1
|
Deviche P, Sweazea K, Upah N. Adjustments to energy provisioning and oxidative balance in response to temperature in a wild passerine. Comp Biochem Physiol A Mol Integr Physiol 2025:111864. [PMID: 40199398 DOI: 10.1016/j.cbpa.2025.111864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/10/2025]
Abstract
Climate change and urbanization are associated with elevated ambient temperature (Ta). This increase may negatively impact organisms by creating conditions that are outside their resilience limits, but the physiological mechanisms that limit phenotypic plasticity in response to Ta variation remain poorly understood. We investigated these mechanisms in captive House Finches, Haemorhous mexicanus, a common native resident of rural and urban environments. We exposed finches to temperatures either slightly below the species' lower critical temperature (constant 20 °C; COOL group) or close to its upper critical temperature (daily min. 27 °C, daily max. 35 °C; WARM group) for two weeks. Birds in the COOL group ate more than birds in the WARM group, which is consistent with the prediction that cool Ta exposure increased the metabolic rate. However, finches of the two groups did not differ with regard to their body masses, fat reserves, or blood concentrations of ketone bodies, uric acid, and erythrocytic peroxidized lipids. Thus, exposure to the two experimental treatments did not result in major metabolic differences between groups. Acute stress caused by handling and restraint for 30 min decreased plasma uric acid, which may have been associated with its utilization as a free radical scavenger and so may have decreased stress-associated oxidative damage. Acute stress also increased plasma ketone bodies, suggesting increased lipid oxidation. These stress-related metabolic changes did not differ in the COOL and WARM groups, indicating within the range of Ta to which birds were exposed that temperature did not affect the birds' physiological sensitivity to acute stress.
Collapse
Affiliation(s)
- Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Karen Sweazea
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Nadia Upah
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
2
|
Ramos RF, Franco AMA, Gilroy JJ, Silva JP. Temperature and microclimate refugia use influence migratory timings of a threatened grassland bird. MOVEMENT ECOLOGY 2023; 11:75. [PMID: 38041190 PMCID: PMC10691164 DOI: 10.1186/s40462-023-00437-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Seasonal changes in resource availability are known to influence the migratory behaviour of animals, including both timing and distance. While the influence of environmental cues on migratory behaviour has been widely studied at the population level, it has rarely been examined at the spatial scale at which individuals experience their environment. Here, we test the hypothesis that individuals exposed to similar large-scale environmental cues may vary in migratory behaviour in response to the different microclimate conditions they experience at fine scales. METHODS We combine high-spatial and temporal resolution microclimate and habitat information with GPS tracking data for a partially migratory threatened grassland bird. Data from 47 little bustards (Tetrax tetrax; 67 breeding events) tracked between 2009 and 2019 was used to (i) evaluate individual consistency in migratory behaviour (timing and distance) and (ii) assess whether the local environmental characteristics experienced by individuals - and in particular their use of microclimate refugia - influence distance and timing of migration, from and to the breeding sites. RESULTS Migratory distance was consistent for birds tracked over multiple years, while the timing of migration showed high variability among individuals. Departures from breeding areas spanned from May to August, with a few birds remaining in their breeding areas. Vegetation greenness (a proxy for food availability) was positively associated with the time birds spent in the breeding area. The best model also included a positive effect of microclimate refugia availability on breeding season length, although an interaction with temperature suggested that this effect did not occur at the highest relative temperatures. The return date to breeding grounds, although spanning from September to April, was not influenced by the environmental conditions or food availability. CONCLUSIONS Food availability, measured by a vegetation greenness proxy, was associated with later migration at the end of the breeding season. Availability of cooler microclimate refugia may also allow for later departures from the breeding sites in all but the hottest conditions. Management measures that increase microclimate refugia availability and provide foraging resources can thus potentially increase the length of the breeding season for this species.
Collapse
Affiliation(s)
- Rita F Ramos
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão, 4485-661, Portugal.
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal.
- Departamento Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal.
