1
|
Zhang D, Zhao M, Jiang P, Zhou Y, Yan X, Zhou C, Mu Y, Xiao S, Ji G, Wu N, Sun D, Cui X, Ning S, Meng H, Xiao S, Jin Y. RPL22L1 fosters malignant features of cervical cancer via the modulation of DUSP6-ERK axis. J Transl Med 2025; 23:244. [PMID: 40022129 PMCID: PMC11871735 DOI: 10.1186/s12967-025-06249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/11/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Cervical cancer remains one of the leading causes of cancer-related deaths among women globally, and there is still a need to research molecular targets that can be used for prognosis assessment and personalized molecular therapies. Here, we investigate the role of potential molecular target ribosomal L22-like 1 (RPL22L1) on cervical cancer, identify its potential mechanisms, and explore its related applications in prognosis and molecular therapies. METHODS Multiple cervical cancer cohorts online, tissue microarrays and clinical tissue specimens were analyzed for the association between RPL22L1 expression and patient outcomes. Functional and molecular biology studies of cell and mice models were used to clarify the effects and potential mechanisms of RPL22L1 on cervical cancer. RESULTS RPL22L1 is highly expressed in both cervical adenocarcinoma and squamous cell carcinoma, and its expression is significantly associated with histology grade, clinical stage, recurrence, vascular space involvement, tumor sizes and poor prognosis. In vitro and in vivo experiment revealed that RPL22L1 overexpression significantly promoted cervical cancer cell proliferation, migration, invasion, tumorigenicity and Sorafenib resistance, which were attenuated by RPL22L1 knockdown. Mechanistically, RPL22L1 competitively binds to ERK phosphatase DUSP6, leading to excessive activation of ERK. The combined application of ERK inhibitors can effectively inhibit RPL22L1 overexpressing cervical cancer cells both in vivo and in vitro. CONCLUSION RPL22L1 promotes malignant biological behavior of cervical cancer cells by competitively binding with DUSP6, thereby activating the ERK pathway. The combined use of Sorafenib and an ERK inhibitor is a potentially effective molecular targeted therapy for RPL22L1-high cervical cancer.
Collapse
Affiliation(s)
- Dongmei Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, 150081, China
- Key Laboratory for Molecular Targeted Drug of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Meiqi Zhao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, 150081, China
| | - Ping Jiang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, 150081, China
| | - Yunzhen Zhou
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, 150081, China
| | - Xu Yan
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, 150081, China
| | - Chong Zhou
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, 150081, China
| | - Yu Mu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, 150081, China
| | - Shan Xiao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, 150081, China
| | - Guohua Ji
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, 150081, China
| | - Nan Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, 150081, China
| | - Donglin Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, 150081, China
| | - Xiaobo Cui
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, 150081, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China.
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, 150081, China.
- State Key Laboratory of Zone Cardiovascular Diseases in China, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
2
|
Li C, Du X, Zhang H, Liu S. Knockdown of ribosomal protein L22-like 1 arrests the cell cycle and promotes apoptosis in colorectal cancer. Cytojournal 2024; 21:45. [PMID: 39737125 PMCID: PMC11683392 DOI: 10.25259/cytojournal_29_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/27/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Colorectal cancer (CRC) remains a remarkable challenge despite considerable advancements in its treatment, due to its high recurrence rate, metastasis, drug resistance, and heterogeneity. Molecular targets that can effectively inhibit CRC growth must be identified to address these challenges. Therefore, we aim to reveal the regulatory effect of ribosomal protein L22-like 1 (RPL22L1) on the proliferation and apoptosis of CRC cells and its potential mechanism. Material and Methods We detected the expression of RPL22L1 from the Cancer Genome Atlas, Gene Expression Omnibus and UALCAN databases. The effects of RPL22L1 on CRC growth and migration were determined by knocking down RPL22L1 in human CRC cell lines and those on the cell cycle and apoptosis using flow cytometry. The influence of RPL22L1 knockdown on xenograft tumor growth was verified in vivo. The potential RPL22L1 mechanisms in promoting cancer were predicted with RNA sequencing (RNAseq). The molecular mechanism of enhanced apoptosis and cell cycle arrest in RPL22L1 knockdown was revealed using real-time reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Results The present study reveals a considerable upregulation of RPL22L1 expression in CRC as well as in diverse tumor tissues, and most cells within the CRC tumor microenvironment (TME) demonstrate RPL22L1 expression. Notably, this elevated expression level of RPL22L1 exhibits a strong association with an unfavorable prognosis among patients diagnosed with CRC (P < 0.05). Furthermore, the association between RPL22L1 expression and the CRC TME index did not exhibit statistical significance (P > 0.05). However, RPL22L1 knockdown experiments revealed a substantial suppression of growth and migratory capacities in CRC cells RKO and HCT116 (P < 0.05). Flow cytometry analysis exhibited that on RPL22L1 knockdown, a remarkable arrest of the G1 and S phases of the cell cycle (P < 0.05) occurred. In addition, a remarkable elevation in the level of cell apoptosis was observed (P < 0.001). RNAseq exhibited that cell cycle, DNA replication, and mechanistic target of rapamycin (mTOR) complex 1pathway were inhibited after RPL22L1 knockdown, whereas the apoptosis pathway was activated (P < 0.05). Validation through RT-qPCR and western blot analysis also corroborated the downregulation of P70S6K, MCM3, MCM7, GADD45B, WEE1, and MKI67 expression levels, following RPL22L1 knockdown (P < 0.05). Consequent rescue experiments offered supportive evidence, indicating the involvement of the mTOR pathway in mediating the influence of RPL22L1 on the promotion of cell cycle progression. Moreover, in vivo assays involving tumor-bearing mice exhibited that diminished RPL22L1 levels led to arrested CRC growth (P < 0.05). Conclusion These findings support RPL22L1 as a possible prognostic and therapeutic target in CRC, providing novel insights into the development of anticancer medications.
Collapse
Affiliation(s)
- Chunming Li
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Xinna Du
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, College of Basic Medicine, Jiamusi University, Jiamusi, China
- Department of Physiology and Biochemistry, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Hu Zhang
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, College of Basic Medicine, Jiamusi University, Jiamusi, China
- Department of Physiology and Biochemistry, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Shuang Liu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, College of Basic Medicine, Jiamusi University, Jiamusi, China
| |
Collapse
|
3
|
Lindahl L. Ribosome Structural Changes Dynamically Affect Ribosome Function. Int J Mol Sci 2024; 25:11186. [PMID: 39456968 PMCID: PMC11508205 DOI: 10.3390/ijms252011186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/06/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Ribosomes were known to be multicomponent complexes as early as the 1960s. Nonetheless, the prevailing view for decades considered active ribosomes to be a monolithic population, in which all ribosomes are identical in composition and function. This implied that ribosomes themselves did not actively contribute to the regulation of protein synthesis. In this perspective, I review evidence for a different model, based on results showing that ribosomes can harbor different types of ribosomal RNA (rRNA) and ribosomal proteins (r-proteins) and, furthermore, need not contain a complete set of r-proteins. I also summarize recent results favoring the notion that such distinct types of ribosomes have different affinities for specific messenger RNAs and may execute the translation process differently. Thus, ribosomes should be considered active contributors to the regulation of protein synthesis.
