1
|
Chouaib B, Haack-Sørensen M, Chaubron F, Cuisinier F, Collart-Dutilleul PY. Towards the Standardization of Mesenchymal Stem Cell Secretome-Derived Product Manufacturing for Tissue Regeneration. Int J Mol Sci 2023; 24:12594. [PMID: 37628774 PMCID: PMC10454619 DOI: 10.3390/ijms241612594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Mesenchymal stem cell secretome or conditioned medium (MSC-CM) is a combination of biomolecules and growth factors in cell culture growth medium, secreted by mesenchymal stem cells (MSCs), and the starting point of several derived products. MSC-CM and its derivatives could be applied after injuries and could mediate most of the beneficial regenerative effects of MSCs without the possible side effects of using MSCs themselves. However, before the clinical application of these promising biopharmaceuticals, several issues such as manufacturing protocols and quality control must be addressed. This review aims to underline the influence of the procedure for conditioned medium production on the quality of the secretome and its derivatives and highlights the questions considering cell sources and donors, cell expansion, cell passage number and confluency, conditioning period, cell culture medium, microenvironment cues, and secretome-derived product purification. A high degree of variability in MSC secretomes is revealed based on these parameters, confirming the need to standardize and optimize protocols. Understanding how bioprocessing and manufacturing conditions interact to determine the quantity, quality, and profile of MSC-CM is essential to the development of good manufacturing practice (GMP)-compliant procedures suitable for replacing mesenchymal stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Batoul Chouaib
- LBN, University of Montpellier, 34000 Montpellier, France; (B.C.); (F.C.)
- Human Health Department, IRSN, French Institute for Radiological Protection and Nuclear Safety, SERAMED, LRMed, 92262 Fontenay-aux-Roses, France
| | - Mandana Haack-Sørensen
- Cardiology Stem Cell Centre 9302, Rigshospitalet University of Copenhagen, Henrik Harpestrengsvej 4C, 2100 Copenhagen, Denmark
| | - Franck Chaubron
- Institut Clinident BioPharma, Biopôle Clermont-Limagne, 63360 Saint Beauzire, France;
| | - Frederic Cuisinier
- LBN, University of Montpellier, 34000 Montpellier, France; (B.C.); (F.C.)
- Faculty of Dentistry, University of Montpellier, 34000 Montpellier, France
- Service Odontologie, CHU Montpellier, 34000 Montpellier, France
| | - Pierre-Yves Collart-Dutilleul
- LBN, University of Montpellier, 34000 Montpellier, France; (B.C.); (F.C.)
- Faculty of Dentistry, University of Montpellier, 34000 Montpellier, France
- Service Odontologie, CHU Montpellier, 34000 Montpellier, France
| |
Collapse
|
2
|
Silveira BM, Ribeiro TO, Freitas RS, Carreira ACO, Gonçalves MS, Sogayar M, Meyer R, Birbrair A, Fortuna V. Secretome from human adipose-derived mesenchymal stem cells promotes blood vessel formation and pericyte coverage in experimental skin repair. PLoS One 2022; 17:e0277863. [PMID: 36534643 PMCID: PMC9762598 DOI: 10.1371/journal.pone.0277863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/04/2022] [Indexed: 12/24/2022] Open
Abstract
Human adipose tissue-derived stem cells (hASC) secretome display various therapeutically relevant effects in regenerative medicine, such as induction of angiogenesis and tissue repair. The benefits of hASC secretome are primarily orchestrated by trophic factors that mediate autocrine and paracrine effects in host cells. However, the composition and the innate characteristics of hASC secretome can be highly variable depending on the culture conditions. Here, we evaluated the combined effect of serum-free media and hypoxia preconditioning on the hASCs secretome composition and biological effects on angiogenesis and wound healing. The hASCs were cultured in serum-free media under normoxic (NCM) or hypoxic (HCM) preconditioning. The proteomic profile showed that pro- and anti-antiangiogenic factors were detected in NCM and HCM secretomes. In vitro studies demonstrated that hASCs secretomes enhanced endothelial proliferation, survival, migration, in vitro tube formation, and in vivo Matrigel plug angiogenesis. In a full-thickness skin-wound mouse model, injection of either NCM or HCM significantly accelerated the wound healing. Finally, hASC secretomes were potent in increasing endothelial density and vascular coverage of resident pericytes expressing NG2 and nestin to the lesion site, potentially contributing to blood vessel maturation. Overall, our data suggest that serum-free media or hypoxic preconditioning enhances the vascular regenerative effects of hASC secretome in a preclinical wound healing model.
