1
|
Mungkalasut P, Nimsamer P, Cheepsunthorn P, Payungporn S, Cheepsunthorn CL. Single-Drop Blood Detection of Common G6PD Mutations in Thailand Based on Allele-Specific Recombinase Polymerase Amplification with CRISPR-Cas12a. ACS OMEGA 2023; 8:44733-44744. [PMID: 38046356 PMCID: PMC10688097 DOI: 10.1021/acsomega.3c05596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023]
Abstract
Glucose 6-phosphate dehydrogenase (G6PD) deficiency is the most common inherited enzymopathy. Identification of the G6PD deficiency through screening is crucial to preventing adverse effects associated with hemolytic anemia following antimalarial drug exposure. Therefore, a rapid and precise field-based G6PD deficiency diagnosis is required, particularly in rural regions where malaria is prevalent. The phenotypic diagnosis of the G6PD intermediate has also been a challenging issue due to the overlapping of G6PD activity levels between deficient and normal individuals, leading to a misinterpretation. The availability of an accurate point-of-care testing (POCT) for G6PD genotype diagnosis will therefore increase the opportunity for screening heterozygous cases in a low-resource setting. In this study, an allele-specific recombinase polymerase amplification (AS RPA) with clustered regularly interspaced short palindromic repeats-Cas12a (CRISPR-Cas12a) was developed as a POCT for accurate diagnosis of common G6PD mutations in Thailand. The AS primers for the wild type and mutant alleles of G6PD MahidolG487A and G6PD ViangchanG871A were designed and used in RPA reactions. Following application of CRISPR-Cas12a systems containing specific protospacer adjacent motif, the targeted RPA amplicons were visualized with the naked eye. Results demonstrated that the G6PD MahidolG487A and G6PD ViangchanG871A assays reached 93.62 and 98.15% sensitivity, respectively. The specificity was 88.71% in MahidolG487A and 99.02% in G6PD ViangchanG871A. The diagnosis accuracy of the G6PD MahidolG487A and G6PD ViangchanG871A assays was 91.67 and 98.72%, respectively. From DNA extraction to detection, the assay required approximately 52 min. In conclusion, this study demonstrated the high performance of an AS RPA with the CRISPR-Cas12a platform for G6PD MahidolG487A and G6PD ViangchanG871A detection assays and the potential use of G6PD genotyping as POCT.
Collapse
Affiliation(s)
- Punchalee Mungkalasut
- Interdisciplinary
Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Department
of Biochemistry, Faculty of Medicine, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Pattaraporn Nimsamer
- Center
of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Poonlarp Cheepsunthorn
- Department
of Anatomy, Faculty of Medicine, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Sunchai Payungporn
- Department
of Biochemistry, Faculty of Medicine, Chulalongkorn
University, Bangkok 10330, Thailand
- Center
of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | |
Collapse
|
2
|
Alangari AS, El-Metwally AA, Alanazi A, Al Khateeb BF, Al Kadri HM, Alshdoukhi IF, Aldubikhi AI, Alruwaili M, Alshahrani A. Epidemiology of Glucose-6-Phosphate Dehydrogenase Deficiency in Arab Countries: Insights from a Systematic Review. J Clin Med 2023; 12:6648. [PMID: 37892786 PMCID: PMC10607133 DOI: 10.3390/jcm12206648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common metabolic disorder affecting more than 400 million individuals worldwide. Being an X-linked disorder, the disease is more common among males than females. Various Arab countries estimated the prevalence of G6PD deficiency; however, findings from different countries have not been synthesized collectively. Hence, a systematic review was undertaken to synthesize the findings on the epidemiology of G6PD deficiency in all Arab countries. We performed an electronic systematic literature search based on the eligibility criteria using databases, including MEDLINE, Embase, and CINHAL. The studies included in the review were primary and original research studies assessing the prevalence or incidence, risk factors, or determinants of G6PD deficiency, and published in the English language in a peer-reviewed scientific journal between 2000 and 2022. The systematic review was carried out with the help of an updated PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist. After the screening, 23 full texts were finalized for data extraction. The prevalence of G6PD deficiency ranged from 2 to 31% with a greater burden among high-risk populations like neonates with sickle cell anemia. The determinants included males, family history, consanguineous marriages, and geographic regions, which were all risk factors, except for body weight, which was a protective factor. The prevalence of G6PD deficiency varies across Arab countries, with a higher prevalence in males than females. Different regions of Arab countries need to revisit their screening and diagnostic guidelines to detect G6PD deficiency promptly and prevent unnecessary morbidity and mortality among their communities.
