1
|
Ma W, Malik MI, Iwaasa AD, Wang H, Wang H, Yang J, Bai B, Jing J, Hu G, Hao L, Liu S. The Effects of Supplemental Feeding on Methane Emissions from Yak Grazing in the Warm Season. Animals (Basel) 2025; 15:518. [PMID: 40002999 PMCID: PMC11851667 DOI: 10.3390/ani15040518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The yak industry constitutes a pivotal segment of livestock development across the Qinghai-Tibetan Plateau and adjacent pastoral regions. Existing studies have shown that supplemental feeding for grazing yaks significantly improves meat quality and growth performance, but its effect on enteric methane (CH4) emission from yaks has never been reported, so the present experiment aimed to investigate the effect of supplemental feeding of grazing yaks on CH4 emissions in three different periods of the warm season. Thirty male yaks were randomly assigned to two groups, with 15 yaks per group, The groups were designated as the grazing group (GR), with traditional grazing methods and with an initial body weight of 94.56 ± 3.9 kg, and the supplemental feeding group (GRS) with an initial body weight of 95.01 ± 4.1 kg, which received 1500 g/d of supplemental feed for 120 days. The methane emissions of the two groups were measured at the late regreening period (LRP), the greening-grass period (GGP), and the browning period (BRP) using the SF6 tracer method. The results showed that GRS increased (p < 0.01) the total DMI during warm season but decreased (p < 0.01) the forage intake at the LRP and GGP, resulting in a significantly reduced methane yield per kg of BW gain and per kg of DMD in warm-season grazing yaks (p < 0.01), a significantly reduced methane production per kg of DMI and methane energy to gross energy ratio in grazing yaks during the GGP (p < 0.05), and a similarly significantly decrease in methane production per kg of DMI and methane energy to gross energy ratio in grazing yaks during the BRP (p < 0.01). In conclusion, supplemental nutrition for grazing yaks during the warm season in alpine grasslands significantly enhances growth performance, reduces methane emissions, and improves dietary energy utilization efficiency.
Collapse
Affiliation(s)
- Wanhao Ma
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai University, Xining 810016, China
- Qinghai Yak Breeding Extension Service Center, Datong 810100, China
| | | | - Alan D. Iwaasa
- Agriculture and Agri-Food Canada, Swift Current Research and Development Centre, Swift Current, SK S9H 3X2, Canada
| | - Hong Wang
- Agriculture and Agri-Food Canada, Swift Current Research and Development Centre, Swift Current, SK S9H 3X2, Canada
| | - Hongli Wang
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai University, Xining 810016, China
| | - Jinfen Yang
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai University, Xining 810016, China
| | - Binqiang Bai
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai University, Xining 810016, China
| | - Jianwu Jing
- Qinghai Yak Breeding Extension Service Center, Datong 810100, China
| | - Guangwei Hu
- Qinghai Yak Breeding Extension Service Center, Datong 810100, China
| | - Lizhuang Hao
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai University, Xining 810016, China
| | - Shujie Liu
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai University, Xining 810016, China
| |
Collapse
|
2
|
Ncho CM, Kim SH, Rang SA, Lee SS. A meta-analysis of probiotic interventions to mitigate ruminal methane emissions in cattle: implications for sustainable livestock farming. Animal 2024; 18:101180. [PMID: 38823282 DOI: 10.1016/j.animal.2024.101180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 06/03/2024] Open
Abstract
In recent years, the significant impact of ruminants on methane emissions has garnered international attention. While dietary strategies have been implemented to solve this issue, probiotics gained the attention of researchers due to their sustainability. However, it is challenging to ascertain their effectiveness as an extensive range of strains and doses have been reported in the literature. Hence, the objective of this experiment was to perform a meta-analysis of probiotic interventions aiming to reduce ruminal methane emissions from cattle. From 362 articles retrieved from scientific databases, 85 articles were assessed independently by two reviewers, and 20 articles representing 49 comparisons were found eligible for meta-analysis. In each study, data such as mean, SD, and sample sizes of both the control and probiotic intervention groups were extracted. The outcomes of interest were methane emission, methane yield, and methane intensity. For the meta-analysis, effect sizes were pooled using a fixed effect or a random effect model depending on the heterogeneity. Afterward, sensitivity analyses were conducted to confirm the robustness of the findings. Overall pooled standardized mean differences (SMDs) with their confidence intervals (CIs) did not detect significant differences in methane emission (SMD = -0.04; 95% CI = -0.18-0.11; P = 0.632), methane yield (SMD = -0.08; 95% CI = -0.24-0.07; P = 0.291), and methane intensity (SMD = -0.22; 95% CI = -0.50-0.07; P = 0.129) between cattle supplemented with probiotics and the control group. However, subgroup analyses revealed that multiple-strain bacterial probiotics (SMD = -0.36; 95% CI = -0.62 to -0.11; P = 0.005), specifically the combination of bacteria involved in reductive acetogenesis and propionate production (SMD = -0.71; 95% CI = -1.04 to -0.36; P = 0.001), emerged as better interventions. Likewise, crossbreeds (SMD = -0.48; 95% CI = -0.78 to -0.18; P = 0.001) exhibited a more favorable response to the treatments. Furthermore, meta-regression demonstrated that longer periods of supplementation led to significant reductions in methane emissions (P = 0.001), yield (P = 0.032), and intensity (P = 0.012) effect sizes. Overall, the results of the current study suggest that cattle responses to probiotic interventions are highly dependent on the probiotic category. Therefore, extended trials performed with probiotics containing multiple bacterial strains are showing the most promising results. Ideally, further trials focusing on the use of probiotics to reduce ruminal methane in cattle should be conducted to complete the available literature.
