1
|
Yang Z, Zhang Z, Qiao Z, Guo X, Wen Y, Zhou Y, Yao C, Fan H, Wang B, Han G. The RING zinc finger protein LbRZF1 promotes salt gland development and salt tolerance in Limonium bicolor. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:787-809. [PMID: 38477645 DOI: 10.1111/jipb.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The recretohalophyte Limonium bicolor thrives in high-salinity environments because salt glands on the above-ground parts of the plant help to expel excess salt. Here, we characterize a nucleus-localized C3HC4 (RING-HC)-type zinc finger protein of L. bicolor named RING ZINC FINGER PROTEIN 1 (LbRZF1). LbRZF1 was expressed in salt glands and in response to NaCl treatment. LbRZF1 showed no E3 ubiquitin ligase activity. The phenotypes of overexpression and knockout lines for LbRZF1 indicated that LbRZF1 positively regulated salt gland development and salt tolerance in L. bicolor. lbrzf1 mutants had fewer salt glands and secreted less salt than did the wild-type, whereas LbRZF1-overexpressing lines had opposite phenotypes, in keeping with the overall salt tolerance of these plants. A yeast two-hybrid screen revealed that LbRZF1 interacted with LbCATALASE2 (LbCAT2) and the transcription factor LbMYB113, leading to their stabilization. Silencing of LbCAT2 or LbMYB113 decreased salt gland density and salt tolerance. The heterologous expression of LbRZF1 in Arabidopsis thaliana conferred salt tolerance to this non-halophyte. We also identified the transcription factor LbMYB48 as an upstream regulator of LbRZF1 transcription. The study of LbRZF1 in the regulation network of salt gland development also provides a good foundation for transforming crops and improving their salt resistance.
Collapse
Affiliation(s)
- Zongran Yang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Ziwei Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Ziqi Qiao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Xueying Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Yixuan Wen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Yingxue Zhou
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Chunliang Yao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Hai Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Agricultural High-tech Industrial Demonstration Area of the Yellow River Delta of Shandong Province, Dongying, 257000, China
- Dongying Institute, Shandong Normal University, Dongying, 257000, China
| |
Collapse
|
2
|
Liu Z, Zhu X, Liu W, Qi K, Xie Z, Zhang S, Wu J, Wang P. Characterization of the REVEILLE family in Rosaceae and role of PbLHY in flowering time regulation. BMC Genomics 2023; 24:49. [PMID: 36707756 PMCID: PMC9883883 DOI: 10.1186/s12864-023-09144-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/19/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The circadian clock integrates endogenous and exogenous signals and regulates various physiological processes in plants. REVEILLE (RVE) proteins play critical roles in circadian clock system, especially CCA1 (CIRCADIAN CLOCK ASSOCIATED 1) and LHY (LATE ELONGATED HYPOCOTYL), which also participate in flowering regulation. However, little is known about the evolution and function of the RVE family in Rosaceae species, especially in Pyrus bretschneideri. RESULTS In this study, we performed a genome-wide analysis and identified 51 RVE genes in seven Rosaceae species. The RVE family members were classified into two groups based on phylogenetic analysis. Dispersed duplication events and purifying selection were the main drivers of evolution in the RVE family. Moreover, the expression patterns of ten PbRVE genes were diverse in P. bretschneideri tissues. All PbRVE genes showed diurnal rhythms under light/dark cycles in P. bretschneideri leaves. Four PbRVE genes also displayed robust rhythms under constant light conditions. PbLHY, the gene with the highest homology to AtCCA1 and AtLHY in P. bretschneideri, is localized in the nucleus. Ectopic overexpression of PbLHY in Arabidopsis delayed flowering time and repressed the expression of flowering time-related genes. CONCLUSION These results contribute to improving the understanding and functional research of RVE genes in P. bretschneideri.