- School of Environmental Sciences, University of East Anglia, Norwich, UK.
| | - Aldina M A Franco
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - James J Gilroy
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - João P Silva
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão, 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal
- Estação Biológica de Mértola, Mértola, Portugal
| |
Collapse
|
3
|
Fattorini N, Lovari S, Franceschi S, Chiatante G, Brunetti C, Baruzzi C, Ferretti F. Animal conflicts escalate in a warmer world. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161789. [PMID: 36716887 DOI: 10.1016/j.scitotenv.2023.161789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The potential for climate change to affect animal behaviour is widely recognized, yet its possible consequences on aggressiveness are still unclear. If warming and drought limit the availability of food resources, climate change may elicit an increase of intraspecific conflicts stemming from resource competition. By measuring aggressivity indices in a group-living, herbivorous mammal (the Apennine chamois Rupicapra pyrenaica ornata) in two sites differing in habitat quality, and coupling them with estimates of plant productivity, we investigated whether harsh climatic conditions accumulated during the growing season influenced agonistic contests at feeding via vegetation-mediated effects, and their interaction with the site-specific habitat quality. We focused on females, which exhibit intra-group contest competition to access nutritious food patches. Accounting for confounding variables, we found that (1) the aggression rate between foraging individuals increased with the warming accumulated over previous weeks; (2) the probability to deliver more aggressive behaviour patterns toward contestants increased with decreasing rainfall recorded in previous weeks; (3) the effects of cumulative warming and drought on aggressivity indices occurred at time windows spanning 15-30 days, matching those found on vegetation productivity; (4) the effects of unfavourable climatic conditions via vegetation growth on aggressivity were independent of the site-specific habitat quality. Simulations conducted on our model species predict a ~50 % increase in aggression rate following the warming projected over the next 60 years. Where primary productivity will be impacted by warming and drought, our findings suggest that the anticipated climate change scenarios may trigger bottom-up consequences on intraspecific animal conflicts. This study opens the doors for a better understanding of the multifactorial origin of aggression in group-living foragers, emphasising how the escalation of agonistic contests could emerge as a novel response of animal societies to ongoing global warming.
Collapse
Affiliation(s)
- Niccolò Fattorini
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; NBFC, National Biodiversity Future Center, 90133 Palermo, Italy.
| | - Sandro Lovari
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; Maremma Natural History Museum, Strada Corsini 5, 58100 Grosseto, Italy
| | - Sara Franceschi
- Department of Economics and Statistics, University of Siena, Piazza San Francesco 8, 53100 Siena, Italy
| | - Gianpasquale Chiatante
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Claudia Brunetti
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
| | - Carolina Baruzzi
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; Department of Wildlife Ecology and Conservation, North Florida Research and Education Center, University of Florida, 155 Research Rd., Quincy, FL 32351, USA
| | - Francesco Ferretti
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
4
|
Ramos RF, Franco AMA, Gilroy JJ, Silva JP. Combining bird tracking data with high-resolution thermal mapping to identify microclimate refugia. Sci Rep 2023; 13:4726. [PMID: 36959254 PMCID: PMC10036614 DOI: 10.1038/s41598-023-31746-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
Elevated temperatures can have a range of fitness impacts, including high metabolic cost of thermoregulation, hence access to microclimate refugia may buffer individuals against exposure to high temperatures. However, studies examining the use of microclimate refugia, remain scarce. We combined high resolution microclimate modelling with GPS tracking data as a novel approach to identify the use and availability of cooler microclimate refugia (sites > 0.5 °C cooler than the surrounding landscape) at the scales experienced by individual animals. 77 little bustards (Tetrax tetrax) were tracked between 2009 and 2019. The 92,685 GPS locations obtained and their surrounding 500 m areas were characterised with hourly temperature and habitat information at 30 m × 30 m and used to determine microclimate refugia availability and use. We found that the semi-natural grassland landscapes used by little bustards have limited availability of cooler microclimate areas-fewer than 30% of the locations. The use of cooler microclimate sites by little bustards increased at higher ambient temperatures, suggesting that individuals actively utilise microclimate refugia in extreme heat conditions. Microclimate refugia availability and use were greater in areas with heterogeneous vegetation cover, and in coastal areas. This study identified the landscape characteristics that provide microclimate opportunities and shelter from extreme heat conditions. Little bustards made greater use of microclimate refugia with increasing temperatures, particularly during the breeding season, when individuals are highly site faithful. This information can help identify areas where populations might be particularly exposed to climate extremes due to a lack of microclimate refugia, and which habitat management measures may buffer populations from expected increased exposure to temperature extremes.