Collapse
Affiliation(s)
- C M Ncho
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - S-H Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - S A Rang
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - S S Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea.
| |
Collapse
|
3
|
Molina-Botero IC, Gaviria-Uribe X, Rios-Betancur JP, Medina-Campuzano M, Toro-Trujillo M, González-Quintero R, Ospina B, Arango J. Methane Emission, Carbon Footprint and Productivity of Specialized Dairy Cows Supplemented with Bitter Cassava ( Manihot esculenta Crantz). Animals (Basel) 2023; 14:19. [PMID: 38200749 PMCID: PMC10778060 DOI: 10.3390/ani14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
The objective of this research was to determine the effect of cassava (Manihot esculenta Crantz) supplementation on enteric methane (CH4) emissions, carbon footprint, and production parameters in dairy cows. Daily concentrate supply for Jersey and Jersey * Holstein breeds was evaluated in four treatments (T): T1: 100% commercial concentrate; T2: 70% concentrate + 30% cassava leaves; T3: 70% concentrate + 30% cassava roots; and T4: 70% concentrate + 15% cassava leaves + 15% cassava root chips. Measurements of CH4 emissions were performed using the polytunnel technique. Average daily dry matter intake ranged from 7.8 to 8.5 kg dry matter (DM). Cassava leaves were characterized by a high crude protein (CP) content (171 g CP/kg DM), with 5 times more neutral detergent fiber (NDF) content than cassava root (587 vs. 108 g NDF/kg DM). Average enteric CH4 emissions per animal ranged from 194 to 234 g/d (p > 0.05). The carbon footprint was reduced by replacing 30% of the concentrate with cassava leaves and/or roots. Energy-corrected milk production was 1.15 times higher in Jersey * Holstein animals than Jersey cows (47 vs. 55 kg). Therefore, supplementation with cassava leaves and/or roots is a nutritionally and environmentally sustainable strategy.
Collapse
Affiliation(s)
- Isabel Cristina Molina-Botero
- Tropical Forages Program, International Center for Tropical Agriculture (CIAT), Km 17, Palmira 763022, Valle del Cauca, Colombia; (I.C.M.-B.); (X.G.-U.); (R.G.-Q.)
| | - Xiomara Gaviria-Uribe
- Tropical Forages Program, International Center for Tropical Agriculture (CIAT), Km 17, Palmira 763022, Valle del Cauca, Colombia; (I.C.M.-B.); (X.G.-U.); (R.G.-Q.)
| | - Juan Pablo Rios-Betancur
- Colanta, Calle 74# 64ª-51, Medellín 050044, Antioquia, Colombia; (J.P.R.-B.) ; (M.M.-C.); (M.T.-T.)
| | - Manuela Medina-Campuzano
- Colanta, Calle 74# 64ª-51, Medellín 050044, Antioquia, Colombia; (J.P.R.-B.) ; (M.M.-C.); (M.T.-T.)
| | - Mercedes Toro-Trujillo
- Colanta, Calle 74# 64ª-51, Medellín 050044, Antioquia, Colombia; (J.P.R.-B.) ; (M.M.-C.); (M.T.-T.)
