1
|
Wang J, Li S, Wang T, Xu S, Wang X, Kong X, Lu X, Zhang H, Li L, Feng M, Ning S, Wang L. RNA2Immune: A Database of Experimentally Supported Data Linking Non-coding RNA Regulation to The Immune System. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:283-291. [PMID: 35595213 PMCID: PMC10626051 DOI: 10.1016/j.gpb.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/30/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have emerged as important regulators of the immune system and are involved in the control of immune cell biology, disease pathogenesis, as well as vaccine responses. A repository of ncRNA-immune associations will facilitate our understanding of ncRNA-dependent mechanisms in the immune system and advance the development of therapeutics and prevention for immune disorders. Here, we describe a comprehensive database, RNA2Immune, which aims to provide a high-quality resource of experimentally supported database linking ncRNA regulatory mechanisms to immune cell function, immune disease, cancer immunology, and vaccines. The current version of RNA2Immune documents 50,433 immune-ncRNA associations in 42 host species, including (1) 6690 ncRNA associations with immune functions involving 31 immune cell types; (2) 38,672 ncRNA associations with 348 immune diseases; (3) 4833 ncRNA associations with cancer immunology; and (4) 238 ncRNA associations with vaccine responses involving 26 vaccine types targeting 22 diseases. RNA2Immune provides a user-friendly interface for browsing, searching, and downloading ncRNA-immune system associations. Collectively, RNA2Immune provides important information about how ncRNAs influence immune cell function, how dysregulation of these ncRNAs leads to pathological consequences (immune diseases and cancers), and how ncRNAs affect immune responses to vaccines. RNA2Immune is available at http://bio-bigdata.hrbmu.edu.cn/rna2immune/home.jsp.
Collapse
Affiliation(s)
- Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Shuang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Tianfeng Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Si Xu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xu Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xiaotong Kong
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xiaoyu Lu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Lifang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Meng Feng
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
2
|
O'Connor D. The omics strategy: the use of systems vaccinology to characterise immune responses to childhood immunisation. Expert Rev Vaccines 2022; 21:1205-1214. [PMID: 35786291 DOI: 10.1080/14760584.2022.2093193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Vaccines have had a transformative impact on child health. Despite this impact the immunological processes involved in protective responses are not entirely understood and vaccine development has been largely empirical. Recent technological advances offer the opportunity to reveal the immunology underlying vaccine response at an unprecedented resolution. These data could revolutionise the way vaccines are developed and tested and further augment their role in securing the health of children around the world. AREAS COVERED Systems level information and the tools are now being deployed by vaccinologists at all stages of the vaccine development pathway; however, this review will specifically describe some of the key findings that have be gleaned from multi-omics datasets collected in the context of childhood immunisation. EXPERT OPINION Despite the success of vaccines there remains hard-to-target pathogens, refractory to current vaccination strategies. Moreover, zoonotic diseases with pandemic potential are a threat to global health, as recently illustrated by COVID-19. Systems vaccinology holds a great deal of promise in revealing a greater understanding of vaccine responses and consequently modernising vaccinology. However, there is a need for future studies -particularly in vulnerable populations that are targets for vaccination programmes - if this potential is to be fulfilled.
Collapse
Affiliation(s)
- Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
3
|
Zhu Y, Wang J, Xie H, Liu H, Liu S, He D, Mi P, He S, Wang J, Sun Y. NIR-to-Vis Handheld Platforms for Detecting miRNA Level and Mutation Based on Sub-10 nm Sulfide Nanodots and HCR Amplification. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10212-10226. [PMID: 35188756 DOI: 10.1021/acsami.2c00689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sub-10 nm monodisperse alkaline-earth sulfide nanodots (ASNDs) with bright near-infrared (NIR)-excitation fluorescence and adjustable emission wavelength were prepared by a thermal decomposition method for the first time. The ASNDs exhibited high NIR-to-vis conversion efficiency and served as multicolor fluorescent labels in the proposed miR-224 assay. Targeted detection of the miR-224 level and single-nucleotide variation in miR-224 was carried out on a smartphone-based platform using a hybridization chain reaction (HCR) amplification strategy. In the presence of miR-224, the ASND-labeled HCR probes self-assembled on the surface of the diagnosis kits, generating strong fluorescent signals linearly proportional to miR-224 contents in the range of 10-2000 fM. Significantly, mutations in miR-224 led to the variation in the fluorescence intensity ratio in RGB channels. Simultaneously, evident changes of fluorescent brightness and color were easily visualized by the naked eye, which enabled on-site discrimination of miR-224 with different mutant loci. This work provides a novel preparation approach for ultrasmall NIR excitation sulfide nanodots and reveals the potential of the as-synthesized ASNDs in point-of-care (POC) nucleic acid testing. Further, it may provide a handheld platform for miRNA single-nucleotide polymorphism analysis.