Collapse
Affiliation(s)
- Brysa M. Silveira
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Tiago O. Ribeiro
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Railane S. Freitas
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Ana C. O. Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Marilda Souza Gonçalves
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
- Department of Clinical Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | - Mari Sogayar
- Cell and Molecular Therapy Center (NUCEL), Medical School, University of São Paulo, São Paulo, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Roberto Meyer
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Radiology, Columbia University Medical Center, New York, NY, United States of America
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vitor Fortuna
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
- * E-mail:
| |
Collapse
|
3
|
Ibrahim R, Mndlovu H, Kumar P, Adeyemi SA, Choonara YE. Cell Secretome Strategies for Controlled Drug Delivery and Wound-Healing Applications. Polymers (Basel) 2022; 14:2929. [PMID: 35890705 PMCID: PMC9324118 DOI: 10.3390/polym14142929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
There is significant interest in using stem cells in the management of cutaneous wounds. However, potential safety, efficacy, and cost problems associated with whole-cell transplantation hinder their clinical application. Secretome, a collective of mesenchymal stem-cell-stored paracrine factors, and immunomodulatory cytokines offer therapeutic potential as a cell-free therapy for the treatment of cutaneous wounds. This review explores the possibility of secretome as a treatment for cutaneous wounds and tissue regeneration. The review mainly focuses on in vitro and in vivo investigations that use biomaterials and secretome together to treat wounds, extend secretome retention, and control release to preserve their biological function. The approaches employed for the fabrication of biomaterials with condition media or extracellular vesicles are discussed to identify their future clinical application in wound treatment.
Collapse
Affiliation(s)
| | | | | | | | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (R.I.); (H.M.); (P.K.); (S.A.A.)
| |
Collapse
|
4
|
Heydari MB, Ghanbari-Movahed Z, Heydari M, Farzaei MH. In vitro study of the mesenchymal stem cells-conditional media role in skin wound healing process: A systematic review. Int Wound J 2022; 19:2210-2223. [PMID: 35412017 DOI: 10.1111/iwj.13796] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cell (MSC)-conditioned medium (CM) offers a potential opportunity in the skin wound healing treatment. In this systematic review, an overview of the knowledge on this topic has been provided. A multistep search of the PubMed, Scopus and Science Direct database has been performed to identify papers on MSCs-conditional media used in skin wound healing. Eligibility checks were performed based upon predefined selection criteria. Of the 485 articles initially identified, consequently, only 96 articles apparently related to MSC-conditional media were initially assessed for eligibility. Finally, the 32 articles, strictly regarding the in vitro use of MSCs-conditional media in skin wounds, were analysed. The information analysed highlights the efficacy of MSCs-conditional media on skin wound healing in vitro models. The outcome of this review may be used to guide pre-clinical and clinical studies on the role of MSCs-conditional media in skin wound healing.
