1
|
Poirey R, Delecluse H, Delecluse S. Transmission of an Epstein-Barr Strain Common in South-East China to a Western Individual. J Med Virol 2024; 96:e70113. [PMID: 39651539 PMCID: PMC11626490 DOI: 10.1002/jmv.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/11/2024]
Abstract
Epstein-Barr virus strains present in South-East Asia are tightly associated with nasopharyngeal carcinomas. We report the case of a Caucasian female who presented with an infectious mononucleosis syndrome. Sequencing demonstrated that she had been infected with a virus of Chinese origin that is thus spreading into European countries.
Collapse
Affiliation(s)
- Remy Poirey
- Pathogenesis of Virus Associated TumorsGerman Cancer Research Center (DKFZ)HeidelbergGermany
- INSERM, Unit U1074HeidelbergGermany
| | - Henri‐Jacques Delecluse
- Pathogenesis of Virus Associated TumorsGerman Cancer Research Center (DKFZ)HeidelbergGermany
- INSERM, Unit U1074HeidelbergGermany
| | - Susanne Delecluse
- Pathogenesis of Virus Associated TumorsGerman Cancer Research Center (DKFZ)HeidelbergGermany
- INSERM, Unit U1074HeidelbergGermany
- Department NephrologyUniversity of HeidelbergHeidelbergGermany
- German Center for Infection Research (DZIF)BraunschweigGermany
| |
Collapse
|
2
|
Ovchinnikova LA, Eliseev IE, Dzhelad SS, Simaniv TO, Klimina KM, Ivanova M, Ilina EN, Zakharova MN, Illarioshkin SN, Rubtsov YP, Gabibov AG, Lomakin YA. High heterogeneity of cross-reactive immunoglobulins in multiple sclerosis presumes combining of B-cell epitopes for diagnostics: a case-control study. Front Immunol 2024; 15:1401156. [PMID: 39669579 PMCID: PMC11634884 DOI: 10.3389/fimmu.2024.1401156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024] Open
Abstract
Background Multiple sclerosis (MS) is a neuroinflammatory disease triggered by a combination of genetic traits and external factors. Autoimmune nature of MS is proven by the identification of pathogenic T cells, but the role of autoantibody-producing B cells is less clear. A comprehensive understanding of the development of neuroinflammation and the identification of targeted autoantigens are crucial for timely diagnosis and appropriate treatment. Methods An expression library of 44-mer overlapping peptides from a panel of putative autoantigenic human proteins was employed for modified Phage ImmunoPrecipitation Sequencing (PhIP-Seq) to identify B cell peptide epitopes from MS patients. Individual peptides extracted by PhIP-Seq were tested by ELISA to characterize their affinity towards IgG from both MS patients and healthy donors (HD). Three candidate auto-peptides were used for isolating autoreactive antigen-specific IgGs from the serum of MS patients. Results Autoantibody screening revealed high heterogeneity of IgG response in MS. The autoantigenic genesis of the PhIP-Seq-identified peptides was further strengthened by clinical ELISA testing of 11 HD and 16 MS donors. Validation experiments on independent cohorts of 22 HD and 28 MS patients confirmed statistically significant elevated titers of IgG specific to spectrin alpha chain (SPTAN1) in the serum of MS patients compared to HD. The levels of anti-SPTAN1 IgG correlated in serum and cerebrospinal fluid (CSF). Isolated autoreactive antigen-specific IgG exhibited increased cross-reactivity to a panel of PhIP-Seq-identified antigenic peptides. Serum IgG from MS patients were reactive to latent membrane protein (LMP1) of Epstein-Barr virus, a potential trigger of MS. Discovered antigenic peptides from SPTAN1, protein-tyrosine kinase 6 (PTK6), periaxin (PRX), and LMP1 were tested as potential biomarker panel for MS diagnostics. We concluded that the combination of particular peptides from SPTAN1, PTK6, PRX and LMP1 could be implemented as a four-peptide biomarker panel for MS diagnosis (area under the curve (AUC) of 0.818 for discriminating between HD and MS). Conclusions This study supports the concept that the specificity of autoreactive IgG in MS is highly heterogeneous. Despite that we suggest that the combination of several B-cell epitopes could be employed as reliable and simple test for MS diagnostics.
