reverse genetics, biochemical and molecular biology we functionally characterised the relationships among the WRKYGMK-containing WRKY protein CaWRKY27b, the calcium-dependent protein kinase CaCDPK29, and CaWRKY40 during pepper response to RSI or HTHH. Our data indicate that CaWRKY27b is upregulated and translocated from the cytoplasm to the nucleus upon phosphorylation of Ser137 in the nuclear localisation signal by CaCDPK29. Using electrophoretic mobility shift assays and microscale thermophoresis, we observed that, due to the replacement of Q by M in the conserved WRKYGQK, CaWRKY27b in the nucleus failed to bind to W-boxes in the promoters of immunity- and thermotolerance-related marker genes. Instead, CaWRKY27b interacted with CaWRKY40 and promoted its binding and positive regulation of the tested marker genes including CaNPR1, CaDEF1 and CaHSP24. Notably, mutation of the WRKYGMK motif in CaWRKY27b to WRKYGQK restored the W-box binding ability. Our data therefore suggest that CaWRKY27b is phosphorylated by CaCDPK29 and acts as a transcriptional activator of CaWRKY40 during the pepper response to RSI and HTHH.
Collapse
Affiliation(s)
- Sheng Yang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Weiwei Cai
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lei Shen
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jianshen Cao
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Cailing Liu
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350002, China
| | - Jiong Hu
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Deyi Guan
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Shuilin He
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| |
Collapse
|
22
|
Syed‐Ab‐Rahman SF, Arkhipov A, Wass TJ, Xiao Y, Carvalhais LC, Schenk PM. Rhizosphere bacteria induce programmed cell death defence genes and signalling in chilli pepper. J Appl Microbiol 2022; 132:3111-3124. [DOI: 10.1111/jam.15456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Sharifah Farhana Syed‐Ab‐Rahman
- Plant‐Microbe Interactions Laboratory School of Agriculture and Food Sciences The University of Queensland Brisbane Queensland 4072 Australia
| | - Alexander Arkhipov
- Plant‐Microbe Interactions Laboratory School of Agriculture and Food Sciences The University of Queensland Brisbane Queensland 4072 Australia
| | - Taylor J. Wass
- Plant‐Microbe Interactions Laboratory School of Agriculture and Food Sciences The University of Queensland Brisbane Queensland 4072 Australia
| | - Yawen Xiao
- Plant‐Microbe Interactions Laboratory School of Agriculture and Food Sciences The University of Queensland Brisbane Queensland 4072 Australia
| | - Lilia C. Carvalhais
- Queensland Alliance for Agriculture and Food Innovation The University of Queensland Ecosciences Precinct GPO Box 267 Queensland 4001 Australia
| | - Peer M. Schenk
- Plant‐Microbe Interactions Laboratory School of Agriculture and Food Sciences The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
23
|
Zhu S, Fan R, Xiong X, Li J, Xiang L, Hong Y, Ye Y, Zhang X, Yu X, Chen Y. MeWRKY IIas, Subfamily Genes of WRKY Transcription Factors From Cassava, Play an Important Role in Disease Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:890555. [PMID: 35720572 PMCID: PMC9201764 DOI: 10.3389/fpls.2022.890555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/02/2022] [Indexed: 05/20/2023]
Abstract
Cassava (Manihot esculenta Crantz) is an important tropical crop for food, fodder, and energy. Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) occurs in all cassava growing regions and threatens global cassava production. WRKY transcription factor family plays the essential roles during plant growth, development, and abiotic or biotic stress. Particularly, previous studies have revealed the important role of the group IIa WRKY genes in plant disease resistance. However, a comprehensive analysis of group IIa subfamily in cassava is still missing. Here, we identified 102 WRKY members, which were classified into three groups, I, II, and III. Transient expression showed that six MeWRKY IIas were localized in the nucleus. MeWRKY IIas transcripts accumulated significantly in response to SA, JA, and Xam. Overexpression of MeWRKY27 and MeWRKY33 in Arabidopsis enhanced its resistance to Pst DC3000. In contrast, silencing of MeWRKY27 and MeWRKY33 in cassava enhanced its susceptibility to Xam. Co-expression network analysis showed that different downstream genes are regulated by different MeWRKY IIa members. The functional analysis of downstream genes will provide clues for clarifying molecular mechanism of cassava disease resistance. Collectively, our results suggest that MeWRKY IIas are regulated by SA, JA signaling, and coordinate response to Xam infection.