Collapse
Affiliation(s)
- Lasse Lindahl
- Department of Biological Sciences, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
4
|
Cui H, Ma Y, Han S, Zhang X, Fu W, Yang S, Liu T, Zhang X. Arsenic trioxide regulates the glycolytic pathway to treat acute promyelocytic leukemia by inhibiting RPL22L1. Leuk Res 2024; 144:107550. [PMID: 39079325 DOI: 10.1016/j.leukres.2024.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024]
Abstract
OBJECTIVE To investigate the relationship between the treatment of acute promyelocytic leukemia (APL) with arsenic trioxide (ATO) and glycolysis, as well as its underlying molecular mechanism. METHODS The GEO database was used to analyze alterations in the expression of RPL22L1 in APL patients and its correlation with glycolysis. The levels of RPL22L1 and glycolysis were assessed in 9 paired clinical samples. NB4 cells and NB4 cells with knockdown of RPL22L1 were treated with ATO. The protein and mRNA of RPL22L1 were detected using RT-PCR and Western blot, and the content was determined by using glucose, pyruvate, and lactate detection kits. Finally, detection of cell proliferation using CCK8, migration by scratch assay, and apoptosis by flow cytometry, and the biological function of ATO in NB4 cells was examined. RESULTS The expression of RPL22L1 in GSE213742 and GSE234103 datasets exhibited a significant increase in human APL cells, specifically NB4 cells. RPL22L1 in GSE213742 and GSE234103 gene expression matrix was significantly elevated in human APL cells NB4 cells, and further analysis found RPL22L1 showed a strong positive correlation with glycolysis. Cellular experiments showed that ATO inhibited RPL22L1 in NB4 cells and inhibited glycolysis in APL cells. The ATO played a pivotal role in suppressing the proliferation, migration, as well as invasion of NH4 cells. CONCLUSION ATO regulates the blycolytic pathway in APL by inhibiting RPL22L1 expression, and this may contribute to its therapeutic effects.
Collapse
Affiliation(s)
- Heran Cui
- Department of Hematology, the Second Affiliated Hospital of Qiqihar Medical University, China
| | - Yuanyang Ma
- Department of Laboratory Medicine, The Second Affiliated Hospital of Qiqihar Medical University, China
| | - Shulin Han
- Department of Hematology, the Second Affiliated Hospital of Qiqihar Medical University, China
| | - Xiaodong Zhang
- Department of Hematology, the Second Affiliated Hospital of Qiqihar Medical University, China
| | - Weiya Fu
- Department of Hematology, the Second Affiliated Hospital of Qiqihar Medical University, China
| | - Shuang Yang
- Department of Hematology, the Second Affiliated Hospital of Qiqihar Medical University, China
| | - Tianhang Liu
- Department of Hematology, the Second Affiliated Hospital of Qiqihar Medical University, China
| | - Xuefang Zhang
- Department of Hematology, the Second Affiliated Hospital of Qiqihar Medical University, China.
| |
Collapse
|
5
|
Xing S, Li D, Zhao Q. RPL22L1 is a novel biomarker for prognosis and immune infiltration in lung adenocarcinoma, promoting the growth and metastasis of LUAD cells by inhibiting the MDM2/P53 signaling pathway. Aging (Albany NY) 2024; 16:12392-12413. [PMID: 39207452 PMCID: PMC11424578 DOI: 10.18632/aging.206096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/13/2024] [Indexed: 09/04/2024]
Abstract
The ribosomal protein L22-like1 (RPL22L1) is a constituent of the 60 S ribosomal subunit whose function in lung adenocarcinoma (LUAD) remains ambiguous. This study aims to elucidate the role of RPL22L1 in LUAD through a thorough analysis and experimental validation. Our findings indicate that RPL22L1 exhibits abnormal expression patterns in various cancer types, including LUAD. Moreover, a statistically significant association was observed between elevated levels of RPL22L1 expression in LUAD patients and several clinical parameters, such as pathological stage (p = 0.0083) and gender (p = 0.0038). The high expression of RPL22L1 in LUAD demonstrated a significant association with poorer overall survival (OS) (p = 0.005), progression-free survival (PFS) (p = 0.027), and disease-specific survival (p = 0.015). The expression of RPL22L1 in LUAD (p = 0.005) was identified as an independent prognostic factor. Additionally, RPL22L1 expression in LUAD was found to be correlated with immune infiltration, immune checkpoint genes, TMB/MSI, and mRNAsi. Notably, the expression of RPL22L1 exhibited significant negative correlations with 1-BET-762, Trametinib, and WZ3105 in LUAD. The RPL22L1 gene exhibited up-regulation in multiple individual cells of LUAD, leading to a comparatively shorter PFS in the RPL22L1 variant group as opposed to the RPL22L1 variant-free group in LUAD. Significantly increased expression of RPL22L1 was noted in LUAD cell lines, where it was found to enhance the growth and metastasis of LUAD cells by suppressing the MDM2/P53 signaling pathway. Therefore, RPL22L1 may serve as a promising prognostic biomarker and therapeutic target for patients with LUAD.
Collapse
Affiliation(s)
- Shigui Xing
- Department of Thoracic Surgery, Nanjing Gaochun People’s Hospital, Nanjing 211300, Jiangsu, China
| | - Dongbing Li
- Scientific Research Center, Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Qi Zhao
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| |
Collapse
|
6
|
Weinstein HNW, Hu K, Fish L, Chen YA, Allegakoen P, Pham JH, Hui KSF, Chang CH, Tutar M, Benitez-Rivera L, Baco MB, Song H, Giacomelli AO, Vazquez F, Ghandi M, Goodarzi H, Huang FW. RPL22 is a tumor suppressor in MSI-high cancers and a splicing regulator of MDM4. Cell Rep 2024; 43:114622. [PMID: 39146182 PMCID: PMC12035866 DOI: 10.1016/j.celrep.2024.114622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/16/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024] Open
Abstract
Microsatellite instability-high (MSI-H) tumors are malignant tumors that, despite harboring a high mutational burden, often have intact TP53. One of the most frequent mutations in MSI-H tumors is a frameshift mutation in RPL22, a ribosomal protein. Here, we identified RPL22 as a modulator of MDM4 splicing through an alternative splicing switch in exon 6. RPL22 loss increases MDM4 exon 6 inclusion and cell proliferation and augments resistance to the MDM inhibitor Nutlin-3a. RPL22 represses the expression of its paralog, RPL22L1, by mediating the splicing of a cryptic exon corresponding to a truncated transcript. Therefore, damaging mutations in RPL22 drive oncogenic MDM4 induction and reveal a common splicing circuit in MSI-H tumors that may inform therapeutic targeting of the MDM4-p53 axis and oncogenic RPL22L1 induction.