Collapse
Affiliation(s)
- Yanli Zhu
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, Hunan, P. R. China
| | - Jikai Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Haitao Xie
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Hailing Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P. R. China
| | - Shuangquan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Dongxiu He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Pengbing Mi
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Suisui He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Jun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Yiyang Sun
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P. R. China
| |
Collapse
|
4
|
Sikka R, Bharti PK, Gupta H. microRNAs: An opportunity to overcome significant challenges in malaria detection and control. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100115. [PMID: 35801230 PMCID: PMC9253159 DOI: 10.1016/j.crphar.2022.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
Organ damage and pathological disease states lead to the rapid release of microRNAs (miRNAs), a class of endogenous small non-coding RNAs, into the blood circulation. Because secreted miRNAs can be detected in biologic fluids such as plasma, they are currently being explored as promising non-invasive biomarkers of infectious and non-infectious diseases. Malaria remains a major global health challenge but still the potential of miRNAs has not been explored extensively in the context of malaria compared to other diseases. Here, we highlight important miRNAs found during different phases of the malaria life cycle in the anopheline vector and the human host. We have also put forward our opinion on how malaria parasite-stage-specific miRNAs can be incorporated into new diagnostic and prognostic tools to detect carrier mosquitoes and infected patients. In addition, we have emphasised the potential of miRNAs to be used as new therapeutics to treat severe malaria patients, an unresearched area of malaria control.
Collapse
|
5
|
Gupta H, Wassmer SC. Harnessing the Potential of miRNAs in Malaria Diagnostic and Prevention. Front Cell Infect Microbiol 2021; 11:793954. [PMID: 34976869 PMCID: PMC8716737 DOI: 10.3389/fcimb.2021.793954] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
Despite encouraging progress over the past decade, malaria remains a major global health challenge. Its severe form accounts for the majority of malaria-related deaths, and early diagnosis is key for a positive outcome. However, this is hindered by the non-specific symptoms caused by malaria, which often overlap with those of other viral, bacterial and parasitic infections. In addition, current tools are unable to detect the nature and degree of vital organ dysfunction associated with severe malaria, as complications develop silently until the effective treatment window is closed. It is therefore crucial to identify cheap and reliable early biomarkers of this wide-spectrum disease. microRNAs (miRNAs), a class of small non-coding RNAs, are rapidly released into the blood circulation upon physiological changes, including infection and organ damage. The present review details our current knowledge of miRNAs as biomarkers of specific organ dysfunction in patients with malaria, and both promising candidates identified by pre-clinical models and important knowledge gaps are highlighted for future evaluation in humans. miRNAs associated with infected vectors are also described, with a view to expandind this rapidly growing field of research to malaria transmission and surveillance.
Collapse
Affiliation(s)
- Himanshu Gupta
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Samuel C. Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
6
|
Abstract
The development of vaccines is one of the greatest medical interventions in the history of global infectious diseases and has contributed to the annual saving of at least 2 to 3 million lives worldwide. However, many diseases are not preventable through currently available vaccines, and the potential of modulating the immune response during vaccination has not been fully exploited. The first golden age of vaccines was based on the germ theory and the use of live, attenuated, inactivated pathogens or toxins. New strategies and formulations (e.g., adjuvants) with an immunomodulatory capacity to enhance the protective qualities and duration of vaccines have been incompletely exploited. These strategies can prevent disease and improve protection against infectious diseases, modulate the course of some noncommunicable diseases, and increase the immune responses of patients at a high risk of infection, such as the elderly or immunocompromised patients. In this minireview, we focus on how metabolic and epigenetic modulators can amplify and enhance the function of immunity in a given vaccine. We propose the term “amplifier” for such additives, and we pose that future vaccines will have three components: antigen, adjuvant, and amplifier.
Collapse
|