Collapse
Affiliation(s)
- Shousong Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Ruochen Fan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Xi Xiong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Jianjun Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Li Xiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Yuhui Hong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yiwei Ye
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Xiaofei Zhang
- CGIAR Research Program on Roots Tubers and Bananas (RTB), International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Xiaohui Yu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Xiaohui Yu
| | - Yinhua Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Yinhua Chen
| |
Collapse
|
24
|
Kalapos B, Juhász C, Balogh E, Kocsy G, Tóbiás I, Gullner G. Transcriptome profiling of pepper leaves by RNA-Seq during an incompatible and a compatible pepper-tobamovirus interaction. Sci Rep 2021; 11:20680. [PMID: 34667194 PMCID: PMC8526828 DOI: 10.1038/s41598-021-00002-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/05/2021] [Indexed: 11/09/2022] Open
Abstract
Upon virus infections, the rapid and comprehensive transcriptional reprogramming in host plant cells is critical to ward off virus attack. To uncover genes and defense pathways that are associated with virus resistance, we carried out the transcriptome-wide Illumina RNA-Seq analysis of pepper leaves harboring the L3 resistance gene at 4, 8, 24 and 48 h post-inoculation (hpi) with two tobamoviruses. Obuda pepper virus (ObPV) inoculation led to hypersensitive reaction (incompatible interaction), while Pepper mild mottle virus (PMMoV) inoculation resulted in a systemic infection without visible symptoms (compatible interaction). ObPV induced robust changes in the pepper transcriptome, whereas PMMoV showed much weaker effects. ObPV markedly suppressed genes related to photosynthesis, carbon fixation and photorespiration. On the other hand, genes associated with energy producing pathways, immune receptors, signaling cascades, transcription factors, pathogenesis-related proteins, enzymes of terpenoid biosynthesis and ethylene metabolism as well as glutathione S-transferases were markedly activated by ObPV. Genes related to photosynthesis and carbon fixation were slightly suppressed also by PMMoV. However, PMMoV did not influence significantly the disease signaling and defense pathways. RNA-Seq results were validated by real-time qPCR for ten pepper genes. Our findings provide a deeper insight into defense mechanisms underlying tobamovirus resistance in pepper.
Collapse
Affiliation(s)
- Balázs Kalapos
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Brunszvik utca 2, Martonvásár, 2462, Hungary
| | - Csilla Juhász
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Herman Ottó út 15, Budapest, 1022, Hungary
| | - Eszter Balogh
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Brunszvik utca 2, Martonvásár, 2462, Hungary
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Brunszvik utca 2, Martonvásár, 2462, Hungary
| | - István Tóbiás
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Herman Ottó út 15, Budapest, 1022, Hungary
| | - Gábor Gullner
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Herman Ottó út 15, Budapest, 1022, Hungary.
| |
Collapse
|
25
|
Li S, Liu G, Pu L, Liu X, Wang Z, Zhao Q, Chen H, Ge F, Liu D. WRKY Transcription Factors Actively Respond to Fusarium oxysporum in Lilium regale. PHYTOPATHOLOGY 2021; 111:1625-1637. [PMID: 33576690 DOI: 10.1094/phyto-10-20-0480-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The WRKY transcription factors form a plant-specific superfamily important for regulating plant development, stress responses, and hormone signal transduction. In this study, many WRKY genes (LrWRKY1-35) were identified in Lilium regale, which is a wild lily species highly resistant to Fusarium wilt. These WRKY genes were divided into three classes (I to III) based on a phylogenetic analysis. The Class-II WRKY transcription factors were further divided into five subclasses (IIa, IIb, IIc, IId, and IIe). Moreover, the gene expression patterns based on a quantitative real-time PCR analysis revealed the WRKY genes were differentially expressed in the L. regale roots, stems, leaves, and flowers. Additionally, the expression of the WRKY genes was affected by an infection by Fusarium oxysporum as well as by salicylic acid, methyl jasmonate, ethephon, and hydrogen peroxide treatments. Moreover, the LrWRKY1 protein was localized to the nucleus of onion epidermal cells. The recombinant LrWRKY1 protein purified from Escherichia coli bound specifically to DNA fragments containing the W-box sequence, and a yeast one-hybrid assay indicated that LrWRKY1 can activate transcription. A co-expression assay in tobacco (Nicotiana tabacum) confirmed LrWRKY1 regulates the expression of LrPR10-5. Furthermore, the overexpression of LrWRKY1 in tobacco and the Oriental hybrid 'Siberia' (susceptible to F. oxysporum) increased the resistance of the transgenic plants to F. oxysporum. Overall, LrWRKY1 regulates the expression of the resistance gene LrPR10-5 and is involved in the defense response of L. regale to F. oxysporum. This study provides valuable information regarding the expression and functional characteristics of L. regale WRKY genes.
