1
|
McCornack C, Woodiwiss T, Hardi A, Yano H, Kim AH. The function of histone methylation and acetylation regulators in GBM pathophysiology. Front Oncol 2023; 13:1144184. [PMID: 37205197 PMCID: PMC10185819 DOI: 10.3389/fonc.2023.1144184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/29/2023] [Indexed: 05/21/2023] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain malignancy and is characterized by a high degree of intra and intertumor cellular heterogeneity, a starkly immunosuppressive tumor microenvironment, and nearly universal recurrence. The application of various genomic approaches has allowed us to understand the core molecular signatures, transcriptional states, and DNA methylation patterns that define GBM. Histone posttranslational modifications (PTMs) have been shown to influence oncogenesis in a variety of malignancies, including other forms of glioma, yet comparatively less effort has been placed on understanding the transcriptional impact and regulation of histone PTMs in the context of GBM. In this review we discuss work that investigates the role of histone acetylating and methylating enzymes in GBM pathogenesis, as well as the effects of targeted inhibition of these enzymes. We then synthesize broader genomic and epigenomic approaches to understand the influence of histone PTMs on chromatin architecture and transcription within GBM and finally, explore the limitations of current research in this field before proposing future directions for this area of research.
Collapse
Affiliation(s)
- Colin McCornack
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, United States
| | - Timothy Woodiwiss
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa, IA, United States
| | - Angela Hardi
- Bernard Becker Medical Library, Washington University School of Medicine, St. Louis, MO, United States
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
2
|
Müller-Xing R, Ardiansyah R, Xing Q, Faivre L, Tian J, Wang G, Zheng Y, Wang X, Jing T, de Leau E, Chen S, Chen S, Schubert D, Goodrich J. Polycomb proteins control floral determinacy by H3K27me3-mediated repression of pluripotency genes in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2385-2402. [PMID: 35045165 DOI: 10.1093/jxb/erac013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Polycomb group (PcG) protein-mediated histone methylation (H3K27me3) controls the correct spatiotemporal expression of numerous developmental regulators in Arabidopsis. Epigenetic silencing of the stem cell factor gene WUSCHEL (WUS) in floral meristems (FMs) depends on H3K27me3 deposition by PcG proteins. However, the role of H3K27me3 in silencing of other meristematic regulator and pluripotency genes during FM determinacy has not yet been studied. To this end, we report the genome-wide dynamics of H3K27me3 levels during FM arrest and the consequences of strongly depleted PcG activity on early flower morphogenesis including enlarged and indeterminate FMs. Strong depletion of H3K27me3 levels results in misexpression of the FM identity gene AGL24, which partially causes floral reversion leading to ap1-like flowers and indeterminate FMs ectopically expressing WUS and SHOOT MERISTEMLESS (STM). Loss of STM can rescue supernumerary floral organs and FM indeterminacy in H3K27me3-deficient flowers, indicating that the hyperactivity of the FMs is at least partially a result of ectopic STM expression. Nonetheless, WUS remained essential for the FM activity. Our results demonstrate that PcG proteins promote FM determinacy at multiple levels of the floral gene regulatory network, silencing initially floral regulators such as AGL24 that promotes FM indeterminacy and, subsequently, meristematic pluripotency genes such as WUS and STM during FM arrest.