Collapse
Affiliation(s)
- Hannah N W Weinstein
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin Hu
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Lisa Fish
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Yih-An Chen
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Paul Allegakoen
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Julia H Pham
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Keliana S F Hui
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Chih-Hao Chang
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Meltem Tutar
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Lorena Benitez-Rivera
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Maria B Baco
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hanbing Song
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew O Giacomelli
- Tumor Immunotherapy Program, Princess Margaret Cancer Center, Toronto, ON, Canada
| | | | | | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Franklin W Huang
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA; San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.
| |
Collapse
|
7
|
Fan W, Liu H, Stachelek GC, Begum A, Davis CE, Dorado TE, Ernst G, Reinhold WC, Ozbek B, Zheng Q, De Marzo AM, Rajeshkumar NV, Barrow JC, Laiho M. Ribosomal RNA transcription governs splicing through ribosomal protein RPL22. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608201. [PMID: 39211199 PMCID: PMC11361076 DOI: 10.1101/2024.08.15.608201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Ribosome biosynthesis is a cancer vulnerability executed by targeting RNA polymerase I (Pol I) transcription. We developed advanced, specific Pol I inhibitors to identify drivers of this sensitivity. By integrating multi-omics features and drug sensitivity data from a large cancer cell panel, we discovered that RPL22 frameshift mutation conferred Pol I inhibitor sensitivity in microsatellite instable cancers. Mechanistically, RPL22 directly interacts with 28S rRNA and mRNA splice junctions, functioning as a splicing regulator. RPL22 deficiency, intensified by 28S rRNA sequestration, promoted the splicing of its paralog RPL22L1 and p53 negative regulator MDM4. Chemical and genetic inhibition of rRNA synthesis broadly remodeled mRNA splicing controlling hundreds of targets. Strikingly, RPL22-dependent alternative splicing was reversed by Pol I inhibition revealing a ribotoxic stress-initiated tumor suppressive pathway. We identify a mechanism that robustly connects rRNA synthesis activity to splicing and reveals their coordination by ribosomal protein RPL22.
Collapse
|
8
|
HAN M, YI X, YOU S, WU X, WANG S, HE D. Gehua Jiejiu Dizhi decoction ameliorates alcoholic fatty liver in mice by regulating lipid and bile acid metabolism and with exertion of antioxidant stress based on 4DLabel-free quantitative proteomic study. J TRADIT CHIN MED 2024; 44:277-288. [PMID: 38504534 PMCID: PMC10927405 DOI: 10.19852/j.cnki.jtcm.20231018.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/27/2023] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To analyze the effect and molecular mechanism of Gehua Jiejiu Dizhi decoction (, GJDD) on alcoholic fatty live disease (AFLD) by using proteomic methods. METHODS The male C57BL/6J mouse were randomly divided into four groups: control group, model group, GJDD group and resveratrol group. After the AFLD model was successfully prepared by intragastric administration of alcohol once on the basis of the Lieber-DeCarli classical method, the GJDD group and resveratrol group were intragastrically administered with GJDD (4900 mg/kg) and resveratrol (400 mg/kg) respectively, once a day for 9 d. The fat deposition of liver tissue was observed and evaluated by oil red O (ORO) staining. 4DLabel-free quantitative proteome method was used to determine and quantify the protein expression in liver tissue of each experimental group. The differentially expressed proteins were screened according to protein expression differential multiples, and then analyzed by Gene ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. Finally, expression validation of the differentially co-expressed proteins from control group, model group and GJDD group were verified by targeted proteomics quantification techniques. RESULTS In semiquantitative analyses of ORO, all kinds of steatosis (ToS, MaS, and MiS) were evaluated higher in AFLD mice compared to those in GJDD or resveratrol-treated mice. 4DLabel-free proteomics analysis results showed that a total of 4513 proteins were identified, of which 3763 proteins were quantified and 946 differentially expressed proteins were screened. Compared with the control group, 145 proteins were up-regulated and 148 proteins were down-regulated in the liver tissue of model group. In addition, compared with the model group, 92 proteins were up-regulated and 135 proteins were down-regulated in the liver tissue of the GJDD group. 15 differentially co-expressed proteins were found between every two groups (model group vs control group, GJDD group vs model group and GJDD group vs control group), which were involved in many biological processes. Among them, 11 differentially co-expressed key proteins (Aox3, H1-5, Fabp5, Ces3a, Nudt7, Serpinb1a, Fkbp11, Rpl22l1, Keg1, Acss2 and Slco1a1) were further identified by targeted proteomic quantitative technology and their expression patterns were consistent with the results of 4D label-free proteomic analysis. CONCLUSIONS Our study provided proteomics-based evidence that GJDD alleviated AFLD by modulating liver protein expression, likely through the modulation of lipid metabolism, bile acid metabolism and with exertion of antioxidant stress.
Collapse
Affiliation(s)
- Min HAN
- 1 Guizhou University of Traditional Chinese Medicine, Graduate School, Guiyang 550025, China
| | - Xu YI
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Shaowei YOU
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Xueli WU
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Shuoshi WANG
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Diancheng HE
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| |
Collapse
|
9
|
Wu Y, Yao N, Du B, Zhu Y, Ji X, Lv C, Lai J. Ribosomal protein L22 like 1: a promising biomarker for lung adenocarcinoma. J Cancer 2024; 15:2549-2560. [PMID: 38577587 PMCID: PMC10988297 DOI: 10.7150/jca.91759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/15/2024] [Indexed: 04/06/2024] Open
Abstract
No studies have reported the effect of ribosomal protein L22 like 1 (RPL22L1) in lung adenocarcinoma (LUAD). Therefore, we aimed to systematically investigate the role of RPL22L1 in LUAD. The expression of RPL22L1 was analyzed using TCGA, GEO, TIMER, UALCAN databases, and validated by immunohistochemistry (IHC). Gene methylation analysis was performed using the UALCAN, GSCA and MethSurv databases. The immune infiltrates were investigated using the Single Sample Gene Set Enrichment Analysis (ssGSEA), TIMER database, and TISCH database. The results demonstrated that RPL22L1 was up-regulated in LUAD, and verified by IHC. Kaplan-Meier analysis suggested that patients with high RPL22L1 expression had poor prognosis. Multivariate analysis confirmed that RPL22L1 was an independent prognostic factor. Furthermore, RPL22L1 overexpression was associated with hypomethylation, and two CpGs of RPL22L1 were significantly associated with prognosis. Up-regulated RPL22L1 was enriched in MYC targets, E2F targets, G2M checkpoint, mTORC1 signaling, cell cycle, and so on. Moreover, RPL22L1 expression was negatively correlated with immune cell infiltration, and patients with high RPL22L1 expression had lower immune, stromal, and estimate scores. Single-cell analysis suggested that RPL22L1 might have a potential function in the tumor microenvironment (TME) of LUAD. In conclusion, RPL22L1 may be a promising biomarker for LUAD.
Collapse
Affiliation(s)
- Yahua Wu
- Department of Medical Oncology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Fuzhou, 350000, Fujian, China
| | - Na Yao
- Department of Medical Oncology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Fuzhou, 350000, Fujian, China
| | - Bin Du
- Department of Medical Oncology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Fuzhou, 350000, Fujian, China
| | - Yingjiao Zhu
- Department of Medical Oncology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Fuzhou, 350000, Fujian, China
| | - Xiaohui Ji
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Chengliu Lv
- Department of Medical Oncology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Fuzhou, 350000, Fujian, China
| | - Jinhuo Lai
- Department of Medical Oncology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Fuzhou, 350000, Fujian, China
| |
Collapse
|
10
|
Weinstein HN, Hu K, Fish L, Chen YA, Allegakoen P, Hui KSF, Pham JH, Baco MB, Song H, Giacomelli AO, Vazquez F, Ghandi M, Goodarzi H, Huang FW. RPL22 is a tumor suppressor in MSI-high cancers and a key splicing regulator of MDM4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570873. [PMID: 38106152 PMCID: PMC10723389 DOI: 10.1101/2023.12.10.570873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Microsatellite instability high (MSI-H) tumors are malignant tumors that, despite harboring a high mutational burden, often have intact TP53. One of the most frequent mutations in MSI-H tumors is a frameshift mutation in RPL22, a ribosomal protein. Here, we identified RPL22 as a modulator of MDM4 splicing through an alternative splicing switch in exon 6. RPL22 loss increases MDM4 exon 6 inclusion, cell proliferation, and augments resistance to the MDM inhibitor Nutlin-3a. RPL22 represses expression of its paralog, RPL22L1, by mediating the splicing of a cryptic exon corresponding to a truncated transcript. Therefore, damaging mutations in RPL22 drive oncogenic MDM4 induction and reveal a common splicing circuit in MSI-H tumors that may inform therapeutic targeting of the MDM4-p53 axis and oncogenic RPL22L1 induction.