| | - Ricardo González-Quintero
- Tropical Forages Program, International Center for Tropical Agriculture (CIAT), Km 17, Palmira 763022, Valle del Cauca, Colombia; (I.C.M.-B.); (X.G.-U.); (R.G.-Q.)
| | - Bernardo Ospina
- Corporacion Clayuca, International Center for Tropical Agriculture (CIAT), Km 17, Palmira 763022, Valle del Cauca, Colombia;
| | - Jacobo Arango
- Tropical Forages Program, International Center for Tropical Agriculture (CIAT), Km 17, Palmira 763022, Valle del Cauca, Colombia; (I.C.M.-B.); (X.G.-U.); (R.G.-Q.)
| |
Collapse
|
4
|
Ahmed RH, Schmidtmann C, Mugambe J, Thaller G. Effects of the Breeding Strategy Beef-on-Dairy at Animal, Farm and Sector Levels. Animals (Basel) 2023; 13:2182. [PMID: 37443980 DOI: 10.3390/ani13132182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
The decline in farm revenue due to volatile milk prices has led to an increase in the use of beef semen in dairy herds. While this strategy ("Beef-on-dairy" (BoD)) can have economic benefits, it can also lead to unintended consequences affecting animal welfare. Semen sale trends from breeding organizations depict increasing sales of beef semen across the globe. Calves born from such breeding strategies can perform better when compared to purebred dairy calves, especially in terms of meat quality and growth traits. The Beef-on-dairy strategy can lead to unintentional negative impacts including an increase in gestation length, and increased dystocia and stillbirth rates. Studies in this regard have found the highest gestation length for Limousin crossbred calves followed by calves from the Angus breed. This increase in gestation length can lead to economic losses ranging from 3 to 5 US$ per animal for each additional day. In terms of the growth performance of crossbred animals, literature studies are inconclusive due to the vast differences in farming structure across the regions. But almost all the studies agree regarding improvement in the meat quality in terms of color, fiber type, and intra-muscular fat content for crossbred animals. Utilization of genomic selection, and development of specialized Beef-on-dairy indexes for the sires, can be a viable strategy to make selection easier for the farmers.
Collapse
Affiliation(s)
- Rana Hamas Ahmed
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 6, 24118 Kiel, Germany
| | - Christin Schmidtmann
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 6, 24118 Kiel, Germany
| | - Julius Mugambe
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 6, 24118 Kiel, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 6, 24118 Kiel, Germany
| |
Collapse
|
5
|
Santander D, Clariget J, Banchero G, Alecrim F, Simon Zinno C, Mariotta J, Gere J, Ciganda VS. Beef Steers and Enteric Methane: Reducing Emissions by Managing Forage Diet Fiber Content. Animals (Basel) 2023; 13:ani13071177. [PMID: 37048433 PMCID: PMC10093059 DOI: 10.3390/ani13071177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Understanding the methane (CH4) emissions that are produced by enteric fermentation is one of the main problems to be solved for livestock, due to their GHG effects. These emissions are affected by the quantity and quality of their diets, thus, it is key to accurately define the intake and fiber content (NDF) of these forage diets. On the other hand, different emission prediction equations have been developed; however, there are scarce and uncertain results regarding their evaluation of the emissions that have been observed in forage diets. Therefore, the objectives of this study were to evaluate the effect of the NDF content of a forage diet on CH4 enteric emissions, and to evaluate the ability of models to predict the emissions from the animals that are consuming these forage diets. In total, thirty-six Angus steers (x¯ = 437 kg live weight) aged 18 months, blocked by live weight and placed in three automated feeding pens, were used to measure the enteric CH4. The animals were randomly assigned to two forage diets (n = 18), with moderate (<50%, MF) and high (>50%, HF) NDF contents. Their dry matter intake was recorded individually, and the CH4 emissions were measured using the SF6 tracer gas technique. For the model evaluation, six prediction equations were compared with 29 studies (n = 97 observations), analyzing the accuracy and precision of their estimates. The emission intensities per unit of DMI, per ADG, and per gross energy intake were significantly lower (p < 0.05) in the animals consuming the MF diet than in the animals consuming the HF diet (21.7 vs. 23.7 g CH4/kg DMI, 342 vs. 660 g CH4/kg ADG, and 6.7% vs. 7.5%, respectively), but there were no differences in the absolute emissions (p > 0.05). The best performing model was the IPCC 2006 model (r2 = 0.7, RMSE = 74.04). These results show that reducing the NDF content of a forage diet by at least 10% (52 g/kg DM) reduces the intensity of the g CH4/kg DMI by up to 8%, and that of the g CH4/kg ADG by almost half. The use of the IPCC 2006 model is suitable for estimating the CH4 emissions from animals consuming forage-based diets.