Collapse
Affiliation(s)
- Ralf Müller-Xing
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Plant Epigenetics and Development, Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, UK
| | - Rhomi Ardiansyah
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Plant Epigenetics and Development, Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| | - Qian Xing
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Plant Epigenetics and Development, Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, UK
| | - Léa Faivre
- Epigenetics of Plants, Freie Universität Berlin, Berlin, Germany
| | - Jingjing Tian
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Plant Epigenetics and Development, Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| | - Guohua Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Information and Computer Engineering College, Northeast Forestry University, Harbin, China
| | - Yucai Zheng
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Plant Epigenetics and Development, Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| | - Xue Wang
- Plant Epigenetics and Development, Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| | - Tingting Jing
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Plant Epigenetics and Development, Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| | - Erica de Leau
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, UK
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Daniel Schubert
- Epigenetics of Plants, Freie Universität Berlin, Berlin, Germany
| | - Justin Goodrich
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Matos LL, Forster CHQ, Marta GN, Castro Junior G, Ridge JA, Hirata D, Miranda-Filho A, Hosny A, Sanabria A, Gregoire V, Patel SG, Fagan JJ, D’Cruz AK, Licitra L, Mehanna H, Hao SP, Psyrri A, Porceddu S, Galloway TJ, Golusinski W, Lee NY, Shiguemori EH, Matieli JE, Shiguemori APAC, Diamantino LR, Schiaveto LF, Leão L, Castro AF, Carvalho AL, Kowalski LP. The hidden curve behind COVID-19 outbreak: the impact of delay in treatment initiation in cancer patients and how to mitigate the additional risk of dying-the head and neck cancer model. Cancer Causes Control 2021; 32:459-471. [PMID: 33704627 PMCID: PMC7950430 DOI: 10.1007/s10552-021-01411-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/27/2021] [Indexed: 11/13/2022]
Abstract
PURPOSE The rapid spread of the SARS-CoV-2 pandemic around the world caused most healthcare services to turn substantial attention to treatment of these patients and also to alter the structure of healthcare systems to address an infectious disease. As a result, many cancer patients had their treatment deferred during the pandemic, increasing the time-to-treatment initiation, the number of untreated patients (which will alter the dynamics of healthcare delivery in the post-pandemic era) and increasing their risk of death. Hence, we analyzed the impact on global cancer mortality considering the decline in oncology care during the COVID-19 outbreak using head and neck cancer, a known time-dependent disease, as a model. METHODS An online practical tool capable of predicting the risk of cancer patients dying due to the COVID-19 outbreak and also useful for mitigation strategies after the peak of the pandemic has been developed, based on a mathematical model. The scenarios were estimated by information of 15 oncological services worldwide, given a perspective from the five continents and also some simulations were conducted at world demographic data. RESULTS The model demonstrates that the more that cancer care was maintained during the outbreak and also the more it is increased during the mitigation period, the shorter will be the recovery, lessening the additional risk of dying due to time-to-treatment initiation. CONCLUSIONS This impact of COVID-19 pandemic on cancer patients is inevitable, but it is possible to minimize it with an effort measured by the proposed model.
Collapse
Affiliation(s)
- Leandro L. Matos
- Department of Head and Neck Surgery, Instituto Do Cancer Do Estado de São Paulo (ICESP), University of São Paulo Medical School, and Faculdade Israelita de Ciências da Saúde Albert Einstein Medical School, Enéas de Carvalho Aguiar avenue, 255, 8th floor, room 8174, Sao Paulo, SP 05403-000 Brazil
| | | | - Gustavo N. Marta
- Division of Radiation Oncology, Department of Radiology Oncology, Instituto Do Cancer Do Estado de São Paulo (ICESP), University of São Paulo Medical School, and Department of Radiation Oncology, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Gilberto Castro Junior
- Department of Clinical Oncology, Instituto Do Cancer Do Estado de São Paulo (ICESP), University of São Paulo Medical School, São Paulo, Brazil
| | - John A. Ridge
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, USA
| | - Daisy Hirata
- Instituto Tecnológico de Aeronáutica (ITA), Faculdade de Ciências Médicas de São José Dos Campos, São José dos Campos, Brazil
| | | | - Ali Hosny
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Alvaro Sanabria
- Department of Surgery, Universidad de Antioquia, Hospital Universitario San Vicente Fundacion–CEXCA Centro de Excelencia en Enfermedades de Cabeza Y Cuello, Medellin, Colombia
| | - Vincent Gregoire
- Department of Radiation Oncology, Léon Bérard Cancer Center, Lyon, France
| | - Snehal G. Patel
- Head and Neck Surgery Service, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Johannes J. Fagan
- Division of Otolaryngology, University of Cape Town Medical School, Cape Town, South Africa
| | - Anil K. D’Cruz
- Oncology Apollo Hospitals, Navi, Mumbai India