Collapse
Affiliation(s)
- Rita F Ramos
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos Laboratório Associado Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
- Departamento Biologia Faculdade de Ciências, Universidade do Porto, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
- School of Environmental Sciences, University of East Anglia, Norwich, UK.
| | - Aldina M A Franco
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - James J Gilroy
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - João P Silva
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos Laboratório Associado Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| |
Collapse
|
5
|
Pilakouta N, Baillet A. Effects of temperature on mating behaviour and mating success: A meta-analysis. J Anim Ecol 2022; 91:1642-1650. [PMID: 35811382 PMCID: PMC9541322 DOI: 10.1111/1365-2656.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
Abstract
In light of global climate change, there is a pressing need to understand how populations will respond to rising temperatures. Understanding the effects of temperature changes on mating behaviour is particularly important, given its implications for population viability. To this end, we performed a meta-analysis of 53 studies to examine how temperature changes influence mating latency, choosiness and mating success. We hypothesized that if higher temperatures make mate searching and mate assessment more costly due to an elevated metabolism, this may lead to a reduction in mating latency and choosiness, thereby increasing overall mating success. We found no evidence for an overall effect of temperature on mating latency, choosiness, or mating success. There was an increase in mating success when animals were exposed to higher temperatures during mating trials but not when they were exposed before mating trials. In addition, in a subset of studies that measured both mating latency and mating success, there was a strong negative relationship between the effect sizes for these traits. This suggests that a decrease in mating latency at higher temperatures was associated with an increase in mating success and vice versa. In sum, our meta-analysis provides new insights into the effects of temperature on mating patterns. The absence of a consistent directional effect of temperature on mating behaviours and mating success suggests it may be difficult to predict changes in the strength of sexual selection in natural populations in a warming world. Nevertheless, there is some evidence that (a) higher temperatures during mating may lead to an increase in mating success and that (b) an increase in mating success is associated with a decrease in mating latency.
Collapse
Affiliation(s)
| | - Anaїs Baillet
- School of Biological SciencesUniversity of AberdeenAberdeenUK
- Observatoire des Sciences de l'Univers de Rennes (OSUR)Université de RennesRennesFrance
- Department of Wood and Forest SciencesLaval UniversityQuebecQCCanada
| |
Collapse
|
6
|
Wightman PH, Martin JA, Kilgo JC, Rushton E, Collier BA, Chamberlain MJ. Influence of weather on gobbling activity of male wild turkeys. Ecol Evol 2022; 12:e9018. [PMID: 35784066 PMCID: PMC9204850 DOI: 10.1002/ece3.9018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Gobbling activity of Eastern wild turkeys (Meleagris gallopavo silvestris; hereafter, turkeys) has been widely studied, focusing on drivers of daily variation. Weather variables are widely believed to influence gobbling activity, but results across studies are contradictory and often equivocal, leading to uncertainty in the relative contribution of weather variables to daily fluctuations in gobbling activity. Previous works relied on road-based auditory surveys to collect gobbling data, which limits data consistency, duration, and quantity due to logistical difficulties associated with human observers and restricted sampling frames. Development of new methods using autonomous recording units (ARUs) allows researchers to collect continuous data in more locations for longer periods of time, providing the opportunity to delve into factors influencing daily gobbling activity. We used ARUs from 1 March to 31 May to detail gobbling activity across multiple study sites in the southeastern United States during 2014-2018. We used state-space modeling to investigate the effects of weather variables on daily gobbling activity. Our findings suggest rainfall, greater wind speeds, and greater temperatures negatively affected gobbling activity, whereas increasing barometric pressure positively affected gobbling activity. Therefore, when using daily gobbling activity to make inferences relative to gobbling chronology, reproductive phenology, and hunting season frameworks, stakeholders should recognize and consider the potential influences of extended periods of inclement weather.