Collapse
Affiliation(s)
- Daniel Santander
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental La Estanzuela, Ruta 50 km 11, Semillero, Colonia 70006, Uruguay
| | - Juan Clariget
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental La Estanzuela, Ruta 50 km 11, Semillero, Colonia 70006, Uruguay
| | - Georgget Banchero
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental La Estanzuela, Ruta 50 km 11, Semillero, Colonia 70006, Uruguay
| | - Fabiano Alecrim
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental La Estanzuela, Ruta 50 km 11, Semillero, Colonia 70006, Uruguay
- Departamento de Geoquímica, Universidade Federal Fluminense, Outeiro São João Baptista s/n, Niterói 24020-141, Brazil
| | - Claudia Simon Zinno
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental La Estanzuela, Ruta 50 km 11, Semillero, Colonia 70006, Uruguay
| | - Julieta Mariotta
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental La Estanzuela, Ruta 50 km 11, Semillero, Colonia 70006, Uruguay
| | - José Gere
- Engineering Research and Development Division, National Technological University (UTN), National Scientific and Technical Research Council (CONICET), Buenos Aires C1179, Argentina
| | - Verónica S. Ciganda
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental La Estanzuela, Ruta 50 km 11, Semillero, Colonia 70006, Uruguay
- Correspondence: ; Tel.: +598-98451147
| |
Collapse
|
6
|
do Amaral Júnior JM, Martorano LG, Nahúm BDS, de Castro VCG, Sousa LF, Rodrigues TCGDC, da Silva JAR, da Costa Silva AL, Lourenço Júnior JDB, Berndt A, e Silva AGM. Feed intake, emission of enteric methane and estimates, feed efficiency, and ingestive behavior in buffaloes supplemented with palm kernel cake in the Amazon biome. Front Vet Sci 2022; 9:1053005. [PMID: 36619961 PMCID: PMC9811383 DOI: 10.3389/fvets.2022.1053005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
The use of palm kernel cake as an alternative to conventional ingredients, due to the presence of residual fat, can also reduce methane emissions. The objective of the study was to evaluate, in two different experiments, the effects of palm kernel cake supplementation on feed intake, enteric methane production and estimates, and the ingestive behavior of buffaloes in the Amazon biome. In experiment 1, to evaluate feed intake, methane production, and feed efficiency, 20 crossbred females, dry and empty, with a mean age of 34 months and an initial body weight of 514 ± 69 kg, were supplemented with palm kernel cake for 60 days. The supply was calculated in relation to body weight (BW) in four treatments: 0% (control); 0.25, 0.50, and 1% of palm kernel cake, distributed in a completely randomized design. In experiment 2, to evaluate the ingestive behavior, 24 mixed-breed, dry, and non-pregnant buffaloes supplemented with palm kernel cake were evaluated in the less rainy season (LR) and the wettest season (WS) of the eastern Amazon, distributed in a completely randomized in the same treatments as experiment 1. The inclusion of palm kernel cake in the supplementation increased the feed intake of dry matter and components (MM, OM, CP, NDF, ADF, and EE) (P < 0.01), reducing the production of enteric methane intake (P < 0.01), the ratio per kg of meat produced (P < 0.01) and feed efficiency (P < 0.01), and influenced the ingestive behavior (time grazing, rumination, and idleness) during the day. We suggest that further research be carried out to verify the results and improve the use of this co-product as a methanogenesis mitigator.