Collapse
Affiliation(s)
- Leyla A. Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Igor E. Eliseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- St. Petersburg School of Physics, Mathematics, and Computer Science, HSE University, Saint Petersburg, Russia
| | - Samir S. Dzhelad
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Ksenia M. Klimina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | - Elena N. Ilina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | | | - Yury P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Yakov A. Lomakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Kirchmeier D, Deng Y, Rieble L, Böni M, Läderach F, Schuhmachers P, Valencia-Camargo AD, Murer A, Caduff N, Chatterjee B, Chijioke O, Zens K, Münz C. Epstein-Barr virus infection induces tissue-resident memory T cells in mucosal lymphoid tissues. JCI Insight 2024; 9:e173489. [PMID: 39264727 PMCID: PMC11530129 DOI: 10.1172/jci.insight.173489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/10/2024] [Indexed: 09/14/2024] Open
Abstract
EBV contributes to around 2% of all tumors worldwide. Simultaneously, more than 90% of healthy human adults persistently carry EBV without clinical symptoms. In most EBV carriers, it is thought that virus-induced tumorigenesis is prevented by cell-mediated immunity. Specifically, memory CD8+ T cells recognize EBV-infected cells during latent and lytic infection. Using a symptomatic primary infection model, similar to infectious mononucleosis (IM), we found EBV-induced CD8+ tissue resident memory T cells (TRMs) in mice with a humanized immune system. These human TRMs were preferentially established after intranasal EBV infection in nasal-associated lymphoid tissues (NALT), equivalent to tonsils, the primary site of EBV infection in humans. They expressed canonical TRM markers, including CD69, CD103, and BLIMP-1, as well as granzyme B, CD107a, and CCL5. Despite cytotoxic activity and cytokine production ex vivo, these TRMs demonstrated reduced CD27 expression and proliferation and failed to control EBV viral loads in the NALT during infection, although effector memory T cells (TEMs) controlled viral titers in spleen and blood. Overall, TRMs are established in mucosal lymphoid tissues by EBV infection, but primarily, systemic CD8+ T cell expansion seems to control viral loads in the context of IM-like infection.
Collapse
Affiliation(s)
| | - Yun Deng
- Viral Immunobiology, Institute of Experimental Immunology, and
| | - Lisa Rieble
- Viral Immunobiology, Institute of Experimental Immunology, and
| | - Michelle Böni
- Viral Immunobiology, Institute of Experimental Immunology, and
| | | | | | | | - Anita Murer
- Viral Immunobiology, Institute of Experimental Immunology, and
| | - Nicole Caduff
- Viral Immunobiology, Institute of Experimental Immunology, and
| | | | - Obinna Chijioke
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Kyra Zens
- Viral Immunobiology, Institute of Experimental Immunology, and
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, and
| |
Collapse
|
4
|
MicroRNA and Other Non-Coding RNAs in Epstein-Barr Virus-Associated Cancers. Cancers (Basel) 2021; 13:cancers13153909. [PMID: 34359809 PMCID: PMC8345394 DOI: 10.3390/cancers13153909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022] Open
Abstract
EBV is a direct causative agent in around 1.5% of all cancers. The oncogenic properties of EBV are related to its ability to activate processes needed for cellular proliferation, survival, migration, and immune evasion. The EBV latency program is required for the immortalization of infected B cells and involves the expression of non-coding RNAs (ncRNAs), including viral microRNAs. These ncRNAs have different functions that contribute to virus persistence in the asymptomatic host and to the development of EBV-associated cancers. In this review, we discuss the function and potential clinical utility of EBV microRNAs and other ncRNAs in EBV-associated malignancies. This review is not intended to be comprehensive, but rather to provide examples of the importance of ncRNAs.
Collapse
|
5
|
Caetano BFR, Jorge BAS, Müller-Coan BG, Elgui de Oliveira D. Epstein-Barr virus microRNAs in the pathogenesis of human cancers. Cancer Lett 2020; 499:14-23. [PMID: 33248209 DOI: 10.1016/j.canlet.2020.11.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/29/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022]
Abstract
The Epstein-Barr Virus (EBV) is a gamma-herpesvirus involved with a variety of human cancers, notably the endemic Burkitt lymphoma and nasopharyngeal carcinoma. In 2004, EBV was described as one the first known human oncoviruses to encode viral microRNAs (miRNAs), and these molecules were found to interact with viral and host targets. EBV miRNAs modulate biological processes that are critical for carcinogenesis, contributing to cell transformation and tumor progression of EBV-associated cancers. Herein we review and discuss EBV miRNAs as modulators of viral biology and carcinogenesis, as well as their usefulness as putative markers to monitor the onset, progression, and recurrence of cancers associated with the EBV infection.
Collapse
Affiliation(s)
- Brunno Felipe R Caetano
- São Paulo State University (UNESP), Medical School of Botucatu Av. Prof. Mário Rubens Guimarães Montenegro, s/n. CEP 18618-687, Botucatu, SP, Brazil; São Paulo State University (UNESP), Institute of Biotechnology (IBTEC) Alameda das Tecomarias, s/n. CEP 18607-440, Botucatu, SP, Brazil
| | - Beatrice Adrianne S Jorge
- São Paulo State University (UNESP), Institute of Biosciences of Botucatu R. Prof. Dr. Antônio Celso Wagner Zanin, 250. CEP 18618-689, Botucatu, SP, Brazil; São Paulo State University (UNESP), Institute of Biotechnology (IBTEC) Alameda das Tecomarias, s/n. CEP 18607-440, Botucatu, SP, Brazil
| | - Bárbara Grasiele Müller-Coan
- São Paulo State University (UNESP), Medical School of Botucatu Av. Prof. Mário Rubens Guimarães Montenegro, s/n. CEP 18618-687, Botucatu, SP, Brazil; São Paulo State University (UNESP), Institute of Biotechnology (IBTEC) Alameda das Tecomarias, s/n. CEP 18607-440, Botucatu, SP, Brazil
| | - Deilson Elgui de Oliveira
- São Paulo State University (UNESP), Medical School of Botucatu Av. Prof. Mário Rubens Guimarães Montenegro, s/n. CEP 18618-687, Botucatu, SP, Brazil; São Paulo State University (UNESP), Institute of Biotechnology (IBTEC) Alameda das Tecomarias, s/n. CEP 18607-440, Botucatu, SP, Brazil.