Collapse
Affiliation(s)
- Patrick H. Wightman
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGeorgiaUSA
| | - James A. Martin
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGeorgiaUSA
| | - John C. Kilgo
- Southern Research StationUSDA Forest ServiceNew EllentonSouth CarolinaUSA
| | - Emily Rushton
- Georgia Department of Natural Resources – Wildlife Resources DivisionSocial CircleGeorgiaUSA
| | - Bret A. Collier
- School of Renewable Natural ResourcesLouisiana State University Agricultural CenterBaton RougeLouisianaUSA
| | | |
Collapse
|
7
|
Brynychová K, Sládeček M, Pešková L, Chajma P, Firlová V, Elhassan E, Vozabulová E, Janatová V, Almuhery A, Šálek M. Aggressiveness in a subtropical shorebird's nest defense is adjusted to the predator species and shared by conspecifics. Aggress Behav 2022; 48:475-486. [PMID: 35527352 DOI: 10.1002/ab.22032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/06/2022]
Abstract
Aggression is an important component of an animal's defense when protecting offspring from predators. Ground nesting birds use a variety of defense strategies. However, their choice according to situation context is poorly known, especially in nonpasserines and in the subtropics and tropics. The ability to distinguish between differently dangerous predator species and the opportunity to share defense with conspecifics are potentially important but little-studied aspects of nest defense strategy. We experimentally studied the nest defense of Red-Wattled Lapwing in an individually marked population in a desert area near Dubai, UAE. We used three stuffed models representing 1) a predator dangerous both to adults and to nests (a cat), 2) a nest predator (a raven), and 3) a harmless reference model (a moorhen). We confirmed that the lapwings distinguished between predator species (being most aggressive toward the cat, and least aggressive toward the moorhen) and adjusted their defense strategy accordingly. In addition, conspecific visitors play a variety of roles in parents' defense strategy. They can strengthen the parental reaction, or they can assist in distracting a predator. The visitors included not only nesting neighbors but also nonbreeding floaters. Both parents participated in nest defense to a similar extent, regardless of incubation stage and ambient temperature. This study provides new insight into the complexity of the defensive patterns in ground-nesting birds inhabiting a hot environment. Comparative experimental research on a range of environments, with various bird species and predator models, can help us to understand the drivers of these defensive behavioral patterns.
Collapse
Affiliation(s)
- Kateřina Brynychová
- Department of Ecology, Faculty of Environmental Sciences Czech University of Life Sciences Prague Prague Czech Republic
| | - Martin Sládeček
- Department of Ecology, Faculty of Environmental Sciences Czech University of Life Sciences Prague Prague Czech Republic
| | - Lucie Pešková
- Department of Ecology, Faculty of Environmental Sciences Czech University of Life Sciences Prague Prague Czech Republic
| | - Petr Chajma
- Department of Ecology, Faculty of Environmental Sciences Czech University of Life Sciences Prague Prague Czech Republic
| | - Veronika Firlová
- Department of Ecology, Faculty of Environmental Sciences Czech University of Life Sciences Prague Prague Czech Republic
| | - Esmat Elhassan
- Department of Ecology, Faculty of Environmental Sciences Czech University of Life Sciences Prague Prague Czech Republic
- Natural Resources Conservation Section, Environment Department Dubai Municipality Dubai UAE
| | - Eva Vozabulová
- Department of Ecology, Faculty of Environmental Sciences Czech University of Life Sciences Prague Prague Czech Republic
| | - Veronika Janatová
- Department of Ecology, Faculty of Environmental Sciences Czech University of Life Sciences Prague Prague Czech Republic
| | - Aisha Almuhery
- Natural Resources Conservation Section, Environment Department Dubai Municipality Dubai UAE
| | - Miroslav Šálek
- Department of Ecology, Faculty of Environmental Sciences Czech University of Life Sciences Prague Prague Czech Republic
| |
Collapse
|
8
|
Garde B, Wilson RP, Fell A, Cole N, Tatayah V, Holton MD, Rose KAR, Metcalfe RS, Robotka H, Wikelski M, Tremblay F, Whelan S, Elliott KH, Shepard ELC. Ecological inference using data from accelerometers needs careful protocols. Methods Ecol Evol 2022; 13:813-825. [PMID: 35910299 PMCID: PMC9303593 DOI: 10.1111/2041-210x.13804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022]
Abstract
