1
|
Gelambi M, Whitehead SR. Multiscale variability in nutrients and secondary metabolites in a bat-dispersed neotropical fruit. Ecol Evol 2023; 13:e10453. [PMID: 37664504 PMCID: PMC10474796 DOI: 10.1002/ece3.10453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
Ripe fleshy fruits contain not only nutrients but also a diverse array of secondary metabolites. Nutrients serve as a reward for mutualists, whereas defensive metabolites protect the fruit against pests and predators. The composition of these chemical traits is highly variable, both across different plants and even within repeating structures on the same individual plant. This intraspecific and intraindividual variation has important fitness consequences for both plants and animals, yet patterns of variation and covariation in nutrients and secondary metabolites are not well understood, especially at smaller scales. Here, we investigate the multiscale variation and covariation between nutrients and defensive metabolites in Piper sancti-felicis ripe fruits. Means and measures of variation of sugars, proteins, phenolics, and alkenylphenols vary greatly among plants, and at least 50% of the trait variation occurs at the intraindividual level. Also, we found that proteins, but not sugars, were correlated with phenolics and alkenylphenols at multiple scales, suggesting trait variation in protein content may be more constrained than sugars. Our findings emphasize the importance of examining patterns across scales and provide the groundwork to better understand how complex patterns of variation and covariation in nutrients and defensive metabolites shape ecological interactions surrounding fruits.
Collapse
Affiliation(s)
- Mariana Gelambi
- Department of Biological SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
- La Selva Biological StationOrganization for Tropical StudiesPuerto Viejo de SarapiquíHeredia ProvinceCosta Rica
| | - Susan R. Whitehead
- Department of Biological SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
- La Selva Biological StationOrganization for Tropical StudiesPuerto Viejo de SarapiquíHeredia ProvinceCosta Rica
| |
Collapse
|
2
|
Casorso JG, DePasquale AN, Romero Morales S, Cheves Hernandez S, Lopez Navarro R, Hockings KJ, Carrigan MA, Melin AD. Seed dispersal syndrome predicts ethanol concentration of fruits in a tropical dry forest. Proc Biol Sci 2023; 290:20230804. [PMID: 37464751 DOI: 10.1098/rspb.2023.0804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023] Open
Abstract
Studying fruit traits and their interactions with seed dispersers can improve how we interpret patterns of biodiversity, ecosystem function and evolution. Mounting evidence suggests that fruit ethanol is common and variable, and may exert selective pressures on seed dispersers. To test this, we comprehensively assess fruit ethanol content in a wild ecosystem and explore sources of variation. We hypothesize that both phylogeny and seed dispersal syndrome explain variation in ethanol levels, and we predict that fruits with mammalian dispersal traits will contain higher levels of ethanol than those with bird dispersal traits. We measured ripe fruit ethanol content in species with mammal- (n = 16), bird- (n = 14) or mixed-dispersal (n = 7) syndromes in a Costa Rican tropical dry forest. Seventy-eight per cent of fruit species yielded measurable ethanol concentrations. We detected a phylogenetic signal in maximum ethanol levels (Pagel's λ = 0.82). Controlling for phylogeny, we observed greater ethanol concentrations in mammal-dispersed fruits, indicating that dispersal syndrome helps explain variation in ethanol content, and that mammals may be more exposed to ethanol in their diets than birds. Our findings further our understanding of wild fruit ethanol and its potential role as a selective pressure on frugivore sensory systems and metabolism.
Collapse
Affiliation(s)
- Julia G Casorso
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Allegra N DePasquale
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Mahandran V, Hakkim H, Sinha V, Jain M. Fruit scent as an indicator of ripeness status in ‘bat fruits’ to attract ‘fruit bats’: chemical basis of chiropterochory. Acta Ethol 2022. [DOI: 10.1007/s10211-022-00405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
DePasquale A, Hogan JD, Guadamuz Araya C, Dominy NJ, Melin AD. Aeroscapes and the Sensory Ecology of Olfaction in a Tropical Dry Forest. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.849281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aeroscapes—dynamic patterns of air speed and direction—form a critical component of landscape ecology by shaping numerous animal behaviors, including movement, foraging, and social and/or reproductive interactions. Aeroecology is particularly critical for sensory ecology: air is the medium through which many sensory signals and cues propagate, inherently linking sensory perception to variables such as air speed and turbulence. Yet, aeroscapes are seldom explicitly considered in studies of sensory ecology and evolution. A key first step towards this goal is to describe the aeroscapes of habitats. Here, we quantify the variation in air movement in two successional stages (early and late) of a tropical dry forest in Costa Rica. We recorded air speeds every 10 seconds at five different heights simultaneously. Average air speeds and turbulence increased with height above the ground, generally peaked midday, and were higher overall at the early successional forest site. These patterns of lower air speed and turbulence at ground level and overnight have important implications for olfactory foraging niches, as chemotaxis is most reliable when air movement is low and steady. We discuss our results in the context of possible selective pressures and observed variation in the foraging ecology, behaviors, and associated morphologies of resident vertebrates, with a focus on mammals. However, these data also have relevance to researchers studying socioecology, invertebrate biology, plant evolution, community ecology and more. Further investigation into how animals use different forest types, canopy heights and partition activities across different times of day will further inform our understanding of how landscape and sensory ecology are interrelated. Finally, we emphasize the timeliness of monitoring aeroecology as global wind patterns shift with climate change and human disturbance alters forest structure, which may have important downstream consequences for biological conservation.