Collapse
Affiliation(s)
- Zhe Liu
- grid.254020.10000 0004 1798 4253Department of Pharmacy, Changzhi Medical College, Changzhi, 046000 China ,grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China ,Shanxi Province Key Laboratory of Functional Food with Homologous of Medicine and Food, Changzhi, China
| | - Xiaoxuan Zhu
- grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weijuan Liu
- grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Kaijie Qi
- grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhihua Xie
- grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shaoling Zhang
- grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Juyou Wu
- grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China ,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Peng Wang
- grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
3
|
Lee SJ, Kang K, Lim JH, Paek NC. Natural alleles of CIRCADIAN CLOCK ASSOCIATED1 contribute to rice cultivation by fine-tuning flowering time. PLANT PHYSIOLOGY 2022; 190:640-656. [PMID: 35723564 PMCID: PMC9434239 DOI: 10.1093/plphys/kiac296] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 05/11/2023]
Abstract
The timing of flowering is a crucial factor for successful grain production at a wide range of latitudes. Domestication of rice (Oryza sativa) included selection for natural alleles of flowering-time genes that allow rice plants to adapt to broad geographic areas. Here, we describe the role of natural alleles of CIRCADIAN CLOCK ASSOCIATED1 (OsCCA1) in cultivated rice based on analysis of single-nucleotide polymorphisms deposited in the International Rice Genebank Collection Information System database. Rice varieties harboring japonica-type OsCCA1 alleles (OsCCA1a haplotype) flowered earlier than those harboring indica-type OsCCA1 alleles (OsCCA1d haplotype). In the japonica cultivar "Dongjin", a T-DNA insertion in OsCCA1a resulted in late flowering under long-day and short-day conditions, indicating that OsCCA1 is a floral inducer. Reverse transcription quantitative PCR analysis showed that the loss of OsCCA1a function induces the expression of the floral repressors PSEUDO-RESPONSE REGULATOR 37 (OsPRR37) and Days to Heading 8 (DTH8), followed by repression of the Early heading date 1 (Ehd1)-Heading date 3a (Hd3a)-RICE FLOWERING LOCUS T 1 (RFT1) pathway. Binding affinity assays indicated that OsCCA1 binds to the promoter regions of OsPRR37 and DTH8. Naturally occurring OsCCA1 alleles are evolutionarily conserved in cultivated rice (O. sativa). Oryza rufipogon-I (Or-I) and Or-III type accessions, representing the ancestors of O. sativa indica and japonica, harbored indica- and japonica-type OsCCA1 alleles, respectively. Taken together, our results demonstrate that OsCCA1 is a likely domestication locus that has contributed to the geographic adaptation and expansion of cultivated rice.
Collapse
Affiliation(s)
- Sang-Ji Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kiyoon Kang
- Division of Life Sciences, Incheon National University, Incheon 22012, South Korea
| | - Jung-Hyun Lim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
4
|
Li C, Liu XJ, Yan Y, Alam MS, Liu Z, Yang ZK, Tao RF, Yue EK, Duan MH, Xu JH. OsLHY is involved in regulating flowering through the Hd1- and Ehd1- mediated pathways in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111145. [PMID: 35067308 DOI: 10.1016/j.plantsci.2021.111145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Flowering time (or heading date in crops) is a critical agronomic trait for rice reproduction and adaptation. The circadian clock is an endogenous oscillator that is involved in controlling photoperiodic flowering. The rice LATE ELONGATED HYPOCOTYL (OsLHY), the core oscillator component of circadian clock, is a homolog of the LHY/CCA1 in Arabidopsis. Here we showed that CRISPR/Cas9-engineered mutations in OsLHY caused late flowering in rice only under natural long-day (nLD) and short-day (nSD) conditions, but not artificial SD (10 h light/14 h dark) conditions. In the oslhy mutant, the diurnal expression of circadian clock-related genes was seriously affected under both LD and SD conditions. Furthermore, the expression of the flowering activators Ehd1, Hd3a and RFT1 was down-regulated and flowering repressors Hd1 and Ghd7 was up-regulated in the oslhy mutant under LD conditions. While the transcripts of flowering-related genes were not dramatically influenced under SD conditions. Dual-luciferase assays showed that OsLHY repressed the transcription of OsGI, Hd1, Ghd7, Hd3a, RFT1 and OsELF3, and activated the transcription of Ehd1. Moreover, the yeast one hybrid assay and electrophoretic mobility shift assay confirmed that OsLHY directly repressed OsGI, RFT1 and OsELF3 by binding to their promoters, which is consistent with that in Arabidopsis. These results suggested that the OsLHY can promote rice flowering mainly through regulating Hd1 and Ehd1.