Accelerometers in animal-attached tags are powerful tools in behavioural ecology, they can be used to determine behaviour and provide proxies for movement-based energy expenditure. Researchers are collecting and archiving data across systems, seasons and device types. However, using data repositories to draw ecological inference requires a good understanding of the error introduced according to sensor type and position on the study animal and protocols for error assessment and minimisation.Using laboratory trials, we examine the absolute accuracy of tri-axial accelerometers and determine how inaccuracies impact measurements of dynamic body acceleration (DBA), a proxy for energy expenditure, in human participants. We then examine how tag type and placement affect the acceleration signal in birds, using pigeons Columba livia flying in a wind tunnel, with tags mounted simultaneously in two positions, and back- and tail-mounted tags deployed on wild kittiwakes Rissa tridactyla. Finally, we present a case study where two generations of tag were deployed using different attachment procedures on red-tailed tropicbirds Phaethon rubricauda foraging in different seasons.Bench tests showed that individual acceleration axes required a two-level correction to eliminate measurement error. This resulted in DBA differences of up to 5% between calibrated and uncalibrated tags for humans walking at a range of speeds. Device position was associated with greater variation in DBA, with upper and lower back-mounted tags varying by 9% in pigeons, and tail- and back-mounted tags varying by 13% in kittiwakes. The tropicbird study highlighted the difficulties of attributing changes in signal amplitude to a single factor when confounding influences tend to covary, as DBA varied by 25% between seasons.Accelerometer accuracy, tag placement and attachment critically affect the signal amplitude and thereby the ability of the system to detect biologically meaningful phenomena. We propose a simple method to calibrate accelerometers that can be executed under field conditions. This should be used prior to deployments and archived with resulting data. We also suggest a way that researchers can assess accuracy in previously collected data, and caution that variable tag placement and attachment can increase sensor noise and even generate trends that have no biological meaning.
Collapse
Affiliation(s)
| | | | - Adam Fell
- Department of BiosciencesSwansea UniversitySwanseaUK
- Biological and Environmental SciencesUniversity of StirlingStirlingUK
| | - Nik Cole
- Durrell Wildlife Conservation TrustLa Profonde RueJerseyJersey
| | | | | | | | - Richard S. Metcalfe
- Applied Sports Science, Technology, Exercise and Medicine Research Centre (A‐STEM)Swansea UniversitySwanseaUK
| | | | - Martin Wikelski
- Department of MigrationMax Planck Institute of Animal BehaviorRadolfzellGermany
- Centre for the Advanced Study of Collective BehaviourUniversity of KonstanzConstanceGermany
| | - Fred Tremblay
- Department of Natural Resources SciencesMcGill UniversitySainte‐Anne‐de‐BellevueQCCanada
| | - Shannon Whelan
- Department of Natural Resources SciencesMcGill UniversitySainte‐Anne‐de‐BellevueQCCanada
| | - Kyle H. Elliott
- Department of Natural Resources SciencesMcGill UniversitySainte‐Anne‐de‐BellevueQCCanada
| | | |
Collapse
|
9
|
Eisenring E, Eens M, Pradervand J, Jacot A, Baert J, Ulenaers E, Lathouwers M, Evens R. Quantifying song behavior in a free-living, light-weight, mobile bird using accelerometers. Ecol Evol 2022; 12:e8446. [PMID: 35127007 PMCID: PMC8803288 DOI: 10.1002/ece3.8446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022] Open
Abstract
To acquire a fundamental understanding of animal communication, continuous observations in a natural setting and at an individual level are required. Whereas the use of animal-borne acoustic recorders in vocal studies remains challenging, light-weight accelerometers can potentially register individuals' vocal output when this coincides with body vibrations. We collected one-dimensional accelerometer data using light-weight tags on a free-living, crepuscular bird species, the European Nightjar (Caprimulgus europaeus). We developed a classification model to identify four behaviors (rest, sing, fly, and leap) from accelerometer data and, for the purpose of this study, validated the classification of song behavior. Male nightjars produce a distinctive "churring" song while they rest on a stationary song post. We expected churring to be associated with body vibrations (i.e., medium-amplitude body acceleration), which we assumed would be easy to distinguish from resting (i.e., low-amplitude body acceleration). We validated the classification of song behavior using simultaneous GPS tracking data (i.e., information on individuals' movement and proximity to audio recorders) and vocal recordings from stationary audio recorders at known song posts of one tracked individual. Song activity was detected by the classification model with an accuracy of 92%. Beyond a threshold of 20 m from the audio recorders, only 8% of the classified song bouts were recorded. The duration of the detected song activity (i.e., acceleration data) was highly correlated with the duration of the simultaneously recorded song bouts (correlation coefficient = 0.87, N = 10, S = 21.7, p = .001). We show that accelerometer-based identification of vocalizations could serve as a promising tool to study communication in free-living, small-sized birds and demonstrate possible limitations of audio recorders to investigate individual-based variation in song behavior.