Collapse
|
5
|
Ficus spp. fruits: Bioactive compounds and chemical, biological and pharmacological properties. Food Res Int 2022; 152:110928. [DOI: 10.1016/j.foodres.2021.110928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/16/2021] [Accepted: 12/25/2021] [Indexed: 12/25/2022]
|
6
|
Mahandran V, Murugan CM, Anisha PS, Wang G, Chen J, Nathan PT. Chemical components change along the ontogeny of a bat fruit (Neolamarckia cadamba) with ripening asynchrony in favour of its fruit selection and seed dispersal. Naturwissenschaften 2021; 108:46. [PMID: 34581964 DOI: 10.1007/s00114-021-01756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
An asynchronous fruit-ripening strategy can enhance the chance of seed dispersal by providing ripe fruits for an extended period to foragers. However, mechanisms associated with this strategy that can facilitate seed dispersal are understudied. This study aimed to investigate whether the chemical components (minerals and secondary metabolites) of a bat fruit with ripening asynchrony change along its ontogeny (Rubiaceae: Neolamarckia cadamba). We predicted that the seed-to-pulp ratio would increase along with fruit ripeness. The chemical components of the fruit were also predicted to change along their ontogenesis in favour of fruit selection and seed dispersal by fruit bats. Our study shows that the asynchronous fruiting strategy limited the number of ripe fruits daily so that fruits were available at a steady rate. As predicted, the seed-to-pulp ratio of each fruit increased along with fruit development. A fruit's mineral concentration also increased as fruit developed, with a sharp jump at full ripeness, when fruit colour also changed. In contrast, the concentration of secondary metabolite compositions decreased gradually during the process of ontogeny. Fruit bats (Pteropodidae: Pteropus giganteus and Cynopterus sphinx) were the only nocturnal frugivore visitors of these trees and their fruit selection was driven by fruit size and colour. Both bats preferably consumed ripe fruits, which had a higher concentration of attractants (essential minerals) and a lower concentration of deterrents (secondary metabolites), supplemented with a higher seed-to-pulp ratio. The bats exhibited different foraging patterns and home ranges resulting in dispersal (as measured by feeding roost location) occurring across different spatial scales. Our study shows that the chemical components involved in an asynchronous fruit-ripening process could select for extended fruit availability by intensifying the demand for each ripe fruit among legitimate seed dispersers, which increases the likelihood of fruits being dispersed away from parent crowns.
Collapse
Affiliation(s)
- Valliyappan Mahandran
- CAS-Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | | | | | - Gang Wang
- CAS-Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Jin Chen
- CAS-Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | | |
Collapse
|
7
|
Fernandez AA, Schmidt C, Schmidt S, Rodríguez-Herrera B, Knörnschild M. Social behaviour and vocalizations of the tent-roosting Honduran white bat. PLoS One 2021; 16:e0248452. [PMID: 34379619 PMCID: PMC8357122 DOI: 10.1371/journal.pone.0248452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/15/2021] [Indexed: 11/19/2022] Open
Abstract
Bats are highly gregarious animals, displaying a large spectrum of social systems with different organizational structures. One important factor shaping sociality is group stability. To maintain group cohesion and stability, bats often rely on vocal communication. The Honduran white bat, Ectophylla alba, exhibits an unusual social structure compared to other tent-roosting species. This small white-furred bat lives in perennial stable mixed-sex groups. Tent construction requires several individuals and, as the only tent roosting species so far, involves both sexes. The bats´ social system and ecology render this species an interesting candidate to study social behaviour and vocal communication. In our study, we investigated the social behaviour and vocalizations of E. alba in the tent by observing two stable groups, including pups, in the wild. We documented 16 different behaviours, among others play and fur chewing, a behaviour presumably used for scent-marking. Moreover, we found 10 distinct social call types in addition to echolocation calls, and for seven call types we were able to identify the corresponding broad behavioural context. Most of the social call types were affiliative, including two types of contact calls, maternal directive calls, pup isolation calls and a call type related to the fur-chewing behaviour. In sum, this study entails an ethogram and describes the social vocalizations of a tent-roosting phyllostomid bat, providing the basis for further in-depth studies about the sociality and vocal communication in E. alba.