Collapse
Affiliation(s)
- Shan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Guanze Liu
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Limei Pu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuyan Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Zie Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qin Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hongjun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Feng Ge
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Diqiu Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
26
|
Zhang Y, Zhao Y, Sun L, Han P, Bai X, Lin R, Xiao K. The N uptake-associated physiological processes at late growth stage in wheat (Triticum aestivum) under N deprivation combined with deficit irrigation condition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:160-172. [PMID: 33991861 DOI: 10.1016/j.plaphy.2021.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Elucidating physiological mechanisms underlying the plant N uptake benefits breeding of high N use efficiency (NUE) crop cultivars. In this study, we investigated the growth and N uptake-associated processes in wheat under N deprivation and deficit irrigation, using two contrasting NUE cultivars. Compared with sufficient-N (SN), deficient-N (DN) treatment reduced plant biomass, N accumulation, and yields in two cultivars (high NUE Shinong 086 and N deprivation-sensitive Jimai 585), suggesting that N deprivation negatively regulates plant growth and N uptake. Shinong 086 was better on growth and N uptake-associated traits than Jimai 585 due to the improved root biomass across soil profile, which was consistent with the decrease of available N contents in soil layers. These results suggested that the improved root system architecture (RAS) enhances plant acquirement for soil N under N- and water-deprivation condition, contributing to the plant N uptake and yield formation capacities. Transcriptome investigation revealed that numerous genes were differentially expressed (DE) in the N-deprived Shinong 086 plants, which involve the regulation of complicate biochemical pathways. These results suggested that the modified RAS and N uptake in high NUE plants are accomplished underlying the regulation of numerous DE genes. TaWRKY20, a gene in ZFP transcription factor family, was functionally characterized for the role in mediating plant N uptake. Overexpression of it conferred plants improved growth and N uptake under DN due to its regulation on TaNRT2.1 and TaNRT2.2, two nitrate transporter genes. Our investigation provides insights in high NUE mechanisms in wheat under N deprivation.
Collapse
Affiliation(s)
- Yanyang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001, China; College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Yingjia Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001, China; College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Liyong Sun
- Collaboration and Innovation Center of Hebei, Shijiazhuang, 050000, China
| | - Peng Han
- Agricultural Technology Extension Station of Hebei, Shijiazhuang, 050000, China
| | - Xinyang Bai
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001, China; College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Ruize Lin
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001, China; College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Kai Xiao
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001, China; College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
27
|
Mahadani P, Hazra A. Expression and splicing dynamics of WRKY family genes along physiological exigencies of tea plant (Camellia sinensis). Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00784-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Sharma R, Mahanty B, Mishra R, Joshi RK. Genome wide identification and expression analysis of pepper C 2H 2 zinc finger transcription factors in response to anthracnose pathogen Colletotrichum truncatum. 3 Biotech 2021; 11:118. [PMID: 33747699 PMCID: PMC7933328 DOI: 10.1007/s13205-020-02601-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022] Open
Abstract