| |
Collapse
|
6
|
Shestakova A, Grove N, Said J, Song S, Quintero-Rivera F. Trisomy 3, a sole recurrent cytogenetic abnormality in pediatric polymorphic post-transplant lymphoproliferative disorder (PTLD). Cancer Genet 2020; 248-249:39-48. [PMID: 33065430 DOI: 10.1016/j.cancergen.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/06/2020] [Accepted: 09/28/2020] [Indexed: 11/18/2022]
Abstract
Trisomy 3 has been previously reported in association with T-cell lymphomas and less commonly in different types of non-Hodgkin B-cell lymphomas. Trisomy 3 has also been reported in two cases of pediatric post-transplant lymphoproliferative disorder (PTLD). We present comprehensive clinicopathologic review of two pediatric patients with cardiac and liver/intestinal allografts that developed polymorphic PTLD characterized by trisomy 3. Both patients had Epstein-Barr virus (EBV) viremia and EBV was positive in tissue by EBER in situ hybridization. Using karyotype analysis and fluorescence in situ hybridization, we identified trisomy 3 in both patients. Both patients responded to treatment and are now free of the PTLD. Trisomy 3, an uncommon cytogenetic finding in pediatric polymorphic PTLD, may be a recurrent cytogenetic aberration if confirmed in a larger study of pediatric PTLDs. Further clinical follow up might help stratify significance of trisomy 3 as a prognostic factor.
Collapse
Affiliation(s)
- Anna Shestakova
- Department of Pathology and Laboratory Medicine, University of California, Irvine, UCIMC, Bldg. 1, Rm. 3426, Mail Code: 4805, Orange, CA 92868, USA.
| | - Narina Grove
- Advanced Dermatology of Colorado, 1100 Poudre River Dr ste a, Fort Collins, CO 80524, USA
| | - Jonathan Said
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA , USA
| | - Sophie Song
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA , USA
| | - Fabiola Quintero-Rivera
- Department of Pathology and Laboratory Medicine, University of California, Irvine, UCIMC, Bldg. 1, Rm. 3426, Mail Code: 4805, Orange, CA 92868, USA.
| |
Collapse
|
7
|
Identification and Cloning of a New Western Epstein-Barr Virus Strain That Efficiently Replicates in Primary B Cells. J Virol 2020; 94:JVI.01918-19. [PMID: 32102884 DOI: 10.1128/jvi.01918-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/14/2020] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) causes human cancers, and epidemiological studies have shown that lytic replication is a risk factor for some of these tumors. This fits with the observation that EBV M81, which was isolated from a Chinese patient with nasopharyngeal carcinoma, induces potent virus production and increases the risk of genetic instability in infected B cells. To find out whether this property extends to viruses found in other parts of the world, we investigated 22 viruses isolated from Western patients. While one-third of the viruses hardly replicated, the remaining viruses showed variable levels of replication, with three isolates replicating at levels close to that of M81 in B cells. We cloned one strongly replicating virus into a bacterial artificial chromosome (BAC); the resulting recombinant virus (MSHJ) retained the properties of its nonrecombinant counterpart and showed similarities to M81, undergoing lytic replication in vitro and in vivo after 3 weeks of latency. In contrast, B cells infected with the nonreplicating Western B95-8 virus showed early but abortive replication accompanied by cytoplasmic BZLF1 expression. Sequencing confirmed that rMSHJ is a Western virus, being genetically much closer to B95-8 than to M81. Spontaneous replication in rM81- and rMSHJ-infected B cells was dependent on phosphorylated Btk and was inhibited by exposure to ibrutinib, opening the way to clinical intervention in patients with abnormal EBV replication. As rMSHJ contains the complete EBV genome and induces lytic replication in infected B cells, it is ideal to perform genetic analyses of all viral functions in Western strains and their associated diseases.IMPORTANCE The Epstein-Barr virus (EBV) infects the majority of the world population but causes different diseases in different countries. Evidence that lytic replication, the process that leads to new virus progeny, is linked to cancer development is accumulating. Indeed, viruses such as M81 that were isolated from Far Eastern nasopharyngeal carcinomas replicate strongly in B cells. We show here that some viruses isolated from Western patients, including the MSHJ strain, share this property. Moreover, replication of both M81 and of MSHJ was sensitive to ibrutinib, a commonly used drug, thereby opening an opportunity for therapeutic intervention. Sequencing of MSHJ showed that this virus is quite distant from M81 and is much closer to nonreplicating Western viruses. We conclude that Western EBV strains are heterogeneous, with some viruses being able to replicate more strongly and therefore being potentially more pathogenic than others, and that the virus sequence information alone cannot predict this property.
Collapse
|