Collapse
Affiliation(s)
- Ahana Aurora Fernandez
- Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- * E-mail: (AAF); (MK)
| | | | - Stefanie Schmidt
- Institute of Conservation Genomics, University of Ulm, Ulm, Germany
| | - Bernal Rodríguez-Herrera
- Escuela de Biología, Centro de Investigación en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José, Costa Rica
| | - Mirjam Knörnschild
- Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Smithsonian Tropical Research Institute, Balboa, Panama
- Animal Behavior Lab, Freie Universität Berlin, Berlin, Germany
- * E-mail: (AAF); (MK)
| |
Collapse
|
8
|
Sangavi D, Murugan CM, Mahandran V, Marimuthu G, Thiruchenthil Nathan P. Adaptive foraging tactics of greater short-nosed fruit bats on a spiny shrub and its effect on seed dispersal. J ETHOL 2021. [DOI: 10.1007/s10164-021-00711-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Giacomini G, Herrel A, Chaverri G, Brown RP, Russo D, Scaravelli D, Meloro C. Functional correlates of skull shape in Chiroptera: feeding and echolocation adaptations. Integr Zool 2021; 17:430-442. [PMID: 34047457 DOI: 10.1111/1749-4877.12564] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Morphological, functional, and behavioral adaptations of bats are among the most diverse within mammals. A strong association between bat skull morphology and feeding behavior has been suggested previously. However, morphological variation related to other drivers of adaptation, in particular echolocation, remains understudied. We assessed variation in skull morphology with respect to ecology (diet and emission type) and function (bite force, masticatory muscles and echolocation characteristics) using geometric morphometrics and comparative methods. Our study suggests that variation in skull shape of 10 bat families is the result of adaptations to broad dietary categories and sound emission types (oral or nasal). Skull shape correlates with echolocation parameters only in a subsample of insectivorous species, possibly because they (almost) entirely rely on this sensory system for locating and capturing prey. Insectivores emitting low frequencies are characterized by a ventrally tilted rostrum, a trait not associated with feeding parameters. This result questions the validity of a trade-off between feeding and echolocation function. Our study advances understanding of the relationship between skull morphology and specific features of echolocation and suggests that evolutionary constraints due to echolocation may differ between different groups within the Chiroptera.
Collapse
Affiliation(s)
- Giada Giacomini
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, UK
| | - Anthony Herrel
- Département d'Ecologie et de Gestion de Paris, C.N.R.S/M.N.H.N., Paris, France
| | - Gloriana Chaverri
- Recinto de Golfito, Universidad de Costa Rica, Golfito, Costa Rica.,Smithsonian Tropical Research Institute, Balboa, Ancón, República de Panamá
| | - Richard P Brown
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, UK
| | - Danilo Russo
- Wildlife Research Unit, Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, Italy.,School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | - Dino Scaravelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Carlo Meloro
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, UK
| |
Collapse
|
10
|
Gessinger G, Page R, Wilfert L, Surlykke A, Brinkløv S, Tschapka M. Phylogenetic Patterns in Mouth Posture and Echolocation Emission Behavior of Phyllostomid Bats. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.630481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While phyllostomid bats show an impressive range of feeding habits, most of them emit highly similar echolocation calls. Due to the presence of an often prominent noseleaf, it has long been assumed that all phyllostomids emit echolocation calls exclusively through the nostrils rather than through the mouth. However, photo evidence documents also phyllostomid bats flying with an opened mouth. We hypothesized that all phyllostomid species emit echolocation calls only through the nostrils and therefore fly consistently with a closed mouth, and that observations of an open mouth should be a rare and random behavior among individuals and species. Using a high-speed camera and standardized conditions in a flight cage, we screened 40 phyllostomid species. Behavior varied distinctly among the species and mouth posture shows a significant phylogenetic signal. Bats of the frugivorous subfamilies Rhinophyllinae and Carolliinae, the nectarivorous subfamilies Glossophaginae and Lonchophyllinae, and the sanguivorous subfamily Desmodontinae all flew consistently with open mouths. So did the animalivorous subfamilies Glyphonycterinae, Micronycterinae and Phyllostominae, with the notable exception of species in the omnivorous genus Phyllostomus, which consistently flew with mouths closed. Bats from the frugivorous subfamily Stenodermatinae also flew exclusively with closed mouths with the single exception of the genus Sturnira, which is the sister clade to all other stenodermatine species. Further, head position angles differed significantly between bats echolocating with their mouth closed and those echolocating with their mouths opened, with closed-mouth phyllostomids pointing only the nostrils in the direction of flight and open-mouth phyllostomids pointing both the nostrils and mouth gape in the direction of flight. Ancestral trait reconstruction showed that the open mouth mode is the ancestral state within the Phyllostomidae. Based on the observed behavioral differences, we suggest that phyllostomid bats are not all nasal emitters as previously thought and discuss possible reasons. Further experiments, such as selectively obstructing sound emission through nostrils or mouth, respectively, will be necessary to clarify the actual source, plasticity and ecological relevance of sound emission of phyllostomid bats flying with their mouths open.
Collapse
|