Although, the C2H2 zinc finger (ZF) family of plant transcription factors have been implicated in multiple biological processes, they are yet to be characterized in the economically important chilli pepper (Capsicum annuum). In this study, a total of 79 C2H2 ZF genes were identified in the pepper genome. Phylogenetic analysis categorized the pepper C2H2 ZF (CaZF) members into five subfamilies each with unique conserved domains and functions. Genomic organization revealed that CaZF genes have variable number of introns consistent with the characteristics defined by the evolutionary analysis. Segmental duplication-based purifying selection contributed to the expansion of CaZF genes in pepper. Additionally, 11 CaZF genes were identified as targets for 38 miRNAs indicating their role in post-transcriptional silencing-mediated genetic regulation. Gene expression analysis revealed that 18 CaZF genes were differentially expressed post-infection with the anthrocnose pathogen Colletotrichum truncatum, uncovering their potential function in pepper response to biotic stresses. Moreover, CaZFs were significantly induced post-treatment with methyl jasmonate and ethylene indicating their role in defense signaling. Notably, the MeJA responsive cis-elements were detected in the promoter regions of majority of CaZF genes, suggesting that CaZFs may be implicated in defense-responsive signal cross talking. Additionally, 18 CaZF genes were differentially expressed under drought and heat treatment, indicating their involvement in plant response to abiotic stresses. Overall, a comprehensive analysis of CaZF gene family in pepper provided significant insights into the understanding of C2H2 ZF-mediated stress regulation network, which would benefit the genetic improvement of pepper and other allied plants. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02601-x.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Biotechnology, Rama Devi Women’s University, Vidya Vihar, Bhubaneswar, Odisha 751022 India
| | - Bijayalaxmi Mahanty
- Department of Biotechnology, Rama Devi Women’s University, Vidya Vihar, Bhubaneswar, Odisha 751022 India
| | - Rukmini Mishra
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha India
| | - Raj Kumar Joshi
- Department of Biotechnology, Rama Devi Women’s University, Vidya Vihar, Bhubaneswar, Odisha 751022 India
| |
Collapse
|
29
|
Wei Z, Ye J, Zhou Z, Chen G, Meng F, Liu Y. Isolation and characterization of PoWRKY, an abiotic stress-related WRKY transcription factor from Polygonatum odoratum. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1-9. [PMID: 33627958 PMCID: PMC7873195 DOI: 10.1007/s12298-020-00924-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 05/28/2023]
Abstract
WRKY transcription factors play vital roles in response to biotic and abiotic stresses in plants. As a kind of high value medicinal plant, Polygonatum odoratum has an ability to tolerate various abiotic stresses because of the special growth condition. In current study, a novel WRKY gene from P. odoratum is isolated and compared with homologous sequences from other plants. PoWRKY1 possesses two typical WRKY domains and two C2H2 zinc-finger motifs. Evolutionary analysis indicated that PoWRKY1 is most closely related to WRKY protein from Asparagus officinalis. Expression analysis showed that expression of PoWRKY1 is induced by cold and drought stresses but not salt stress. Overexpression of PoWRKY1 in Arabidopsis improved seed germination and root growth of transgenic plants during cold stress and drought. In addition, super oxide dismutase activity and proline content in transgenic plants increased under cold and drought stresses, whereas malondialdehyde levels and relative electrolyte leakage reduced under similar stress conditions. Taken together, these results showed that PoWRKY1 enhances the tolerance to cold and drought stresses. This study lays a potential foundation to understand the molecular mechanism of tolerance to abiotic stress in P. odoratum.
Collapse
Affiliation(s)
- Zhongping Wei
- Forestry Biotechnology and Analysis Test Center, Liaoning Academy of Forestry Sciences, Shenyang, 110032 China
| | - Jingfeng Ye
- Forestry Biotechnology and Analysis Test Center, Liaoning Academy of Forestry Sciences, Shenyang, 110032 China
| | - Zhiquan Zhou
- Forestry Biotechnology and Analysis Test Center, Liaoning Academy of Forestry Sciences, Shenyang, 110032 China
| | - Gang Chen
- Forestry Biotechnology and Analysis Test Center, Liaoning Academy of Forestry Sciences, Shenyang, 110032 China
| | - Fanjin Meng
- Forestry Biotechnology and Analysis Test Center, Liaoning Academy of Forestry Sciences, Shenyang, 110032 China
| | - Yifei Liu
- Forestry Biotechnology and Analysis Test Center, Liaoning Academy of Forestry Sciences, Shenyang, 110032 China
| |
Collapse
|
30
|
Song Y, Cui H, Shi Y, Xue J, Ji C, Zhang C, Yuan L, Li R. Genome-wide identification and functional characterization of the Camelina sativa WRKY gene family in response to abiotic stress. BMC Genomics 2020; 21:786. [PMID: 33176698 PMCID: PMC7659147 DOI: 10.1186/s12864-020-07189-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/26/2020] [Indexed: 01/05/2023] Open
Abstract