Collapse
Affiliation(s)
- Abdulaziz S. Alangari
- College of Public Health and Health Informatics, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Ashraf A. El-Metwally
- College of Public Health and Health Informatics, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Abdullah Alanazi
- College of Public Health and Health Informatics, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Badr F. Al Khateeb
- College of Public Health and Health Informatics, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- Department of Family Medicine, King Abdulaziz Medical City, Ministry of the National Guard-Health Affairs, Riyadh 11426, Saudi Arabia
| | - Hanan M. Al Kadri
- College of Public Health and Health Informatics, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- Department of Obstetrics and Gynecology, King Abdulaziz Medical City, Ministry of the National Guard-Health Affairs, Riyadh 11426, Saudi Arabia
| | - Ibtehaj F. Alshdoukhi
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia
| | | | - Muzun Alruwaili
- College of Medical Sciences, North Border University, Arar 91431, Saudi Arabia
| | - Awad Alshahrani
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- Department of Medicine, King Abdulaziz Medical City, Ministry of the National Guard-Health Affairs, Riyadh 11426, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| |
Collapse
|
3
|
Djigo OKM, Gomez N, Ould Ahmedou Salem MS, Basco L, Ould Mohamed Salem Boukhary A, Briolant S. Performance of a Commercial Multiplex Allele-Specific Polymerase Chain Reaction Kit to Genotype African-Type Glucose-6-Phosphate Dehydrogenase Deficiency. Am J Trop Med Hyg 2023; 108:449-455. [PMID: 36535256 PMCID: PMC9896312 DOI: 10.4269/ajtmh.21-1081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/03/2022] [Indexed: 12/23/2022] Open
Abstract
8-Aminoquinoline antimalarial drugs (primaquine, tafenoquine) are required for complete cure of Plasmodium vivax malaria, but they are contraindicated in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. In the absence of spectrophotometry, which is a gold standard for measuring G6PD activity, G6PD genotyping is one of the alternatives to establish a database and distribution map of G6PD enzyme deficiency in Mauritania, which has become a new epicenter of P. vivax malaria in West Africa. The aim of our study was to assess the performance of multiplex allele-specific polymerase chain reaction (PCR) (African-type Diaplex C™ G6PD kit) against PCR-restriction fragment length polymorphism and sequencing. Of 146 mutations associated with G6PD A- genotypes in 177 blood samples from Mauritanian patients, all but two samples were identified correctly using multiplex allele-specific PCR (100% sensitivity and 99% specificity; "almost perfect agreement" between allele-specific PCR and PCR-restriction fragment length polymorphism/sequencing, with a kappa coefficient of 0.977). Despite a suboptimal PCR protocol for dried blood spots and the inability of the commercial assay to predict unequivocally the G6PD enzyme level in heterozygous females, the African-type Diaplex C™ G6PD genotyping kit seemed to be a valuable screening tool for male subjects and for research purposes in resource-limited countries where spectrophotometer and DNA sequencing are not available.