Collapse
Affiliation(s)
- Hannah N.W. Weinstein
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | - Kevin Hu
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | - Lisa Fish
- Department of Biochemistry and Biophysics, University of California; San Francisco, USA
| | - Yih-An Chen
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | - Paul Allegakoen
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | - Keliana S. F. Hui
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | - Julia H. Pham
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | | | - Hanbing Song
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | | | | | | | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California; San Francisco, USA
| | - Franklin W. Huang
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| |
Collapse
|
11
|
Chen Y, Mu Y, Guan Q, Li C, Zhang Y, Xu Y, Zhou C, Guo Y, Ma Y, Zhao M, Ji G, Liu P, Sun D, Sun H, Wu N, Jin Y. RPL22L1, a novel candidate oncogene promotes temozolomide resistance by activating STAT3 in glioblastoma. Cell Death Dis 2023; 14:757. [PMID: 37985768 PMCID: PMC10662465 DOI: 10.1038/s41419-023-06156-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 11/22/2023]
Abstract
Aggressiveness and drug resistance are major challenges in the clinical treatment of glioblastoma (GBM). Our previously research reported a novel candidate oncogene ribosomal protein L22 like 1 (RPL22L1). The aim of this study was to elucidate the potential role and mechanism of RPL22L1 in progression and temozolomide (TMZ) resistance of GBM. Online database, tissue microarrays and clinical tissue specimens were used to evaluate the expression and clinical implication of RPL22L1 in GBM. We performed cell function assays, orthotopic and subcutaneous xenograft tumor models to evaluate the effects and molecular mechanisms of RPL22L1 on GBM. RPL22L1 expression was significantly upregulated in GBM and associated with poorer prognosis. RPL22L1 overexpression enhanced GBM cell proliferation, migration, invasion, TMZ resistance and tumorigenicity, which could be reduced by RPL22L1 knockdown. Further, we found RPL22L1 promoted mesenchymal phenotype of GBM and the impact of these effects was closely related to EGFR/STAT3 pathway. Importantly, we observed that STAT3 specific inhibitor (Stattic) significantly inhibited the malignant functions of RPL22L1, especially on TMZ resistance. RPL22L1 overexpressed increased combination drug sensitive of Stattic and TMZ both in vitro and in vivo. Moreover, Stattic effectively restored the sensitive of RPL22L1 induced TMZ resistance in vitro and in vivo. Our study identified a novel candidate oncogene RPL22L1 which promoted the GBM malignancy through STAT3 pathway. And we highlighted that Stattic combined with TMZ therapy might be an effective treatment strategy in RPL22L1 high-expressed GBM patients.
Collapse
Affiliation(s)
- Yunping Chen
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- College of Sports and Human Sciences, Harbin Sport University, Harbin, 150008, China
| | - Yu Mu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Qing Guan
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Chenlong Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001, China
| | - Yangong Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yinzhi Xu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Chong Zhou
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Ying Guo
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Yanan Ma
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Meiqi Zhao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Guohua Ji
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Donglin Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Haiming Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Nan Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China.
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China.
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China.
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China.
| |
Collapse
|
12
|
Naik A, Dalpatraj N, Thakur N. Comparative analysis of the occupancy of Histone H3 Lysine 4 methylation in the cells treated with TGFβ and Interferonγ. Gene 2023:147601. [PMID: 37394048 DOI: 10.1016/j.gene.2023.147601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
In this current study, we have compared our H3K4me3 Chip-Sequencing data in PC3 cells in response to 6h and 24h TGFβ stimulation with the IFNγ stimulated/unstimulated HeLa S3 cells Since both TGFβ and IFNγ play an essential role in tumorigenesis both as a tumor promoter and tumor suppressor and known to antagonize each other's signalling, it would be of utmost importance to find out the regions undergoing histone modification changes in response to TGFβ and IFNγ and compare them to explore the genes common to both as well as the specific for each ligand. Our study has compared the genes showing H3K4me3 occupancy in response to both TGFβ and IFNγ. Several genes were found to be shared between the TGFβ and IFNγ. DAVID Functional enrichment analysis in the TGFβ and IFNγ dataset revealed association of genes with different biological processes such as miRNA-mediated gene silencing, positive regulation of ERK cascade, hypoxia-induced apoptosis repression, translational regulation and molecular functions such as TGFβR activity, GPCR activity, TGFβ binding activity. Further analysis of these genes can reveal fascinating insights into epigenetic regulation by growth factor stimulation.
Collapse
Affiliation(s)
- Ankit Naik
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Nidhi Dalpatraj
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Noopur Thakur
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad-380009, Gujarat, India.
| |
Collapse
|
13
|
Yi X, Zhang C, Liu B, Gao G, Tang Y, Lu Y, Pan Z, Wang G, Feng W. Ribosomal protein L22-like1 promotes prostate cancer progression by activating PI3K/Akt/mTOR signalling pathway. J Cell Mol Med 2023; 27:403-411. [PMID: 36625246 PMCID: PMC9889667 DOI: 10.1111/jcmm.17663] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/24/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies in men. Ribosomal protein L22-like1 (RPL22L1), a component of the ribosomal 60 S subunit, is associated with cancer progression, but the role and potential mechanism of RPL22L1 in PCa remain unclear. The aim of this study was to investigate the role of RPL22L1 in PCa progression and the mechanisms involved. Bioinformatics and immunohistochemistry analysis showed that the expression of RPL22L1 was significantly higher in PCa tissues than in normal prostate tissues. The cell function analysis revealed that RPL22L1 significantly promoted the proliferation, migration and invasion of PCa cells. The data of xenograft tumour assay suggested that the low expression of RPL22L1 inhibited the growth and invasion of PCa cells in vivo. Mechanistically, the results of Western blot proved that RPL22L1 activated PI3K/Akt/mTOR pathway in PCa cells. Additionally, LY294002, an inhibitor of PI3K/Akt pathway, was used to block this pathway. The results showed that LY294002 remarkably abrogated the oncogenic effect of RPL22L1 on PCa cell proliferation and invasion. Taken together, our study demonstrated that RPL22L1 is a key gene in PCa progression and promotes PCa cell proliferation and invasion via PI3K/Akt/mTOR pathway, thus potentially providing a new target for PCa therapy.