Collapse
Affiliation(s)
- Chao Li
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Shandong, 276034, China
| | - Xue-Jiao Liu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Mohammad Shah Alam
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Liu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Zhen-Kun Yang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Ruo-Fu Tao
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Er-Kui Yue
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Hua Duan
- Zhejiang Zhengjingyuan Pharmacy Chain Co., Ltd. & Hangzhou Zhengcaiyuan Pharmaceutical Co., Ltd., Hangzhou, 310021, China
| | - Jian-Hong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Shandong, 276034, China.
| |
Collapse
|
5
|
Singh A, Mathan J, Yadav A, K. Goyal A, Chaudhury A. Molecular and Transcriptional Regulation of Seed Development in Cereals: Present Status and Future Prospects. CEREAL GRAINS - VOLUME 1 2021. [DOI: 10.5772/intechopen.99318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
Cereals are a rich source of vitamins, minerals, carbohydrates, fats, oils and protein, making them the world’s most important source of nutrition. The influence of rising global population, as well as the emergence and spread of disease, has the major impact on cereal production. To meet the demand, there is a pressing need to increase cereal production. Optimal seed development is a key agronomical trait that contributes to crop yield. The seed development and maturation is a complex process that includes not only embryo and endosperm development, but also accompanied by huge physiological, biochemical, metabolic, molecular and transcriptional changes. This chapter discusses the growth of cereal seed and highlights the novel biological insights, with a focus on transgenic and new molecular breeding, as well as biotechnological intervention strategies that have improved crop yield in two major cereal crops, primarily wheat and rice, over the last 21 years (2000–2021).
Collapse
|
6
|
Ma H, Wu J, Zhang H, Tang H, Wan Y. Identification and expression profiling of genes involved in circadian clock regulation in red dragon fruit ( Hylocereus polyrhizus) by full-length transcriptome sequencing. PLANT SIGNALING & BEHAVIOR 2021; 16:1907054. [PMID: 33825662 PMCID: PMC8143213 DOI: 10.1080/15592324.2021.1907054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Crassulacean acid metabolism (CAM) plants fix CO2 at night, exhibiting a reversed regulatory pattern of metabolomic pathways compared with most model plants, which have C3 and C4 pathways. In this study, we used a valuable tropic fruit, red dragon fruit (Hylocereus polyrhizus), as model plant to identify and analyze the circadian regulation genes. Due to the absence of red dragon fruit's whole-genome dataset, we established a full-length transcriptome dataset using single-molecule real-time (SMRT) sequencing method. A 7.66-Gb dataset with 4,552,474 subreads was generated, with an average length of 1,683 bp and an N50 of 2,446 bp. Using this dataset, we identified center oscillator genes: CCA1 (CIRCADIAN CLOCK ASSOCIATED1), ELF3 (EARLY FLOWERING 3), GI (GIGANTEA), LHY (LATE ELONGATED HYPOCOTYL), LNK1 (NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED 1), and TOC1 (TIMING OF CAB EXPRESSION 1); a gene for the input pathway: CRY1 (CRYPTOCHROME); a gene for the output pathway: CO (CONSTANS); and genes related to the CAM pathway: MDH (MALATE DEHYDROGENASE), ME (MALIC ENZYMES), and PPDK (PYRUVATE PHOSPHATE DIKINASE). We further established the 24-h rhythmic expression pattern of these genes and classified these into three groups: HpCCA1, HpELF3, HpLHY, HpLNK1, and HpGI have expression peaks during the day; HpTOC1, HpCO, and HpCRY1 have highest expression levels at night; The genes involved in the CAM pathways, namely, HpMDH, HpME1, and HpPPDK, have double expression peaks in the day and night. Comparison of these expression patterns between red dragon fruit and model plants could provide clues in understanding the circadian clock regulation and the activity of the CAM pathways in cactus plants.