Collapse
Affiliation(s)
- Oum Kelthoum Mamadou Djigo
- Unité de Recherche “Génomes et Milieux” (Jeune Equipe Associée à l’Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott, Mauritania
| | - Nicolas Gomez
- Aix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, Vecteurs–Infections Tropicales et Méditerranéennes, Marseille, France
- Institut Hospitalo-Universitaire–Méditerranée Infection, Marseille, France
- Unité de Parasitologie Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Mohamed Salem Ould Ahmedou Salem
- Unité de Recherche “Génomes et Milieux” (Jeune Equipe Associée à l’Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott, Mauritania
| | - Leonardo Basco
- Aix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, Vecteurs–Infections Tropicales et Méditerranéennes, Marseille, France
- Institut Hospitalo-Universitaire–Méditerranée Infection, Marseille, France
| | - Ali Ould Mohamed Salem Boukhary
- Unité de Recherche “Génomes et Milieux” (Jeune Equipe Associée à l’Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott, Mauritania
| | - Sébastien Briolant
- Aix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, Vecteurs–Infections Tropicales et Méditerranéennes, Marseille, France
- Institut Hospitalo-Universitaire–Méditerranée Infection, Marseille, France
- Unité de Parasitologie Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| |
Collapse
|
4
|
Ali Albsheer MM, Lover AA, Eltom SB, Omereltinai L, Mohamed N, Muneer MS, Mohamad AO, Abdel Hamid MM. Prevalence of glucose-6-phosphate dehydrogenase deficiency (G6PDd), CareStart qualitative rapid diagnostic test performance, and genetic variants in two malaria-endemic areas in Sudan. PLoS Negl Trop Dis 2021; 15:e0009720. [PMID: 34699526 PMCID: PMC8547650 DOI: 10.1371/journal.pntd.0009720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase deficiency (G6PDd) is the most common enzymopathy globally, and deficient individuals may experience severe hemolysis following treatment with 8-aminoquinolines. With increasing evidence of Plasmodium vivax infections throughout sub-Saharan Africa, there is a pressing need for population-level data at on the prevalence of G6PDd. Such evidence-based data will guide the expansion of primaquine and potentially tafenoquine for radical cure of P. vivax infections. This study aimed to quantify G6PDd prevalence in two geographically distinct areas in Sudan, and evaluating the performance of a qualitative CareStart rapid diagnostic test as a point-of-care test. Blood samples were analyzed from 491 unrelated healthy persons in two malaria-endemic sites in eastern and central Sudan. A pre-structured questionnaire was used which included demographic data, risk factors and treatment history. G6PD levels were measured using spectrophotometry (SPINREACT) and first-generation qualitative CareStart rapid tests. G6PD variants (202 G>A; 376 A>G) were determined by PCR/RFLP, with a subset confirmed by Sanger sequencing. The prevalence of G6PDd by spectrophotometry was 5.5% (27/491; at 30% of adjusted male median, AMM); 27.3% (134/491; at 70% of AMM); and 13.1% (64/490) by qualitative CareStart rapid diagnostic test. The first-generation CareStart rapid diagnostic test had an overall sensitivity of 81.5% (95%CI: 61.9 to 93.7) and negative predictive value of 98.8% (97.3 to 99.6). All persons genotyped across both study sites were wild type for the G6PD G202 variant. For G6PD A376G all participants in New Halfa had wild type AA (100%), while in Khartoum the AA polymorphism was found in 90.7%; AG in 2.5%; and GG in 6.8%. Phenotypic G6PD B was detected in 100% of tested participants in New Halfa while in Khartoum, the phenotypes observed were B (96.2%), A (2.8%), and AB (1%). The African A- phenotype was not detected in this study population. Overall, G6PDd prevalence in Sudan is low-to-moderate but highly heterogeneous. Point-of-care testing with the qualitative CareStart rapid diagnostic test demonstrated moderate performance with moderate sensitivity and specificity but high negative predicative value. The two sites harbored primarily the African B phenotype. A country-wide survey is recommended to understand GP6PD deficiencies more comprehensively in Sudan.