Collapse
Affiliation(s)
- Xiaoyu Yi
- School of Life Science and TechnologyWeifang Medical UniversityWeifangChina
| | - Chao Zhang
- Department of Urology SurgeryShandong Cancer Hospital and InstituteJinanChina,Department of Urology SurgeryShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Baojie Liu
- School of Life Science and TechnologyWeifang Medical UniversityWeifangChina
| | - Guojun Gao
- Department of Urology SurgeryAffiliated Hospital of Weifang Medical UniversityWeifangChina
| | - Yaqi Tang
- School of Life Science and TechnologyWeifang Medical UniversityWeifangChina
| | - Yongzheng Lu
- School of Life Science and TechnologyWeifang Medical UniversityWeifangChina
| | - Zhifang Pan
- School of Life Science and TechnologyWeifang Medical UniversityWeifangChina
| | - Guohui Wang
- School of Life Science and TechnologyWeifang Medical UniversityWeifangChina
| | - Weiguo Feng
- School of Life Science and TechnologyWeifang Medical UniversityWeifangChina
| |
Collapse
|
14
|
A male germ-cell-specific ribosome controls male fertility. Nature 2022; 612:725-731. [PMID: 36517592 DOI: 10.1038/s41586-022-05508-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/01/2022] [Indexed: 12/23/2022]
Abstract
Ribosomes are highly sophisticated translation machines that have been demonstrated to be heterogeneous in the regulation of protein synthesis1,2. Male germ cell development involves complex translational regulation during sperm formation3. However, it remains unclear whether translation during sperm formation is performed by a specific ribosome. Here we report a ribosome with a specialized nascent polypeptide exit tunnel, RibosomeST, that is assembled with the male germ-cell-specific protein RPL39L, the paralogue of core ribosome (RibosomeCore) protein RPL39. Deletion of RibosomeST in mice causes defective sperm formation, resulting in substantially reduced fertility. Our comparison of single-particle cryo-electron microscopy structures of ribosomes from mouse kidneys and testes indicates that RibosomeST features a ribosomal polypeptide exit tunnel of distinct size and charge states compared with RibosomeCore. RibosomeST predominantly cotranslationally regulates the folding of a subset of male germ-cell-specific proteins that are essential for the formation of sperm. Moreover, we found that specialized functions of RibosomeST were not replaceable by RibosomeCore. Taken together, identification of this sperm-specific ribosome should greatly expand our understanding of ribosome function and tissue-specific regulation of protein expression pattern in mammals.
Collapse
|
15
|
Larionova TD, Bastola S, Aksinina TE, Anufrieva KS, Wang J, Shender VO, Andreev DE, Kovalenko TF, Arapidi GP, Shnaider PV, Kazakova AN, Latyshev YA, Tatarskiy VV, Shtil AA, Moreau P, Giraud F, Li C, Wang Y, Rubtsova MP, Dontsova OA, Condro M, Ellingson BM, Shakhparonov MI, Kornblum HI, Nakano I, Pavlyukov MS. Alternative RNA splicing modulates ribosomal composition and determines the spatial phenotype of glioblastoma cells. Nat Cell Biol 2022; 24:1541-1557. [PMID: 36192632 PMCID: PMC10026424 DOI: 10.1038/s41556-022-00994-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/15/2022] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GBM) is characterized by exceptionally high intratumoral heterogeneity. However, the molecular mechanisms underlying the origin of different GBM cell populations remain unclear. Here, we found that the compositions of ribosomes of GBM cells in the tumour core and edge differ due to alternative RNA splicing. The acidic pH in the core switches before messenger RNA splicing of the ribosomal gene RPL22L1 towards the RPL22L1b isoform. This allows cells to survive acidosis, increases stemness and correlates with worse patient outcome. Mechanistically, RPL22L1b promotes RNA splicing by interacting with lncMALAT1 in the nucleus and inducing its degradation. Contrarily, in the tumour edge region, RPL22L1a interacts with ribosomes in the cytoplasm and upregulates the translation of multiple messenger RNAs including TP53. We found that the RPL22L1 isoform switch is regulated by SRSF4 and identified a compound that inhibits this process and decreases tumour growth. These findings demonstrate how distinct GBM cell populations arise during tumour growth. Targeting this mechanism may decrease GBM heterogeneity and facilitate therapy.
Collapse
Affiliation(s)
- Tatyana D Larionova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Soniya Bastola
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Tatiana E Aksinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Ksenia S Anufrieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency, Moscow, Russian Federation
| | - Jia Wang
- Department of Neurosurgery, Centre of Brain Science, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Victoria O Shender
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency, Moscow, Russian Federation
| | - Dmitriy E Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Tatiana F Kovalenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Georgij P Arapidi
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency, Moscow, Russian Federation
| | - Polina V Shnaider
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency, Moscow, Russian Federation
| | - Anastasia N Kazakova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency, Moscow, Russian Federation
| | - Yaroslav A Latyshev
- N.N. Burdenko National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander A Shtil
- Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Pascale Moreau
- Institute of Chemistry of Clermont-Ferrand, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Francis Giraud
- Institute of Chemistry of Clermont-Ferrand, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Chaoxi Li
- Department of Neurosurgery, School of Medicine and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yichan Wang
- Department of Neurosurgery, Centre of Brain Science, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Maria P Rubtsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga A Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Michael Condro
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Harley I Kornblum
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ichiro Nakano
- Department of Neurosurgery, Medical Institute of Hokuto, Hokkaido, Japan.
| | - Marat S Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation.
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
16
|
Ribosomal protein L22-like1 (RPL22L1) mediates sorafenib sensitivity via ERK in hepatocellular carcinoma. Cell Death Dis 2022; 8:365. [PMID: 35973992 PMCID: PMC9381560 DOI: 10.1038/s41420-022-01153-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
Precision medicine in hepatocellular carcinoma (HCC) relies on validated biomarkers that help subgroup patients for targeted treatment. Here, we identified a novel candidate oncogene, ribosomal protein L22-like1 (RPL22L1), which was markedly elevated in HCC, contributed to HCC malignancy and adverse patient survival. Functional studies indicated RPL22L1 overexpression accelerated cell proliferation, migration, invasion and sorafenib resistance. Mechanism studies revealed that RPL22L1 activated ERK to induce atypical epithelial-to-mesenchymal transition (EMT) progress. Importantly, the ERK inhibitor (ERKi) could potentiate sorafenib efficiency in RPL22L1-high HCC cells. In summary, these data uncover RPL22L1 is a potential marker to guide precision therapy for utilizing ERKi to enhance the sorafenib efficacy in RPL22L1-high HCC patients.
Collapse
|
17
|
Han W, Fan B, Huang Y, Wang X, Zhang Z, Gu G, Liu Z. Construction and validation of a prognostic model of RNA binding proteins in clear cell renal carcinoma. BMC Nephrol 2022; 23:172. [PMID: 35513791 PMCID: PMC9069774 DOI: 10.1186/s12882-022-02801-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/25/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The dysfunction of RNA binding proteins (RBPs) is associated with various inflammation and cancer. The occurrence and progression of tumors are closely related to the abnormal expression of RBPs. There are few studies on RBPs in clear cell renal carcinoma (ccRCC), which allows us to explore the role of RBPs in ccRCC. METHODS We obtained the gene expression data and clinical data of ccRCC from the Cancer Genome Atlas (TCGA) database and extracted all the information of RBPs. We performed differential expression analysis of RBPs. Risk model were constructed based on the differentially expressed RBPs (DERBPs). The expression levels of model markers were examined by reverse transcription-quantitative PCR (RT-qPCR) and analyzed for model-clinical relevance. Finally, we mapped the model's nomograms to predict the 1, 3 and 5-year survival rates for ccRCC patients. RESULTS The results showed that the five-year survival rate for the high-risk group was 40.2% (95% CI = 0.313 ~ 0.518), while the five-year survival rate for the low-risk group was 84.3% (95% CI = 0.767 ~ 0.926). The ROC curves (AUC = 0.748) also showed that our model had stable predictive power. Further RT-qPCR results were in accordance with our analysis (p < 0.05). The results of the independent prognostic analysis showed that the model could be an independent prognostic factor for ccRCC. The results of the correlation analysis also demonstrated the good predictive ability of the model. CONCLUSION In summary, the 4-RBPs (EZH2, RPL22L1, RNASE2, U2AF1L4) risk model could be used as a prognostic indicator of ccRCC. Our study provides a possibility for predicting the survival of ccRCC.