Collapse
|
7
|
Simioni T, Messana J, Silva L, Brito L, Torrecihas J, Granja-Salcedo Y, Vito ES, Lage J, Reis R, Berchielli T. Performance and enteric methane emission of growing beef bulls from different genetic groups subjected to two supplementation strategies grazing tropical grass in the rainy season. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Monteiro P, Maciel I, Alvarenga R, Oliveira A, Barbosa FA, Guimarães S, Souza F, Lanna D, Rodrigues B, Lopes L. Carcass traits, fatty acid profile of beef, and beef quality of Nellore and Angus x Nellore crossbred young bulls finished in a feedlot. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Effects of mineral or protein-energy supplementation and genetic group on metabolism parameters of young beef bulls grazing tropical grass during the rainy season. Livest Sci 2022. [DOI: 10.1016/j.livsci.2021.104805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Corrêa PS, Jimenez CR, Mendes LW, Rymer C, Ray P, Gerdes L, da Silva VO, De Nadai Fernandes EA, Abdalla AL, Louvandini H. Taxonomy and Functional Diversity in the Fecal Microbiome of Beef Cattle Reared in Brazilian Traditional and Semi-Intensive Production Systems. Front Microbiol 2021; 12:768480. [PMID: 34956130 PMCID: PMC8692951 DOI: 10.3389/fmicb.2021.768480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/04/2021] [Indexed: 01/10/2023] Open
Abstract
The importance of beef production for economy of Brazil and the growing demand for animal protein across the globe warrant an improvement in the beef production system. Although most attention has been on modulation of the rumen microbiome to improve ruminant production, the role of the lower gut microbiome in host health and nutrition remains relatively unexplored. This work aimed to investigate the taxonomy and functional variations in the fecal microbiome of Brazilian beef cattle reared in two different production systems using a metagenomic approach. Sixty male beef cattle from six farms representing semi-intensive (I, n = 2) and traditional (T, n = 4) Brazilian beef production systems were enrolled in the study. Shotgun sequencing was used to characterize taxonomic and functional composition and diversity of the microbiome in fecal samples collected from each animal. Fecal samples were analyzed for copper (Cu), lead (Pb), nitrogen (N), phosphorous (P), selenium (Se), and zinc (Zn) and stable isotopes of carbon (13C) and nitrogen (15N). The fecal microbiome was influenced by the beef production systems with greater functional and lower taxonomic diversity in beef cattle feces from I systems compared with that from T systems. The concentration of N, P, and Zn was higher in beef cattle feces from I systems compared with that from T systems and was associated with taxonomic and functional profile of fecal microbiome in I system, suggesting the role of fecal nutrients in shaping system-specific microbiome. Semi-intensive management practices led to a more complex but less connected fecal microbiome in beef cattle. The microbial community in beef cattle feces from I systems was characterized by greater abundance of beneficial bacteria (phylum Firmicutes and butyrate-producing bacteria family Lachnospiraceae and genera Anaerostipes, Blautia, Butyrivibrio, Eubacterium, Roseburia, and Ruminococcus). In addition, the fecal abundance of microbial genes related to immune system, nutrient metabolism, and energy production was greater in beef cattle raised under I systems compared with that under T systems. Findings of the current study suggest that semi-intensive management practices could facilitate the development of a healthier and more efficient fecal microbiome in beef cattle by driving an increase in the abundance of beneficial bacteria and functional genes.
Collapse
Affiliation(s)
- Patricia Spoto Corrêa
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| | - Carolina Rodriguez Jimenez
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| | - Lucas William Mendes
- Laboratory of Molecular Cell Biology, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| | - Caroline Rymer
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Partha Ray
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Luciana Gerdes
- Reference Laboratory on Classification and Evaluation of Animal Products, Institute of Zootechnics, Nova Odessa, Brazil
| | - Vagner Ovani da Silva
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| | | | - Adibe Luiz Abdalla
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| | - Helder Louvandini
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Effects of Feeding Level and Breed Composition on Intake, Digestibility, and Methane Emissions of Dairy Heifers. Animals (Basel) 2021; 11:ani11030586. [PMID: 33668080 PMCID: PMC7995984 DOI: 10.3390/ani11030586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/28/2021] [Accepted: 02/11/2021] [Indexed: 11/17/2022] Open
Abstract
The dairy Nutrients Requirements of Cattle (NRC) was developed using data from purebred Holsteins and it might not accurately predict the performance of crossbred cattle. Our objectives were to evaluate the effects of two feeding levels (FLs) and three breed compositions (BCs) on nutrient intake, digestibility, performance, and methane (CH4) emissions of prepubertal dairy heifers. We used thirty-six heifers from three BCs: purebred Holstein (H), purebred Gyr (G), and F1 Holstein × Gyr (HG). Each BC had 12 animals and the experiment was designed as twelve incomplete three by three Latin squares, in a factorial arrangement three by two, with three BCs and two FLs (400 and 800 g/day). Total tract nutrient digestibility was determined using total fecal collection and DMI was individually measured. The data were analyzed using the PROC MIXED in SAS. Dry matter intake of all nutrients increased from the medium to high feeding level and the nutrients digestibility coefficients did differ among BCs. Achieved body weight gain in the medium FL treatment was greater than those predicted using the NRC, suggesting that crossbred and Gyr heifers have similar performance to Holsteins. Breed composition does not influence body weight gain of confined dairy heifers, but Holstein heifers fed a medium FL had higher feed efficiency and reduced CH4 emissions intensity.