Collapse
Affiliation(s)
- Musab M. Ali Albsheer
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Faculty of Medical Laboratory Sciences, Sinnar University, Sennar, Sudan
| | - Andrew A. Lover
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts-Amherst; Amherst, Massachusetts, United States of America
| | - Sara B. Eltom
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Leena Omereltinai
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Nouh Mohamed
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Nile University, Khartoum, Sudan
| | - Mohamed S. Muneer
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Abdelrahim O. Mohamad
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Muzamil Mahdi Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
5
|
Djigo OKM, Ould Khalef Y, Ould Ahmedou Salem MS, Gomez N, Basco L, Briolant S, Ould Mohamed Salem Boukhary A. Assessment of CareStart G6PD rapid diagnostic test and CareStart G6PD biosensor in Mauritania. Infect Dis Poverty 2021; 10:105. [PMID: 34353361 PMCID: PMC8340529 DOI: 10.1186/s40249-021-00889-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The elimination of Plasmodium vivax malaria requires 8-aminoquinolines, which are contraindicated in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency due to the risk of acute haemolytic anaemia. Several point-of-care devices have been developed to detect G6PD deficiency. The objective of the present study was to evaluate the performance of two of these devices against G6PD genotypes in Mauritania. METHODS Outpatients were screened for G6PD deficiency using CareStart™ rapid diagnostic test (RDT) and CareStart™ G6PD biosensor in Nouakchott, Mauritania, in 2019-2020. African-type and Mediterranean-type G6PD genotypes commonly observed in Africa were determined by polymerase chain reaction-restriction fragment length polymorphism and sequencing. Qualitative variables were compared using Fisher's exact test. RESULTS Of 323 patients (74 males and 249 females), 5 males and 2 homozygous females had the African-type A- genotype: A-(202) in 3 males and 2 females and G6PD A-(968) in 2 males. Among heterozygous females, 13 carried G6PD A-(202), 12 G6PD A-(968), and 3 G6PD A-(542) variants. None had the Mediterranean-type G6PD genotype. Eight had a positive G6PD RDT result, including all 7 hemizygous males and homozygous females with A- or A-A- (0.12 to 2.34 IU/g haemoglobin, according to G6PD biosensor), but RDT performed poorly (sensitivity, 11.1% at the cut-off level of < 30%) and yielded many false negative tests. Thirty-seven (50.0%) males and 141 (56.6%) females were anaemic. The adjusted median values of G6PD activity were 5.72 and 5.34 IU/g haemoglobin in non-anaemic males (n = 35) and non-anaemic males and females (n = 130) with normal G6PD genotypes using G6PD biosensor, respectively. Based on the adjusted median of 5.34 IU/g haemoglobin, the performance of G6PD biosensor against genotyping was as follows: at 30% cut-off, the sensitivity and specificity were 85.7% and 91.7%, respectively, and at 80% cut-off, the sensitivity was 100% while the specificity was 64.9%. CONCLUSIONS Although this pilot study supports the utility of biosensor to screen for G6PD deficiency in patients, further investigation in parallel with spectrophotometry is required to promote and validate a more extensive use of this point-of-care device in areas where P. vivax is highly prevalent in Mauritania.
Collapse
Affiliation(s)
- Oum Kelthoum Mamadou Djigo
- Unité de Recherche "Génomes et Milieux" (Jeune Equipe Associée à l'Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouakchott, Mauritania
| | - Yacoub Ould Khalef
- Service de Pédiatrie, Centre Hospitalier Mère et Enfant, Nouakchott, Mauritania
| | - Mohamed Salem Ould Ahmedou Salem
- Unité de Recherche "Génomes et Milieux" (Jeune Equipe Associée à l'Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouakchott, Mauritania
| | - Nicolas Gomez
- IHU, Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- Unité de Parasitologie Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France
| | - Leonardo Basco
- IHU, Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Sébastien Briolant
- IHU, Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- Unité de Parasitologie Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France
| | - Ali Ould Mohamed Salem Boukhary
- Unité de Recherche "Génomes et Milieux" (Jeune Equipe Associée à l'Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouakchott, Mauritania.
| |
Collapse
|
6
|