Collapse
Affiliation(s)
- Elena Eisenring
- Department of BiologyBehavioural Ecology and Ecophysiology GroupUniversity of AntwerpWilrijkBelgium
| | - Marcel Eens
- Department of BiologyBehavioural Ecology and Ecophysiology GroupUniversity of AntwerpWilrijkBelgium
| | | | - Alain Jacot
- Swiss Ornithological InstituteField Station ValaisSionSwitzerland
| | - Jan Baert
- Department of BiologyBehavioural Ecology and Ecophysiology GroupUniversity of AntwerpWilrijkBelgium
- Terrestrial Ecology UnitDepartment of BiologyGhent UniversityGhentBelgium
| | - Eddy Ulenaers
- Agentschap Natuur en BosRegio Noord‐LimburgBrusselsBelgium
| | - Michiel Lathouwers
- Research Group: Zoology, Biodiversity and ToxicologyCentre for Environmental SciencesHasselt UniversityDiepenbeekBelgium
- Department of GeographyInstitute of Life, Earth and Environment (ILEE)University of NamurNamurBelgium
| | - Ruben Evens
- Department of BiologyBehavioural Ecology and Ecophysiology GroupUniversity of AntwerpWilrijkBelgium
- Max Planck Institute for OrnithologySeewiesenGermany
| |
Collapse
|
10
|
Hauber ME, Elek Z, Moskát C. Advancing onset of breeding dates in brood parasitic common cuckoos and their great reed warbler hosts over a 22-year period. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1871968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Márk E. Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zoltán Elek
- MTA-ELTE-MTM Ecology Research Group, a Joint Research Group of the Hungarian Academy of Sciences, the Biological Institute of Eötvös Loránd University and the Hungarian Natural History Museum, MTM, Baross u. 13, Budapest H-1088, Hungary
| | - Csaba Moskát
- MTA-ELTE-MTM Ecology Research Group, a Joint Research Group of the Hungarian Academy of Sciences, the Biological Institute of Eötvös Loránd University and the Hungarian Natural History Museum, MTM, Baross u. 13, Budapest H-1088, Hungary
| |
Collapse
|
11
|
Experimental manipulation of cavity temperature produces differential effects on parasite abundances in blue tit nests at two different latitudes. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 14:287-297. [PMID: 33898230 PMCID: PMC8056126 DOI: 10.1016/j.ijppaw.2021.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/05/2022]
Abstract
Although different predictive models forecast that climate change will alter the distribution and incidence of parasitic diseases, few studies have investigated how microclimatic changes may affect host-parasite relationships. In this study, we experimentally increased the temperature inside nest boxes of the blue tit Cyanistes caeruleus during the nestling period at two different latitudes (central Spain and central Germany) to determine its effect on parasite abundance. The two localities have contrasting climate conditions: the southern one in Spain is warmer and drier than the northern one in Germany. Consistent with this, we observed that the parasitic fauna in nests at the two localities differs. The flea species Ceratophyllus gallinae was more abundant in the northern locality, while the blowfly species Protocalliphora azurea and biting midge species of the genus Culicoides were more abundant in the southern one, as were blood parasites. Moreover, dermanyssid mites and blackflies (Simuliidae) were observed only in the southern locality. The temperature inside nest boxes was increased using heat mats placed underneath the nest material during the nestling period (day 3 to day13 post-hatching). Compared with control nests, the average temperature in heated nests increased by 2.24 °C and 1.35 °C at night in Spain and Germany, respectively. Consequently, the average relative humidity in heated versus control nests decreased 4.93 and 0.82 units in Spain and Germany, respectively. The abundance of blowfly pupae in the heated nests was significantly lower than that of control nests at both localities. The abundance of larval fleas was also lower in the heated nests, but only at the Spanish locality. Infection by the blood parasites Haemoproteus/Plasmodium was higher in males attending the heated nests in Germany, and the control nests in Spain. Moreover, both male body mass and nestling wing length were negatively related to the abundance of larval fleas. In conclusion, our results indicate that increased temperature at the nestling stage may affect the fitness of blue tits by altering parasite prevalence rates. Temperature increase inside blue tit nest boxes affects ectoparasite abundance at two different localities. Blowfly and flea larvae abundances were negatively affected by increase in temperature. Male body mass and nestling wing length were negatively related to the abundance of flea larvae.