Collapse
Affiliation(s)
- Wenkai Han
- Department of Clinical Medicine, Qingdao University, Qingdao, Shandong, 266000, China
| | - Bohao Fan
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yongshen Huang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiongbao Wang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Zhao Zhang
- Department of Clinical Medicine, Qingdao University, Qingdao, Shandong, 266000, China.,Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Gangli Gu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
| | - Zhao Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
18
|
Sciammarella C, Bencivenga M, Mafficini A, Piredda ML, Tsvetkova V, Paolino G, Mastrosimini MG, Hetoja S, de Manzoni G, Mattiolo P, Borga C, Fassan M, Scarpa A, Luchini C, Lawlor RT. Molecular Analysis of an Intestinal Neuroendocrine/Non-neuroendocrine Neoplasm (MiNEN) Reveals MLH1 Methylation-driven Microsatellite Instability and a Monoclonal Origin: Diagnostic and Clinical Implications. Appl Immunohistochem Mol Morphol 2022; 30:145-152. [PMID: 34483242 DOI: 10.1097/pai.0000000000000969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/04/2021] [Indexed: 01/13/2023]
Abstract
Mixed neuroendocrine/non-neuroendocrine neoplasms (MiNEN) are rare mixed epithelial neoplasms in which a neuroendocrine component is combined with a non-neuroendocrine component. Here, we provide the clinical, pathologic, and molecular report of a 73-year-old-man presenting with an intestinal MiNEN. The lesion was composed of a well-differentiated G3 neuroendocrine tumor and a colloid adenocarcinoma. The molecular characterization was performed using a multigene next-generation sequencing panel. The neoplasm displayed microsatellite instability due to MLH1 promoter methylation. The extended molecular profile documented the same mutations affecting ARID1A, ASXL1, BLM, and RNF43 genes in both components, indicating a monoclonal origin of the tumor. Regarding component-specific gene mutations, BRCA2 was specifically altered in the neuroendocrine area. It may represent a new actionable target for precision oncology in MiNEN, but the lack of its alteration in the colloid component calls for further considerations on intratumor heterogeneity. The most important finding with potential immediate implications regards the presence of microsatellite instability: it indicates that this molecular alteration should become part of the diagnostic algorithm for these rare neoplasms.
Collapse
Affiliation(s)
| | - Maria Bencivenga
- Unit of General and Upper GI Surgery, University of Verona, Verona
| | - Andrea Mafficini
- ARC-Net Research Center
- Section of Pathology, Department of Diagnostics and Public Health, University and Hospital Trust of Verona
| | | | - Vassilena Tsvetkova
- Section of Pathology, Department of Diagnostics and Public Health, University and Hospital Trust of Verona
| | - Gaetano Paolino
- Section of Pathology, Department of Diagnostics and Public Health, University and Hospital Trust of Verona
| | - Maria G Mastrosimini
- Section of Pathology, Department of Diagnostics and Public Health, University and Hospital Trust of Verona
| | - Selma Hetoja
- Unit of General and Upper GI Surgery, University of Verona, Verona
| | | | - Paola Mattiolo
- Section of Pathology, Department of Diagnostics and Public Health, University and Hospital Trust of Verona
| | - Chiara Borga
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Aldo Scarpa
- ARC-Net Research Center
- Section of Pathology, Department of Diagnostics and Public Health, University and Hospital Trust of Verona
| | - Claudio Luchini
- Section of Pathology, Department of Diagnostics and Public Health, University and Hospital Trust of Verona
| | | |
Collapse
|
19
|
Wang Z, Hopson LM, Singleton SS, Yang X, Jogunoori W, Mazumder R, Obias V, Lin P, Nguyen BN, Yao M, Miller L, White J, Rao S, Mishra L. Mice with dysfunctional TGF-β signaling develop altered intestinal microbiome and colorectal cancer resistant to 5FU. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166179. [PMID: 34082069 DOI: 10.1016/j.bbadis.2021.166179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
Emerging data show a rise in colorectal cancer (CRC) incidence in young men and women that is often chemoresistant. One potential risk factor is an alteration in the microbiome. Here, we investigated the role of TGF-β signaling on the intestinal microbiome and the efficacy of chemotherapy for CRC induced by azoxymethane and dextran sodium sulfate in mice. We used two genotypes of TGF-β-signaling-deficient mice (Smad4+/- and Smad4+/-Sptbn1+/-), which developed CRC with similar phenotypes and had similar alterations in the intestinal microbiome. Using these mice, we evaluated the intestinal microbiome and determined the effect of dysfunctional TGF-β signaling on the response to the chemotherapeutic agent 5-Fluoro-uracil (5FU) after induction of CRC. Using shotgun metagenomic sequencing, we determined gut microbiota composition in mice with CRC and found reduced amounts of beneficial species of Bacteroides and Parabacteroides in the mutants compared to the wild-type (WT) mice. Furthermore, the mutant mice with CRC were resistant to 5FU. Whereas the abundances of E. boltae, B.dorei, Lachnoclostridium sp., and Mordavella sp. were significantly reduced in mice with CRC, these species only recovered to basal amounts after 5FU treatment in WT mice, suggesting that the alterations in the intestinal microbiome resulting from compromised TGF-β signaling impaired the response to 5FU. These findings could have implications for inhibiting the TGF-β pathway in the treatment of CRC or other cancers.
Collapse
Affiliation(s)
- Zhuanhuai Wang
- Center for Translational Medicine, Department of Surgery, The George Washington University, Washington, DC, USA; Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lindsay M Hopson
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Stephanie S Singleton
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Xiaochun Yang
- Center for Translational Medicine, Department of Surgery, The George Washington University, Washington, DC, USA; The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, USA
| | - Wilma Jogunoori
- Research and Development, Veterans Affairs Medical Center, Washington, DC, USA
| | - Raja Mazumder
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Vincent Obias
- Department of Surgery, The George Washington University, Washington, DC, USA
| | - Paul Lin
- Department of Surgery, The George Washington University, Washington, DC, USA
| | - Bao-Ngoc Nguyen
- Center for Translational Medicine, Department of Surgery, The George Washington University, Washington, DC, USA
| | - Michael Yao
- Department of Gastroenterology, Veterans Affairs Medical Center, Washington, DC, USA
| | - Larry Miller
- Department of Medicine, Division of Gastroenterology, Zucker School of Medicine at Hofstra/Northwell Health System, New Hyde Park, NY, USA
| | - Jon White
- Department of Surgery, The George Washington University, Washington, DC, USA
| | - Shuyun Rao
- Center for Translational Medicine, Department of Surgery, The George Washington University, Washington, DC, USA; The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, USA.