Djigo OKM, Ould Ahmedou Salem MS, Diallo SM, Bollahi MA, Boushab BM, Garre A, Papa Mze N, Basco L, Briolant S, Ould Mohamed Salem Boukhary A. Molecular Epidemiology of G6PD Genotypes in Different Ethnic Groups Residing in Saharan and Sahelian Zones of Mauritania. Pathogens 2021; 10:pathogens10080931. [PMID: 34451395 PMCID: PMC8398068 DOI: 10.3390/pathogens10080931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Plasmodium vivax malaria is endemic in Mauritania. Individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency may develop acute hemolytic anemia when exposed to 8-aminoquinoline antimalarial drugs, which are indispensable for a complete cure. The prevalence of G6PD allelic variants was assessed in different ethno-linguistic groups present in Mauritania. A total of 996 blood samples (447 males and 549 females; 499 white Moors and 497 individuals of black African ancestry) were collected from febrile patients in 6 different study sites: Aleg, Atar, Kiffa, Kobeni, Nouakchott, and Rosso. The presence of the African-type G6PD A- (G202A, A376G, A542T, G680T, and T968C mutations) and the Mediterranean-type G6PD B- (C563T) variants was assessed by PCR followed by restriction fragment length polymorphism and/or DNA sequencing. The prevalence of African-type G6PD A- genotype was 3.6% (36/996), with 6.3% (28/447) of hemizygote (A-) males and 1.5% (8/549) of homozygous (A-A-) females. Forty of 549 (7.3%) women were heterozygous (AA-). The following genotypes were observed among hemizygous men and/or homozygous women: A376G/G202A (22/996; 2.2%), A376G/T968C Betica-Selma (12/996; 1.2%), and A376G/A542T Santamaria (2/996; 0.2%). The Mediterranean-type G6PD B- genotype was not observed. The prevalence rates of G6PD A- genotype in male (10/243; 4.1%) and heterozygous female (6/256; 2.3%) white Moors were lower (p < 0.05) than those of males (18/204; 8.8%) and heterozygous females (34/293; 11.6%) of black African ancestry. There were only a few homozygous women among both white Moors (3/256; 1.2%) and those of black African ancestry (5/293; 1.7%). The prevalence of G6PD deficiency in Mauritania was comparable to that of neighboring countries in the Maghreb. Because of the purportedly close ethnic ties between the Mauritanian white Moors and the peoples in the Maghreb, further investigations on the possible existence of the Mediterranean-type allele are required. Moreover, a surveillance system of G6PD phenotype and/or genotype screening is warranted to establish and monitor a population-based prevalence of G6PD deficiency.
Collapse
Affiliation(s)
- Oum Kelthoum Mamadou Djigo
- Unité de Recherche “Génomes et Milieux” (Jeune Equipe Associée à l’Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouakchott, Mauritania; (O.K.M.D.); (M.S.O.A.S.); (S.M.D.)
| | - Mohamed Salem Ould Ahmedou Salem
- Unité de Recherche “Génomes et Milieux” (Jeune Equipe Associée à l’Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouakchott, Mauritania; (O.K.M.D.); (M.S.O.A.S.); (S.M.D.)
| | - Sileye Mamadou Diallo
- Unité de Recherche “Génomes et Milieux” (Jeune Equipe Associée à l’Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouakchott, Mauritania; (O.K.M.D.); (M.S.O.A.S.); (S.M.D.)
| | | | - Boushab Mohamed Boushab
- Department of Internal Medicine and Infectious Diseases, Kiffa Regional Hospital, Assaba, Mauritania;
| | - Aymeric Garre
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs—Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France; (A.G.); (N.P.M.); (L.B.); (S.B.)
- Institut Hospitalo-Universitaire (IHU)—Méditerranée Infection, 13005 Marseille, France
| | - Nasserdine Papa Mze
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs—Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France; (A.G.); (N.P.M.); (L.B.); (S.B.)
- Institut Hospitalo-Universitaire (IHU)—Méditerranée Infection, 13005 Marseille, France
| | - Leonardo Basco
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs—Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France; (A.G.); (N.P.M.); (L.B.); (S.B.)
- Institut Hospitalo-Universitaire (IHU)—Méditerranée Infection, 13005 Marseille, France
| | - Sébastien Briolant
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs—Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France; (A.G.); (N.P.M.); (L.B.); (S.B.)
- Institut Hospitalo-Universitaire (IHU)—Méditerranée Infection, 13005 Marseille, France
- Unité de Parasitologie Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), 13005 Marseille, France
| | - Ali Ould Mohamed Salem Boukhary
- Unité de Recherche “Génomes et Milieux” (Jeune Equipe Associée à l’Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouakchott, Mauritania; (O.K.M.D.); (M.S.O.A.S.); (S.M.D.)