Collapse
|
12
|
Marques AT, Moreira F, Alcazar R, Delgado A, Godinho C, Sampaio H, Rocha P, Sequeira N, Palmeirim JM, Silva JP. Changes in grassland management and linear infrastructures associated to the decline of an endangered bird population. Sci Rep 2020; 10:15150. [PMID: 32938974 PMCID: PMC7495444 DOI: 10.1038/s41598-020-72154-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/26/2020] [Indexed: 11/09/2022] Open
Abstract
European grassland birds are experiencing major population declines, mainly due to changes in farmland management. We analyzed the role of habitat availability, grazing management and linear infrastructures (roads and power lines) in explaining spatial and temporal variation in the population density of little bustards (Tetrax tetrax) in Portugal, during a decade in which the species population size halved. We used data from 51 areas (totaling ca. 1,50,000 ha) that were sampled in two different periods (2003-2006 and 2016). In 2003-2006, when the species occurred at high densities, habitat availability was the only factor affecting spatial variation in bustard density. In the 2016 survey, variation in density was explained by habitat availability and livestock management, with reduced bird numbers in areas with higher proportions of cattle. Population declines across the study period were steeper in areas that initially held higher densities of bustards and in areas with a higher proportion of cattle in the total stocking rate. Areas with higher densities of power lines also registered greater density declines, probably due to avoidance behavior and to increased mortality. Overall, our results show little bustards are currently lacking high quality grassland habitat, whose persistence depends on extensive grazing regimes and low linear infrastructure densities.
Collapse
Affiliation(s)
- Ana Teresa Marques
- cE3c - Centro de Ecologia, Evolução E Alterações Ambientais, Faculdade de Ciências da Universidade de Lisboa, Edifício C2, Campo Grande, 1749-016, Lisbon, Portugal. .,CIBIO/InBIO, Centro de Investigação Em Biodiversidade E Recursos Genéticos, Laboratório Associado, Universidade Do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal. .,CIBIO/InBIO, Centro de Investigação Em Biodiversidade E Recursos Genéticos, Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal.
| | - Francisco Moreira
- CIBIO/InBIO, Centro de Investigação Em Biodiversidade E Recursos Genéticos, Laboratório Associado, Universidade Do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.,CIBIO/InBIO, Centro de Investigação Em Biodiversidade E Recursos Genéticos, Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Rita Alcazar
- LPN - Liga para a Proteção da Natureza, Centro de Educação Ambiental de Vale Gonçalinho, 7780-909, Castro Verde, Portugal
| | - Ana Delgado
- CEABN/InBIO - Centro de Ecologia Aplicada "Professor Baeta Neves", Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Carlos Godinho
- MED - Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, LabOr - Laboratório de Ornitologia, Universidade de Évora, Polo da Mitra, 7002-774, Évora, Portugal
| | - Hugo Sampaio
- SPEA - Sociedade Portuguesa para o Estudo das Aves, 1070-062, Lisbon, Portugal
| | - Pedro Rocha
- ICNF/PNVG - Instituto de Conservação da Natureza E Florestas, Parque Natural Do Vale Do Guadiana, 7750-350, Mértola, Portugal
| | - Nuno Sequeira
- QUERCUS - Associação Nacional de Conservação da Natureza, Parque Florestal de Monsanto, 1500-045, Lisbon, Portugal
| | - Jorge M Palmeirim
- cE3c - Centro de Ecologia, Evolução E Alterações Ambientais, Faculdade de Ciências da Universidade de Lisboa, Edifício C2, Campo Grande, 1749-016, Lisbon, Portugal
| | - João Paulo Silva
- CIBIO/InBIO, Centro de Investigação Em Biodiversidade E Recursos Genéticos, Laboratório Associado, Universidade Do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.,CIBIO/InBIO, Centro de Investigação Em Biodiversidade E Recursos Genéticos, Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| |
Collapse
|