Collapse
Affiliation(s)
- Mohammad Bagher Heydari
- Specialist General Surgeon, Taleghani Hospital, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Zahra Ghanbari-Movahed
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Heydari
- Department of Pharmacy Zabol University of Medical Sciences, Zabol, Iran
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Hlavac N, Bousalis D, Ahmad RN, Pallack E, Vela A, Li Y, Mobini S, Patrick E, Schmidt CE. Effects of Varied Stimulation Parameters on Adipose-Derived Stem Cell Response to Low-Level Electrical Fields. Ann Biomed Eng 2021; 49:3401-3411. [PMID: 34704163 PMCID: PMC10947800 DOI: 10.1007/s10439-021-02875-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022]
Abstract
Exogenous electrical fields have been explored in regenerative medicine to increase cellular expression of pro-regenerative growth factors. Adipose-derived stem cells (ASCs) are attractive for regenerative applications, specifically for neural repair. Little is known about the relationship between low-level electrical stimulation (ES) and ASC regenerative potentiation. In this work, patterns of ASC expression and secretion of growth factors (i.e., secretome) were explored across a range of ES parameters. ASCs were stimulated with low-level stimulation (20 mV/mm) at varied pulse frequencies, durations, and with alternating versus direct current. Frequency and duration had the most significant effects on growth factor expression. While a range of stimulation frequencies (1, 20, 1000 Hz) applied intermittently (1 h × 3 days) induced upregulation of general wound healing factors, neural-specific factors were only increased at 1 Hz. Moreover, the most optimal expression of neural growth factors was achieved when ASCs were exposed to 1 Hz pulses continuously for 24 h. In evaluation of secretome, apparent inconsistencies were observed across biological replications. Nonetheless, ASC secretome (from 1 Hz, 24 h ES) caused significant increase in neurite extension compared to non-stimulated control. Overall, ASCs are sensitive to ES parameters at low field strengths, notably pulse frequency and stimulation duration.
Collapse
Affiliation(s)
- Nora Hlavac
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
| | - Deanna Bousalis
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
| | - Raffae N Ahmad
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
| | - Emily Pallack
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
| | - Angelique Vela
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, USA
| | - Yuan Li
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
| | - Sahba Mobini
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
- Instituto de Micro y Nanotecnología, IMN- CNM, CSIC (CEI UAM+CSIC), Tres Cantos, Madrid, Spain
| | - Erin Patrick
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA.
| |
Collapse
|
6
|
El-Jawhari JJ, Ganguly P, Jones E, Giannoudis PV. Bone Marrow Multipotent Mesenchymal Stromal Cells as Autologous Therapy for Osteonecrosis: Effects of Age and Underlying Causes. Bioengineering (Basel) 2021; 8:69. [PMID: 34067727 PMCID: PMC8156020 DOI: 10.3390/bioengineering8050069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
Bone marrow (BM) is a reliable source of multipotent mesenchymal stromal cells (MSCs), which have been successfully used for treating osteonecrosis. Considering the functional advantages of BM-MSCs as bone and cartilage reparatory cells and supporting angiogenesis, several donor-related factors are also essential to consider when autologous BM-MSCs are used for such regenerative therapies. Aging is one of several factors contributing to the donor-related variability and found to be associated with a reduction of BM-MSC numbers. However, even within the same age group, other factors affecting MSC quantity and function remain incompletely understood. For patients with osteonecrosis, several underlying factors have been linked to the decrease of the proliferation of BM-MSCs as well as the impairment of their differentiation, migration, angiogenesis-support and immunoregulatory functions. This review discusses the quality and quantity of BM-MSCs in relation to the etiological conditions of osteonecrosis such as sickle cell disease, Gaucher disease, alcohol, corticosteroids, Systemic Lupus Erythematosus, diabetes, chronic renal disease and chemotherapy. A clear understanding of the regenerative potential of BM-MSCs is essential to optimize the cellular therapy of osteonecrosis and other bone damage conditions.
Collapse
Affiliation(s)
- Jehan J El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Clinical Pathology Department, Mansoura University, Mansoura 35516, Egypt
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
| | - Peter V Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
- Academic Department of Trauma and Orthopedic, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
7
|
Quantification and Comprehensive Analysis of Mesenchymal Stromal Cells in Bone Marrow Samples from Sickle Cell Disease Patients with Osteonecrosis. Stem Cells Int 2020; 2020:8841191. [PMID: 33299424 PMCID: PMC7710439 DOI: 10.1155/2020/8841191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/07/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
The potential use of bone marrow mesenchymal stromal cells (BM-MSCs) for the treatment of osteonecrosis in sickle cell disease (SCD) patients is increasing. However, convenient BM-MSC quantification and functional property assays are critical factors for cell-based therapies yet to be optimized. This study was designed to quantify the MSC population in bone marrow (BM) samples from SCD patients with osteonecrosis (SCD group) and patients with osteoarticular complications not related to SCD (NS group), using flow cytometry for CD271+CD45-/low cell phenotype and CFU-F assay. We also compared expanded BM-MSC osteogenic differentiation, migration, and cytokine secretion potential between these groups. The mean total cell number, CFU-F count, and CD271+CD45-/low cells in BM mononuclear concentrate were significantly higher in SCD than in NS patients. A significant correlation between CD271+CD45-/low cell number and CFU-F counts was found in SCD (r = 0.7483; p = 0.0070) and NS (r = 0.7167; p = 0.0370) BM concentrates. An age-related quantitative reduction of CFU-F counts and CD271+CD45-/low cell number was noted. Furthermore, no significant differences in the morphology, replicative capacity, expression of surface markers, multidifferentiation potential, and secretion of cytokines were found in expanded BM-MSCs from SCD and NS groups after in vitro culturing. Collectively, this work provides important data for the suitable measurement and expansion of BM-MSC in support to advanced cell-based therapies for SCD patients with osteonecrosis.