- Correspondence:
| |
Collapse
|
7
|
Ryan K, Tekwani BL. Current investigations on clinical pharmacology and therapeutics of Glucose-6-phosphate dehydrogenase deficiency. Pharmacol Ther 2020; 222:107788. [PMID: 33326820 DOI: 10.1016/j.pharmthera.2020.107788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/19/2022]
Abstract
Glucose-6-phospate dehydrogenase (G6PD) deficiency is estimated to affect more than 400 million people world-wide. This X-linked genetic deficiency puts stress on red blood cells (RBC), which may be further augmented under certain pathophysiological conditions and drug treatments. These conditions can cause hemolytic anemia and eventually lead to multi-organ failure and mortality. G6PD is involved in the rate-limiting step of the pentose phosphate pathway, which generates reduced nicotinamide adenine dinucleotide phosphate (NADPH). In RBCs, the NADPH/G6PD pathway is the only source for recycling reduced glutathione and provides protection from oxidative stress. Susceptibility of G6PD deficient populations to certain drug treatments and potential risks of hemolysis are important public health issues. A number of clinical trials are currently in progress investigating clinical factors associated with G6PD deficiency, validation of new diagnostic kits for G6PD deficiency, and evaluating drug safety, efficacy, and pathophysiology. More than 25 clinical studies in G6PD populations are currently in progress or have just been completed that have been examined for clinical pharmacology and potential therapeutic implications of G6PD deficiency. The information on clinical conditions, interventions, purpose, outcome, and status of these clinical trials has been studied. A critical review of ongoing clinical investigations on pharmacology and therapeutics of G6PD deficiency should be highly important for researchers, clinical pharmacologists, pharmaceutical companies, and global public health agencies. The information may be useful for developing strategies for treatment and control of hemolytic crisis and potential drug toxicities in G6PD deficient patients.
Collapse
Affiliation(s)
- Kaitlyn Ryan
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research, 2000 9(th) Avenue South, Birmingham, AL 35205, United States of America.
| | - Babu L Tekwani
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research, 2000 9(th) Avenue South, Birmingham, AL 35205, United States of America.
| |
Collapse
|
8
|
Ba H, Auburn S, Jacob CG, Goncalves S, Duffy CW, Stewart LB, Price RN, Deh YB, Diallo MY, Tandia A, Kwiatkowski DP, Conway DJ. Multi-locus genotyping reveals established endemicity of a geographically distinct Plasmodium vivax population in Mauritania, West Africa. PLoS Negl Trop Dis 2020; 14:e0008945. [PMID: 33326439 PMCID: PMC7773413 DOI: 10.1371/journal.pntd.0008945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/30/2020] [Accepted: 11/03/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Plasmodium vivax has been recently discovered as a significant cause of malaria in Mauritania, although very rare elsewhere in West Africa. It has not been known if this is a recently introduced or locally remnant parasite population, nor whether the genetic structure reflects epidemic or endemic transmission. METHODOLOGY/PRINCIPAL FINDINGS To investigate the P. vivax population genetic structure in Mauritania and compare with populations previously analysed elsewhere, multi-locus genotyping was undertaken on 100 clinical isolates, using a genome-wide panel of 38 single nucleotide polymorphisms (SNPs), plus seven SNPs in drug resistance genes. The Mauritanian P. vivax population is shown to be genetically diverse and divergent from populations elsewhere, indicated consistently by genetic distance matrix analysis, principal components analyses, and fixation indices. Only one isolate had a genotype clearly indicating recent importation, from a southeast Asian source. There was no linkage disequilibrium in the local parasite population, and only a small number of infections appeared to be closely genetically related, indicating that there is ongoing genetic recombination consistent with endemic transmission. The P. vivax diversity in a remote mining town was similar to that in the capital Nouakchott, with no indication of local substructure or of epidemic population structure. Drug resistance alleles were virtually absent in Mauritania, in contrast with P. vivax in other areas of the world. CONCLUSIONS/SIGNIFICANCE The molecular epidemiology indicates that there is long-standing endemic transmission that will be very challenging to eliminate. The virtual absence of drug resistance alleles suggests that most infections have been untreated, and that this endemic infection has been more neglected in comparison to P. vivax elsewhere.
Collapse
Affiliation(s)
- Hampate Ba
- Institut National de Recherche en Santé Publique, Nouakchott, Mauritania
| | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | | | - Sonia Goncalves
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Craig W. Duffy
- London School of Hygiene & Tropical Medicine, Keppel St, London, United Kingdom
| | - Lindsay B. Stewart
- London School of Hygiene & Tropical Medicine, Keppel St, London, United Kingdom
| | - Ric N. Price
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Yacine Boubou Deh
- Institut National de Recherche en Santé Publique, Nouakchott, Mauritania
| | | | - Abderahmane Tandia
- Institut National de Recherche en Santé Publique, Nouakchott, Mauritania
| | | | - David J. Conway
- London School of Hygiene & Tropical Medicine, Keppel St, London, United Kingdom
| |
Collapse
|