- President-Elect, Union for International Cancer Control (UICC), Geneve, Switzerland
| | - Lisa Licitra
- Fondazione IRCCS Istituto Nazionale Dei Tumori and University of Milan, Milan, Italy
| | - Hisham Mehanna
- Institute for Head and Neck Studies and Education, University of Birmingham, Birmingham, UK
| | - Sheng-Po Hao
- Department of Otolaryngology of Shin, Kong Wu Ho-Su Memorial Hospital and Fu Jen Catholic University in Taiwan, Taipei, Taiwan
| | - Amanda Psyrri
- Clinical Oncology Department, National Kapodistrian University of Athens Medical School, Attikon University Hospital, Athens, Greece
| | - Sandro Porceddu
- Department of Radiation Oncology, Brisbane’s Princess Alexandra Hospital of the University of Queensland, Brisbane, QLD Australia
| | - Thomas J. Galloway
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, USA
| | - Wojciech Golusinski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Poznań, Poland
| | - Nancy Y. Lee
- Department of Clinical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | | | - José Elias Matieli
- Instituto Tecnológico de Aeronáutica (ITA), Faculdade de Ciências Médicas de São José Dos Campos, São José dos Campos, Brazil
| | | | | | | | - Lysia Leão
- Instituto Federal de Educação, Ciência E Tecnologia de São Paulo, Jacareí, Brazil
| | - Ana F. Castro
- Clinical Oncology Department, Lenitudes Medical Center & Research, Santa Maria da Feira, Portugal
| | | | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery, University of São Paulo Medical School, and Department of Head and Neck Surgery and Otorhinolaryngology A C Camargo Cancer Center, São Paulo, Brazil
| |
Collapse
|
4
|
Glioblastoma and MiRNAs. Cancers (Basel) 2021; 13:cancers13071581. [PMID: 33808106 PMCID: PMC8037240 DOI: 10.3390/cancers13071581] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma (GB) is one of the most common types of lethal brain tumors. Although several treatment options are available including surgery, along with adjuvant chemo and radiotherapy, the disease has a poor prognosis and patients generally die within 14 months of diagnosis. GB is chemo and radio resistant. Thus, there is a critical need for new insights into GB treatment to increase the chance of therapeutic success. This is why microRNA (miRNA) is being potentially considered in the diagnosis and treatment of glioblastoma. The objective of our review is to provide a holistic picture of GB up-regulated and down-regulated miRNA, in relationship with the expression of other genes, cell signaling pathways, and their role in GB diagnosis and treatment. MiRNA treatment is being considered to be used against GB together with radiotherapy and chemotherapy. Moreover, the use of miRNA as a diagnostic tool has also begun. Knowing that miRNAs are isolated in almost all human body fluids and that there are more than 3000 miRNAs in the human genome, plus the fact that each miRNA controls hundreds of different mRNAs, there is still much study needed to explore how miRNAs relate to GB for its proliferation, progression, and inhibition.
Collapse
|
5
|
Alexandrescu S, Meredith DM, Lidov HG, Alaggio R, Novello M, Ligon KL, Vargas SO. Loss of histone H3 trimethylation on lysine 27 and nuclear expression of transducin-like enhancer 1 in primary intracranial sarcoma, DICER1-mutant. Histopathology 2020; 78:265-275. [PMID: 32692439 DOI: 10.1111/his.14217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022]
Abstract
AIMS Primary intracranial sarcoma, DICER1-mutant is a recently described central nervous system tumour with specific genomic and DNA-methylation profiles. Although some of its histological features (focal spindle-cell morphology, intracytoplasmic eosinophilic granules, and focal heterologous differentiation) are common across most reported cases, the presence of significant histological variability and the lack of differentiation pose diagnostic challenges. We aim to further define the immunoprofile of this tumor. METHODS AND RESULTS We reviewed the clinical history and performed immunohistochemistry for glial fibrillary acidic protein, oligodendrocyte transcription factor 2, SOX2, SOX10, S100, histone H3 trimethylated on lysine 27 (H3K27me3), desmin, myogenin, CD99, epithelial membrane antigen (EMA) and transducin-like enhancer of split 1 (TLE1) on six primary intracranial sarcomas, DICER1-mutant, with appropriate controls. Targeted exome sequencing was performed on all cases. The sarcomas showed diffuse (n = 4), mosaic (n = 1) or minimal (≤5%, n = 1) loss of H3K27 trimethylation and nuclear TLE1 expression (n = 6). Four had immunohistochemical evidence of myogenic differentiation. SOX2, SOX10, S100 and EMA were negative; CD99 expression ranged from focal cytoplasmic (n = 4) to crisp diffuse membranous (n = 2). One tumour had focal cartilaginous differentiation. Similar immunohistochemical findings were observed in a pleuropulmonary blastoma (albeit with focal TLE1 expression), a DICER1-related pineoblastoma, and an embryonal tumour with a multilayered rosette-like DICER1-related cerebellar tumour. Targeted exome sequencing confirmed the presence of pathogenic biallelic DICER1 mutations in all tumours included in this study. CONCLUSION We conclude that H3K27me3 and TLE1 immunostains, when utilised in combination, can be helpful diagnostic markers for primary intracranial sarcoma, DICER1-mutant.
Collapse
Affiliation(s)
| | - David M Meredith
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hart G Lidov
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Rita Alaggio
- Department of Pathology, Bambino Gesu Hospital, Rome, Italy
| | | | - Keith L Ligon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|