Collapse
Affiliation(s)
- Huaqing Ma
- College of Tropic Crops, Hainan University, Haikou, China
| | - Jiao Wu
- College of Tropic Crops, Hainan University, Haikou, China
| | - He Zhang
- College of Tropic Crops, Hainan University, Haikou, China
| | - Hua Tang
- College of Tropic Crops, Hainan University, Haikou, China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Yinglang Wan
- College of Tropic Crops, Hainan University, Haikou, China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| |
Collapse
|
7
|
Zhang S, Zhang Y, Li K, Yan M, Zhang J, Yu M, Tang S, Wang L, Qu H, Luo L, Xuan W, Xu G. Nitrogen Mediates Flowering Time and Nitrogen Use Efficiency via Floral Regulators in Rice. Curr Biol 2020; 31:671-683.e5. [PMID: 33278354 DOI: 10.1016/j.cub.2020.10.095] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 10/10/2020] [Accepted: 10/30/2020] [Indexed: 11/29/2022]
Abstract
High nitrogen (N) fertilization for maximizing crop yield commonly leads to postponed flowering time (heading date in rice) and ripening, thus affecting resources use efficiency and followed planting time. We found that N-mediated heading date-1 (Nhd1) can directly activate florigen gene OsHd3a in rice. Inactivation of either Nhd1 or OsHd3a results in delay and insensitivity to N supply of flowering time. Knockout of Nhd1 increases N uptake and utilization efficiency at low-to-moderate N level under both short- and long-day field conditions. Increasing glutamine, the product of N assimilation, can upregulate expression of Nhd1, which in turn downregulates OsFd-GOGAT expression and OsFd-GOGAT activity, displaying a Nhd1-controlled negative feedback regulatory pathway of N assimilation. Moreover, N fertilization effect on rice flowering time shows genetically controlled diversity, and single-nucleotide polymorphism in Nhd1 promoter may relate to different responses of flowering time to N application. Nhd1 thus balances flowering time and N use efficiency in addition to photoperiod in rice.
Collapse
Affiliation(s)
- Shunan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuyi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kangning Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Yan
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Jinfei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuo Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Luyang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Le Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Wang F, Han T, Song Q, Ye W, Song X, Chu J, Li J, Chen ZJ. The Rice Circadian Clock Regulates Tiller Growth and Panicle Development Through Strigolactone Signaling and Sugar Sensing. THE PLANT CELL 2020; 32:3124-3138. [PMID: 32796126 PMCID: PMC7534462 DOI: 10.1105/tpc.20.00289] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/20/2020] [Accepted: 08/12/2020] [Indexed: 05/15/2023]
Abstract
Circadian clocks regulate growth and development in plants and animals, but the role of circadian regulation in crop production is poorly understood. Rice (Oryza sativa) grain yield is largely determined by tillering, which is mediated by physiological and genetic factors. Here we report a regulatory loop that involves the circadian clock, sugar, and strigolactone (SL) pathway to regulate rice tiller-bud and panicle development. Rice CIRCADIAN CLOCK ASSOCIATED1 (OsCCA1) positively regulates expression of TEOSINTE BRANCHED1 (OsTB1, also known as FC1), DWARF14 (D14), and IDEAL PLANT ARCHITECTURE1 (IPA1, also known as OsSPL14) to repress tiller-bud outgrowth. Downregulating and overexpressing OsCCA1 increases and reduces tiller numbers, respectively, whereas manipulating PSEUDORESPONSE REGULATOR1 (OsPPR1) expression results in the opposite effects. OsCCA1 also regulates IPA1 expression to mediate panicle and grain development. Genetic analyses using double mutants and overexpression in the mutants show that OsTB1, D14, and IPA1 act downstream of OsCCA1 Sugars repress OsCCA1 expression in roots and tiller buds to promote tiller-bud outgrowth. The circadian clock integrates sugar responses and the SL pathway to regulate tiller and panicle development, providing insights into improving plant architecture and yield in rice and other cereal crops.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongwen Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoguang Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100049, China
| | - Z Jeffrey Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|