| | - Lopa Mishra
- Center for Translational Medicine, Department of Surgery, The George Washington University, Washington, DC, USA; The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, USA.
| |
Collapse
|
20
|
Yuan J, Li Z, Li F, Lin Z, Yao S, Zhou H, Liu W, Yu H, Liu Y, Liu F, Li F, Ran H, Zhang J, Huang Y, Fu Q, Wang L, Liu J. Proteomics reveals the potential mechanism of Mrps35 controlling Listeria monocytogenes intracellular proliferation in macrophages. Proteomics 2021; 21:e2000262. [PMID: 33763969 DOI: 10.1002/pmic.202000262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/10/2022]
Abstract
Macrophages are sentinels in the organism which can resist and destroy various bacteria through direct phagocytosis. Here, we reported that expression level of mitochondrial ribosomal protein S35 (Mrps35) continued to decrease over infection time after Listeria monocytogenes (L. monocytogenes) infected macrophages. Our results indicated that knockdown Mrps35 increased the load of L. monocytogenes in macrophages. This result supported that Mrps35 played the crucial roles in L. monocytogenes infection. Moreover, we performed the comprehensive proteomics to analyze the differentially expressed protein of wild type and Mrps35 Knockdown Raw264.7 cells by L. monocytogenes infection over 6 h. Based on the results of mass spectrometry, we presented a wide variety of hypotheses about the mechanism of Mrps35 controlling the L. monocytogenes intracellular proliferation. Among them, experiments confirmed that Mrps35 and 60S ribosomal protein L22-like 1 (Rpl22l1) were a functional correlation or potentially a compensatory mechanism during L. monocytogenes infection. This study provided new insights into understanding that L. monocytogenes infection changed the basic synthesis or metabolism-related proteins of host cells.
Collapse
Affiliation(s)
- Jiangbei Yuan
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, China
| | - Zhangfu Li
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, China
| | - Fang Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Zewei Lin
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Siyu Yao
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hang Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Wenhu Liu
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Haili Yu
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Yang Liu
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Fang Liu
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Fei Li
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Haiying Ran
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Junying Zhang
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing, China
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Qihuan Fu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Jikui Liu
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
21
|
Massoumi RL, Teper Y, Ako S, Ye L, Wang E, Hines OJ, Eibl G. Direct Effects of Lipopolysaccharide on Human Pancreatic Cancer Cells. Pancreas 2021; 50:524-528. [PMID: 33939664 PMCID: PMC8097724 DOI: 10.1097/mpa.0000000000001790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Obesity, a risk factor for pancreatic adenocarcinoma (PDAC), is often accompanied by a systemic increase in lipopolysaccharide (LPS; metabolic endotoxemia), which is thought to mediate obesity-associated inflammation. However, the direct effects of LPS on PDAC cells are poorly understood. METHODS The expression of toll-like receptor 4, the receptor for LPS, was confirmed in PDAC cell lines. AsPC-1 and PANC-1 cells were exposed to LPS, and differential gene expression was determined by RNA sequencing. The activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway by LPS in PDAC cells was assessed by Western blotting. RESULTS The expression of toll-like receptor 4 was confirmed in all PDAC cell lines. The exposure to LPS led to differential expression of 3083 genes (426 ≥5-fold) in AsPC-1 and 2584 genes (339 ≥5-fold) in PANC-1. A top canonical pathway affected by LPS in both cell lines was PI3K/Akt/mTOR. Western blotting confirmed activation of this pathway as measured by phosphorylation of the ribosomal protein S6 and Akt. CONCLUSIONS The exposure of PDAC cells to LPS led to differential gene expression. A top canonical pathway was PI3K/Akt/mTOR, a known oncogenic driver. Our findings provided evidence that LPS can directly induce differential gene expression in PDAC cells.
Collapse
Affiliation(s)
- Roxanne L Massoumi
- From the Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhu Y, Ren C, Jiang D, Yang L, Chen Y, Li F, Wang B, Zhang Y. RPL34-AS1-induced RPL34 inhibits cervical cancer cell tumorigenesis via the MDM2-P53 pathway. Cancer Sci 2021; 112:1811-1821. [PMID: 33675124 PMCID: PMC8088949 DOI: 10.1111/cas.14874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Ribosomal proteins (RPs) are important components of ribosomes and related to the occurrence and development of tumors. However, little is known about the effects of the RP network on cervical cancer (CC). In this study, we screened differentially expressed RPL34 in CC by high‐throughput quantitative proteome assay. We found that RPL34 acted as a tumor suppressor and was downregulated in CC and inhibited the proliferation, migration, and invasion abilities of CC cells. Next, we verified that RPL34 regulated the CC through the MDM2‐P53 pathway by using Act D medicine, MDM2 inhibitor, and a series of western blotting(WB)assays. Moreover, an antisense lncRNA, RPL34‐AS1, regulated the expression of RPL34 and participated in the tumorigenesis of CC. RPL34 can reverse the effect of RPL34‐AS1 in CC cells. Finally, by RNA‐binding protein immunoprecipitation (RIP) assay we found that eukaryotic initiation factor 4A3 (EIF4A3), which binds to RPL34‐AS1, regulated RPL34‐AS1 expression in CC. Therefore, our findings indicate that RPL34‐AS1–induced RPL34 inhibits CC cell proliferation, invasion, and metastasis through modulation of the MDM2‐P53 signaling pathway, which provides a meaningful target for the early diagnosis and treatment of CC.
Collapse
Affiliation(s)
- Yuanhang Zhu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Chenchen Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Dongyuan Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yannan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Feiyan Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Baojin Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yali Zhang
- Department of pathology, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
23
|
Chen Q, Li ZL, Fu SQ, Wang SY, Liu YT, Ma M, Yang XR, Xie WJ, Gong BB, Sun T. Development of prognostic signature based on RNA binding proteins related genes analysis in clear cell renal cell carcinoma. Aging (Albany NY) 2021; 13:3926-3944. [PMID: 33461173 PMCID: PMC7906138 DOI: 10.18632/aging.202360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022]
Abstract
RNA binding proteins (RBPs) play significant roles in the development of tumors. However, a comprehensive analysis of the biological functions of RBPs in clear cell renal cell carcinoma (ccRCC) has not been performed. Our study aimed to construct an RBP-related risk model for prognosis prediction in ccRCC patients. First, RNA sequencing data of ccRCC were downloaded from The Cancer Genome Atlas (TCGA) database. Three RBP genes (EIF4A1, CARS, and RPL22L1) were validated as prognosis-related hub genes by univariate and multivariate Cox regression analyses and were integrated into a prognostic model by least absolute shrinkage and selection operator (LASSO) Cox regression analysis. According to this model, patients with high risk scores displayed significantly worse overall survival (OS) than those with low risk scores. Moreover, the multivariate Cox analysis results indicated that risk score, tumor grade, and tumor stage were significantly correlated with patient OS. A nomogram was constructed based on the three RBP genes and showed a good ability to predict outcomes in ccRCC patients. In conclusion, this study identified a three-RBP gene risk model for predicting the prognosis of patients, which is conducive to the identification of novel diagnostic and prognostic molecular markers.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zhi-Long Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Sheng-Qiang Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Si-Yuan Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yu-Tang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ming Ma
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Rong Yang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Wen-Jie Xie
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Bin-Bin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
24
|
Qin X, Liu Z, Yan K, Fang Z, Fan Y. Integral Analysis of the RNA Binding Protein-associated Prognostic Model for Renal Cell Carcinoma. Int J Med Sci 2021; 18:953-963. [PMID: 33456353 PMCID: PMC7807188 DOI: 10.7150/ijms.50704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
RNA binding protein (RBPs) dysregulation has been reported in various malignant tumors and plays a pivotal role in tumor carcinogenesis and progression. However, the underlying mechanisms in renal cell carcinoma (RCC) are still unknown. In the present study, we performed a bioinformatics analysis using data from TCGA database to explore the expression and prognostic value of RBPs. We identified 125 differently expressed RBPs between tumor and normal tissue in RCC patients, including 87 upregulated and 38 downregulated RBPs. Eight RBPs (RPL22L1, RNASE2, RNASE3, EZH2, DDX25, DQX1, EXOSC5, DDX47) were selected as prognosis-related RBPs and used to construct a risk score model. In the risk score model, the high-risk subgroup had a poorer overall survival (OS) than the low-risk subgroup, and we divided the 539 RCC patients into two groups and conducted a time-dependent receiver operating characteristic (ROC) analysis to further test the prognostic ability of the eight hub RBPs. The area under the curve (AUC) of the ROC curve was 0.728 in train-group and 0.688 in test-group, indicating a good prognostic model. More importantly, we established a nomogram based on the selected eight RBPs. The eight selected RBPS have predictive value for RCC patients, with potential applications in clinical decision-making and individualized treatment.