Background WRKY transcription factors are a superfamily of regulators involved in diverse biological processes and stress responses in plants. However, there is limited knowledge about the WRKY family in camelina (Camelina sativa), an important Brassicaceae oil crop with strong tolerance for various stresses. Here, a genome-wide characterization of WRKY proteins is performed to examine their gene structures, phylogenetics, expression, conserved motif organizations, and functional annotation to identify candidate WRKYs that mediate stress resistance regulation in camelinas. Results A total of 242 CsWRKY proteins encoded by 224 gene loci distributed unevenly over the chromosomes were identified, and they were classified into three groups by phylogenetic analysis according to their WRKY domains and zinc finger motifs. The 15 CsWRKY gene loci generated 33 spliced variants. Orthologous WRKY gene pairs were identified, with 173 pairs in the C. sativa and Arabidopsis genomes as well as 282 pairs in the C. sativa and B. napus genomes, respectively. A total of 137 segmental duplication events were observed, but there was no tandem duplication in the camelina genome. Ten major conserved motifs were examined, with WRKYGQK being the most conserved, and several variants were present in many CsWRKYs. Expression analysis revealed that 50% more CsWRKY genes were expressed constitutively, and a set of them displayed tissue-specific expression. Notably, 11 CsWRKY genes exhibited significant expression changes in seedlings under cold, salt, and drought stresses, showing a preferentially inducible expression pattern in response to the stress. Conclusions The present article describes a detailed analysis of the CsWRKY gene family and its expression profiles in 12 tissues and under several stress conditions. Segmental duplication is the major force underlying the broad expansion of this gene family, and a strong purifying pressure occurred for CsWRKY proteins during their evolution. CsWRKY proteins play important roles in plant development, with differential functions in different tissues. Exceptionally, eleven CsWRKYs, particularly five alternative spliced isoforms, were found to be the possible key players in mediating plant responses to various stresses. Overall, our results provide a foundation for understanding the roles of CsWRKYs and the precise mechanism through which CsWRKYs regulate high stress resistance as well as the development of stress tolerance cultivars among Cruciferae crops. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07189-3.
Collapse
Affiliation(s)
- Yanan Song
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Hongli Cui
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Ying Shi
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jinai Xue
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunli Ji
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunhui Zhang
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Lixia Yuan
- College of Biological Science and Technology, Jinzhong University, Jinzhong, Shanxi, China
| | - Runzhi Li
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China.
| |
Collapse
|
31
|
Mao P, Jin X, Bao Q, Mei C, Zhou Q, Min X, Liu Z. WRKY Transcription Factors in Medicago sativa L.: Genome-Wide Identification and Expression Analysis Under Abiotic Stress. DNA Cell Biol 2020; 39:2212-2225. [PMID: 33156699 DOI: 10.1089/dna.2020.5726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alfalfa (Medicago sativa L.) is the most widely cultivated leguminous herb in the world. Its agricultural development has been restricted by various adverse environmental conditions, including water deficiency, high salinity, and low temperature. WRKY transcription factors (TFs) serve important roles in the regulation of plant development and stress responses. Research on the WRKY gene family has been reported for several species, but minimal information is available for alfalfa. In the present study, a total of 107 WRKY genes were identified in alfalfa and divided into 3 main groups. The classification, evolution, conserved motifs, and tissue expression were comprehensively analyzed. Meanwhile, 27 MsWRKY candidate genes that may be involved in abiotic stress were isolated through an analysis of gene expression profiles under different stresses, including cold, abscisic acid, drought, and salt treatments. Additionally, investigation of the cis-elements and potential biological functions of these genes further revealed that MsWRKY TFs may serve important roles in multiple stress resistance in alfalfa. This study provides an important foundation for future cloning and functional studies of WRKY genes in alfalfa.
