1
|
Minet A, Melvin S, Metian M, Taylor A, Oberhänsli F, Lefrançois C, Swarzenski P, Bustamante P, Lacoue-Labarthe T. Metabolomic and phenotypic effects of ocean acidification on cuttlefish differ across early life stages. MARINE ENVIRONMENTAL RESEARCH 2025; 205:107013. [PMID: 40020618 DOI: 10.1016/j.marenvres.2025.107013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 03/03/2025]
Abstract
Ocean acidification (OA) affects the physiology and behaviour of some marine organisms, impacting their development and metabolism during vulnerable early-life stages. Among them, the embryo of the cuttlefish develops for about two months in encapsulated eggs with harsh perivitelline conditions of hypoxia and hypercapnia, potentially worsened by OA. In this study, common cuttlefish Sepia officinalis embryos and juveniles, were exposed to five pH conditions (pHT 8.08 to 7.43). Growth, development and metabolite profiles were explored during the embryonic development period up to 10 days-post-hatching. Our results show delayed embryonic development and decreased hatching success at pH 7.43, but no effect on juvenile weight upon hatching. The 1H Nuclear Magnetic Resonance (NMR) spectroscopy revealed that decreasing pH affected metabolites profiles in embryos until a metabolic suppression was observed at pH 7.43. The O2 consumption in 10d-old juveniles did not change with pH whereas metabolites indicated a switch to anaerobic metabolism under low pH. Overall, our results suggest that the transition from the encapsulated embryonic stage to the free juvenile life shapes a metabolomic reprogramming more drastically than ocean acidification.
Collapse
Affiliation(s)
- Antoine Minet
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France.
| | - Steven Melvin
- Griffith University Gold Coast, Edmund Rice Drive, Southport, Q4215, Australia
| | - Marc Metian
- IAEA Marine Environment Laboratories, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, 4 Quai Antoine Ier, 98000, Monaco
| | - Angus Taylor
- IAEA Marine Environment Laboratories, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, 4 Quai Antoine Ier, 98000, Monaco
| | - François Oberhänsli
- IAEA Marine Environment Laboratories, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, 4 Quai Antoine Ier, 98000, Monaco
| | - Christel Lefrançois
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Peter Swarzenski
- IAEA Marine Environment Laboratories, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, 4 Quai Antoine Ier, 98000, Monaco
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005, Paris, France
| | - Thomas Lacoue-Labarthe
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| |
Collapse
|
2
|
Thangal SH, Muralisankar T, Mohan K, Santhanam P, Venmathi Maran BA. Biological and physiological responses of marine crabs to ocean acidification: A review. ENVIRONMENTAL RESEARCH 2024; 248:118238. [PMID: 38262516 DOI: 10.1016/j.envres.2024.118238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Marine crabs play an integral role in the food chain and scavenge the debris in the ecosystem. Gradual increases in global atmospheric carbon dioxide cause ocean acidification (OA) and global warming that leads to severe consequences for marine organisms including crabs. Also, OA combined with other stressors like temperature, hypoxia, and heavy metals causes more severe adverse effects in marine crabs. The present review was made holistic discussion of information from 111 articles, of which 37 peer-reviewed original research papers reported on the effect of OA experiments and its combination with other stressors like heavy metals, temperature, and hypoxia on growth, survival, molting, chitin quality, food indices, tissue biochemical constituents, hemocytes population, and biomarker enzymes of marine crabs. Nevertheless, the available reports are still in the infancy of marine crabs, hence, this review depicts the possible gaps and future research needs on the impact of OA on marine crabs.
Collapse
Affiliation(s)
- Said Hamid Thangal
- Aquatic Ecology Laboratory, Department of Zoology, Bharathiar University, Coimbatore-641046, Tamil Nadu, India
| | | | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India
| | - Perumal Santhanam
- Marine Planktonology& Aquaculture Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli- 620024, Tamil Nadu, India
| | - Balu Alagar Venmathi Maran
- Institute of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyomachi, Nagasaki, 852-8521, Japan
| |
Collapse
|
3
|
Wanjeri VWO, Okuku E, Ngila JC, Ndungu PG. Effect of seawater acidification on physiological and energy metabolism responses of the common Cockle (Anadara antiquata) of Gazi Bay, Kenya. MARINE POLLUTION BULLETIN 2023; 195:115500. [PMID: 37690410 DOI: 10.1016/j.marpolbul.2023.115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
Ocean acidification (OA) is becoming a potential threat to marine organisms, especially in calcifying marine invertebrates. So far, along the Kenya Coast, there has been little research on the impact of OA on cockle (Anadara antiquata), particularly on their physiological impacts induced by exposure to acidified seawater. Hence, this study aimed to investigate the physiological and biochemical responses of Anadara antiquata under present and future predicted seawater pH. In this study, the Anadara antiquata was exposed to three pH treatments (pH 7.90, 7.60, and 7.30) for 8 weeks to mimic future OA and to understand the physiological and biochemical effects on the organisms. Condition index, energy reserves (glycogen and protein), and cellular damage (e.g., lipid peroxidation level) were measured. Condition index (CI) showed no significant difference at different pH treatments (pH 7.90, 7.60, and 7.30), whereas the survival Anadara antiquata was slightly reduced after 8 weeks of exposure to pH 7.30. Glycogen and protein content were not affected at reduced pH (7.60 and 7.30). However, after 8 weeks of exposure to pH 7.60 and 7.30, Anadara antiquata showed a slight decrease in lipid peroxidation, an indication of cellular damage. The physiological and biochemical parameters analyzed (glycogen and protein content; lipid peroxidation levels) showed useful biomarkers to assess ocean acidification impacts in cockle.
Collapse
Affiliation(s)
- Veronica Wayayi Ogolla Wanjeri
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa; Kenya Marine and Fisheries Research Institute, P.O. Box 81651, Mombasa, Kenya
| | - Eric Okuku
- Kenya Marine and Fisheries Research Institute, P.O. Box 81651, Mombasa, Kenya
| | - Jane Catherine Ngila
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | | |
Collapse
|
4
|
Capotondi L, Bonomo S, Budillon G, Giordano P, Langone L. Living and dead benthic foraminiferal distribution in two areas of the Ross Sea (Antarctica). RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2020. [DOI: 10.1007/s12210-020-00949-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|