Collapse
|
8
|
Santos GC, Silva DN, Fortuna V, Silveira BM, Orge ID, de Santana TA, Sampaio GL, Paredes BD, Ribeiro-Dos-Santos R, Soares MBP. Leukemia Inhibitory Factor (LIF) Overexpression Increases the Angiogenic Potential of Bone Marrow Mesenchymal Stem/Stromal Cells. Front Cell Dev Biol 2020; 8:778. [PMID: 32923442 PMCID: PMC7456813 DOI: 10.3389/fcell.2020.00778] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have the ability to secrete bioactive molecules, exerting multiple biological effects, such as tissue regeneration, reduction of inflammation, and neovascularization. The therapeutic potential of MSCs can be increased by genetic modification to overexpress cytokines and growth factors. Here we produced mouse MSCs overexpressing human leukemia inhibitory factor (LIF) to assess their proangiogenic potential in vitro and in vivo. Mouse bone marrow-derived MSCs were transduced by using a second-generation lentiviral system to express human LIF. Leukemia inhibitory factor expression was confirmed by RT-qPCR and by ELISA, allowing the quantification of the transcript and secreted protein, respectively. Flow cytometry analysis and trilineage differentiation assay showed that the MSC_LIF cell line maintained the immunophenotype and a multipotency characteristic of MSCs. The immunosuppressive activity of MSC_LIF was confirmed using a lymphoproliferation assay. Moreover, gene expression analysis demonstrated upregulation of genes coding for strategic factors in the neovascularization process, such as angiogenin, IL-8, MCP-1, and VEGF, and for the perivascular cell markers αSMA, Col4a1, SM22, and NG2. To evaluate the pro-angiogenic potential of MSC_LIF, we first tested its effects on endothelial cells obtained from umbilical vein in a scratch wound healing assay. Conditioned medium (CM) from MSC_LIF promoted a significant increase in cell migration compared to CM from control MSC. Additionally, in vitro tube formation of endothelial cells was increased by the presence of MSC_LIF, as shown in microvessel sprouting in aortic ring cultures. Finally, an in vivo Matrigel plug assay was performed, showing that MSC_LIF were more potent in promoting in vivo angiogenesis and tissue vascularization than control MSCs. In conclusion, LIF overexpression is a promising strategy to increase the proangiogenic potential of MSCs and sets precedents for future investigations of their potential applications for the treatment of ischemic diseases and tissue repair.
Collapse
Affiliation(s)
- Girlaine Café Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Health Institute of Technology, SENAI-CIMATEC, Salvador, Brazil
| | - Daniela Nascimento Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Health Institute of Technology, SENAI-CIMATEC, Salvador, Brazil
| | - Vitor Fortuna
- Health Sciences Institute, Federal University of Bahia, Salvador, Brazil
| | | | - Iasmim Diniz Orge
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Health Institute of Technology, SENAI-CIMATEC, Salvador, Brazil
| | - Thaís Alves de Santana
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Health Institute of Technology, SENAI-CIMATEC, Salvador, Brazil
| | | | | | - Ricardo Ribeiro-Dos-Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Health Institute of Technology, SENAI-CIMATEC, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Health Institute of Technology, SENAI-CIMATEC, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|