Collapse
Affiliation(s)
- Pei Mao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaoyu Jin
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Qinyan Bao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Cuo Mei
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Qiang Zhou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xueyang Min
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
32
|
Baillo EH, Hanif MS, Guo Y, Zhang Z, Xu P, Algam SA. Genome-wide Identification of WRKY transcription factor family members in sorghum (Sorghum bicolor (L.) moench). PLoS One 2020; 15:e0236651. [PMID: 32804948 PMCID: PMC7430707 DOI: 10.1371/journal.pone.0236651] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022] Open
Abstract
WRKY transcription factors regulate diverse biological processes in plants, including abiotic and biotic stress responses, and constitute one of the largest transcription factor families in higher plants. Although the past decade has seen significant progress towards identifying and functionally characterizing WRKY genes in diverse species, little is known about the WRKY family in sorghum (Sorghum bicolor (L.) moench). Here we report the comprehensive identification of 94 putative WRKY transcription factors (SbWRKYs). The SbWRKYs were divided into three groups (I, II, and III), with those in group II further classified into five subgroups (IIa–IIe), based on their conserved domains and zinc finger motif types. WRKYs from the model plant Arabidopsis (Arabidopsis thaliana) were used for the phylogenetic analysis of all SbWRKY genes. Motif analysis showed that all SbWRKYs contained either one or two WRKY domains and that SbWRKYs within the same group had similar motif compositions. SbWRKY genes were located on all 10 sorghum chromosomes, and some gene clusters and two tandem duplications were detected. SbWRKY gene structure analysis showed that they contained 0–7 introns, with most SbWRKY genes consisting of two introns and three exons. Gene ontology (GO) annotation functionally categorized SbWRKYs under cellular components, molecular functions and biological processes. A cis-element analysis showed that all SbWRKYs contain at least one stress response-related cis-element. We exploited publicly available microarray datasets to analyze the expression profiles of 78 SbWRKY genes at different growth stages and in different tissues. The induction of SbWRKYs by different abiotic stresses hinted at their potential involvement in stress responses. qRT-PCR analysis revealed different expression patterns for SbWRKYs during drought stress. Functionally characterized WRKY genes in Arabidopsis and other species will provide clues for the functional characterization of putative orthologs in sorghum. Thus, the present study delivers a solid foundation for future functional studies of SbWRKY genes and their roles in the response to critical stresses such as drought.
Collapse
Affiliation(s)
- Elamin Hafiz Baillo
- Center for Agricultural Resources Research, Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- Agricultural Research Corporation (ARC), Ministry of Agriculture, Wad Madani, Gezira, Sudan
- * E-mail: ,
| | - Muhammad Sajid Hanif
- Center for Agricultural Resources Research, Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinghui Guo
- Center for Agricultural Resources Research, Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhengbin Zhang
- Center for Agricultural Resources Research, Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- * E-mail: ,
| | - Ping Xu
- Center for Agricultural Resources Research, Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Soad Ali Algam
- Faculty of Agriculture, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
33
|
Cheng W, Jiang Y, Peng J, Guo J, Lin M, Jin C, Huang J, Tang W, Guan D, He S. The transcriptional reprograming and functional identification of WRKY family members in pepper's response to Phytophthora capsici infection. BMC PLANT BIOLOGY 2020; 20:256. [PMID: 32493221 PMCID: PMC7271409 DOI: 10.1186/s12870-020-02464-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/24/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Plant transcription factors (TFs) are key transcriptional regulators to manipulate the regulatory network of host immunity. However, the globally transcriptional reprogramming of plant TF families in response to pathogens, especially between the resistant and susceptible host plants, remains largely unknown. RESULTS Here, we performed time-series RNA-seq from a resistant pepper line CM334 and a susceptible pepper line EC01 upon challenged with Phytophthora capsici, and enrichment analysis indicated that WRKY family most significantly enriched in both CM334 and EC01. Interestingly, we found that nearly half of the WRKY family members were significantly up-regulated, whereas none of them were down-regulated in the two lines. These induced WRKY genes were greatly overlapped between CM334 and EC01. More strikingly, most of these induced WRKY genes were expressed in time-order patterns, and could be mainly divided into three subgroups: early response (3 h-up), mid response (24 h-up) and mid-late response (ML-up) genes. Moreover, it was found that the responses of these ML-up genes were several hours delayed in EC01. Furthermore, a total of 19 induced WRKY genes were selected for functional identification by virus-induced gene silencing. The result revealed that silencing of CaWRKY03-6, CaWRKY03-7, CaWRKY06-5 or CaWRKY10-4 significantly increase the susceptibility to P. capsici both in CM334 and EC01, indicating that they might contribute to pepper's basal defense against P. capsici; while silencing of CaWRKY08-4 and CaWRKY01-10 significantly impaired the disease resistance in CM334 but not in EC01, suggesting that these two WRKY genes are prominent modulators specifically in the resistant pepper plants. CONCLUSIONS These results considerably extend our understanding of WRKY gene family in pepper's resistance against P. capsici and provide potential applications for genetic improvement against phytophthora blight.
Collapse
Affiliation(s)
- Wei Cheng
- National Education Minister Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yan Jiang
- National Education Minister Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jiangtao Peng
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jianwen Guo
- National Education Minister Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Menglan Lin
- National Education Minister Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chengting Jin
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jinfeng Huang
- National Education Minister Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Weiqi Tang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Deyi Guan
- National Education Minister Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Shuilin He
- National Education Minister Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|