Collapse
Affiliation(s)
- Xin Qin
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, PR China
| | - Zhengfang Liu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, PR China
| | - Keqiang Yan
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, PR China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, PR China.,Department of Medicine, Center for Molecular Medicine (CMM) and Bioclinicum, Karolinska Institute and Karolinska University Hospital Solna, Solna 171 64, Sweden
| | - Yidong Fan
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, PR China
| |
Collapse
|
25
|
Hua X, Chen J, Ge S, Xiao H, Zhang L, Liang C. Integrated analysis of the functions of RNA binding proteins in clear cell renal cell carcinoma. Genomics 2020; 113:850-860. [PMID: 33169673 DOI: 10.1016/j.ygeno.2020.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/16/2020] [Indexed: 12/29/2022]
Abstract
RNA binding proteins (RBPs) dysregulation is involved in the processes of various tumors. However, the roles of RBPs in clear cell renal cell carcinoma (ccRCC) remain poorly understand. In present study, we first performed consensus clustering and identified two clusters, of which cluster 2 was closely correlated with the malignancy of ccRCC. Differentially expressed RBPs between normal and tumor tissues were obtained, comprising 71 up-regulated and 44 down-regulated ones. Then, ten hub genes were selected and validated using The Human Protein Atlas database and receiver operating characteristic curves, showing good diagnostic value for cancers. Besides, we identified ten RBPs with the most useful prognostic values, and were used to construct a risk score model. The model could be used to stratify patients with different prognosis and phenotype distributions. The model showed good performance and can be used as a complementation for clinical factors to guide clinical practice in the future.
Collapse
Affiliation(s)
- Xiaoliang Hua
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China; The Institute of Urology, Anhui Medical University, Hefei, China
| | - Juan Chen
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, 400016, Chongqing, China
| | - Shengdong Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China; The Institute of Urology, Anhui Medical University, Hefei, China
| | - Haibing Xiao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China; The Institute of Urology, Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China; The Institute of Urology, Anhui Medical University, Hefei, China.
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China; The Institute of Urology, Anhui Medical University, Hefei, China.
| |
Collapse
|
26
|
Zhou L, Wu Y, Xin L, Zhou Q, Li S, Yuan Y, Wang J, Wu D. Development of RNA binding proteins expression signature for prognosis prediction in gastric cancer patients. Am J Transl Res 2020; 12:6775-6792. [PMID: 33194072 PMCID: PMC7653620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
It was reported that the expression of RNA binding proteins (RBPs) in malignant tumors is dysregulated and is closely related to tumorigenesis. However, some studies have confirmed the role of RBPs in gastric cancer (GC). We obtained data on gastric cancer in The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx), and identified RBPs that are dysregulated between gastric normal and cancer tissues. Then, we systematically investigated the expression characteristics and clinical prognostic potential of these RBPs through bioinformatics methods. We found 278 dysregulated RBPs in the GC, 91 of which were up-regulated and 181 were down-regulated. We detected 4 hub RBPs (HNRNPL, PABPN1, PCF, SNRPN) are related to overall survival (OS), and 3 hub RBPs (EEF1A2, MRPS5, PCF1) are related to disease-specific survival (DSS), and furthermore, we constructed prognostic signatures. Analysis of the OS and DSS signature showed that the GC patients with high-risk groups have worse OS and DSS than the low-risk groups. The receiver operator characteristic (ROC) curves of the 5-year survival rate of OS and DSS prognosis signature were drawn, and the areas under the two curves were 0.62 and 0.64, respectively. We constructed nomograms to predict OS and DSS, and evaluated by the calibration curve, which showed the GC prediction ability of these two models. Furthermore, the expression of the above six genes was verified by PCR, which is consistent with our results.
Collapse
Affiliation(s)
- Liqiang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| | - You Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| | - Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| | - Qi Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| | - Shihao Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| | - Yiwu Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| | - Jinliang Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| | - Dengzhong Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| |
Collapse
|
27
|
Petibon C, Malik Ghulam M, Catala M, Abou Elela S. Regulation of ribosomal protein genes: An ordered anarchy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1632. [PMID: 33038057 PMCID: PMC8047918 DOI: 10.1002/wrna.1632] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Ribosomal protein genes are among the most highly expressed genes in most cell types. Their products are generally essential for ribosome synthesis, which is the cornerstone for cell growth and proliferation. Many cellular resources are dedicated to producing ribosomal proteins and thus this process needs to be regulated in ways that carefully balance the supply of nascent ribosomal proteins with the demand for new ribosomes. Ribosomal protein genes have classically been viewed as a uniform interconnected regulon regulated in eukaryotic cells by target of rapamycin and protein kinase A pathway in response to changes in growth conditions and/or cellular status. However, recent literature depicts a more complex picture in which the amount of ribosomal proteins produced varies between genes in response to two overlapping regulatory circuits. The first includes the classical general ribosome‐producing program and the second is a gene‐specific feature responsible for fine‐tuning the amount of ribosomal proteins produced from each individual ribosomal gene. Unlike the general pathway that is mainly controlled at the level of transcription and translation, this specific regulation of ribosomal protein genes is largely achieved through changes in pre‐mRNA splicing efficiency and mRNA stability. By combining general and specific regulation, the cell can coordinate ribosome production, while allowing functional specialization and diversity. Here we review the many ways ribosomal protein genes are regulated, with special focus on the emerging role of posttranscriptional regulatory events in fine‐tuning the expression of ribosomal protein genes and its role in controlling the potential variation in ribosome functions. This article is categorized under:Translation > Ribosome Biogenesis Translation > Ribosome Structure/Function Translation > Translation Regulation
Collapse
Affiliation(s)
- Cyrielle Petibon
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Mustafa Malik Ghulam
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Mathieu Catala
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Sherif Abou Elela
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| |
Collapse
|