Collapse
|
12
|
Zubieta ÁS, Savian JV, de Souza Filho W, Wallau MO, Gómez AM, Bindelle J, Bonnet OJF, de Faccio Carvalho PC. Does grazing management provide opportunities to mitigate methane emissions by ruminants in pastoral ecosystems? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142029. [PMID: 33254863 DOI: 10.1016/j.scitotenv.2020.142029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 06/12/2023]
Abstract
Agriculture, and livestock production in particular, is criticized for being a contributor to global environmental change, including emissions of greenhouse gases (GHG). Methane (CH4) from grazing ruminants accounts for most of livestock's carbon footprint because a large share of them are reared under suboptimal grazing conditions, usually resulting in both low herbage intake and animal performance. Consequently, the CH4 quota attributed to animal maintenance is spread across few or no animal outputs, increasing the CH4 intensity [g CH4/kg live weight (LW) gain or g CH4/kg milk yield]. In this review, the generalized idea relating tropical pastures with low quality and intrinsically higher CH4 intensity is challenged by showing evidence that emissions from animals grazing tropical pastures can equal those of temperate grasses. We demonstrate the medium-to-high mitigation potential of some grazing management strategies to mitigate CH4 emissions from grazing ruminants and stress the predominant role that sward canopy structure (e.g., height) has over animal behavioral responses (e.g., intake rate), daily forage intake and resulting CH4 emissions. From this ecological perspective, we identify a grazing management concept aiming to offer the best sward structure that allows animals to optimize their daily herbage intake, creating opportunities to reduce CH4 intensity. We show the trade-off between animal performance and CH4 intensity, stressing that mitigation is substantial when grazing management is conducted under light-to-moderate intensities and optimize herbage intake and animal performance. We conclude that optimizing LW gain of grazing sheep and cattle to a threshold of 0.14 and 0.7 kg/day, respectively, would dramatically reduce CH4 intensity to approximately 0.2 kg CH4/kg LW gain, as observed in some intensive feeding systems. This could represent a mitigation potential of around 55% for livestock commodities in pasture-based systems. Our results offer new insights to the debate concerning mitigation of environmental impacts of pastoral ecosystems.
Collapse
Affiliation(s)
- Ángel Sánchez Zubieta
- Grazing Ecology Research Group, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS 91540-000, Brazil.
| | - Jean Victor Savian
- Instituto Nacional de Investigación Agropecuaria (INIA). Programa Pasturas y Forrajes. Estación Experimental INIA, Treinta y Tres. Ruta 8 km 281, Treinta y Tres, Uruguay
| | - William de Souza Filho
- Grazing Ecology Research Group, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS 91540-000, Brazil
| | - Marcelo Osorio Wallau
- Agronomy Department, University of Florida, 3105 McCarty Hall B, Gainesville, FL 32611, USA
| | - Alejandra Marín Gómez
- Grazing Ecology Research Group, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS 91540-000, Brazil; Facultad de Ciencias Agrarias, Departamento de Producción Animal, Universidad Nacional de Colombia, Medellín, Colombia
| | - Jérôme Bindelle
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA, Teaching and Research Centre, University of Liège, Gembloux, Belgium
| | - Olivier Jean François Bonnet
- Grazing Ecology Research Group, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS 91540-000, Brazil
| | - Paulo César de Faccio Carvalho
- Grazing Ecology Research Group, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS 91540-000, Brazil
| |
Collapse
|
13
|
Vieira Ventura R, Fonseca E Silva F, Manuel Yáñez J, Brito LF. Opportunities and challenges of phenomics applied to livestock and aquaculture breeding in South America. Anim Front 2020; 10:45-52. [PMID: 32368412 PMCID: PMC7189274 DOI: 10.1093/af/vfaa008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ricardo Vieira Ventura
- Department of Animal Nutrition and Production, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), Pirassununga, SP, Brazil
| | | | - José Manuel Yáñez
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa, La Pintana, Santiago, Chile
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| |
Collapse
|