1
|
Tizabi D, Hill RT, Bachvaroff T. Nanopore Sequencing of Amoebophrya Species Reveals Novel Collection of Bacteria Putatively Associated With Karlodinium veneficum. Genome Biol Evol 2025; 17:evaf022. [PMID: 39943733 PMCID: PMC11890096 DOI: 10.1093/gbe/evaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
The dinoflagellate parasite Amoebophrya sp. ex Karlodinium veneficum plays a major role in controlling populations of the toxic bloom-forming dinoflagellate K. veneficum and is one of the few cultured representatives of Marine Alveolate Group II. The obligate parasitic nature of this Amoebophrya spp. precludes isolation in culture, and therefore, genomic characterization of this parasite relies on metagenomic sequencing. Whole-genome sequencing of an Amoebophrya sp. ex K. veneficum-infected culture using Nanopore long reads revealed a diverse community of novel bacteria as well as several species previously reported to be associated with algae. In sum, 39 metagenome-assembled genomes were assembled, and less than half of these required binning of multiple contigs. Seven were abundant but of unknown genera, 13 were identifiable at the generic level by BLAST (8 of which were apparently complete single-contig genomes), and the remaining 19 comprised less abundant (individually accounting for <2% of the total bacterial reads in the culture) and often rarer and/or novel species. Attempts to culture strains identified through sequencing revealed that only two of these bacterial isolates were readily amenable to cultivation, stressing the importance of a dual culture- and sequencing-based approach for robust community analysis. Functional annotations of metagenome-assembled genomes are presented here to support the characterization of a microbial community associated with K. veneficum and/or Amoebophrya sp. ex K. veneficum cultured from the Chesapeake Bay and give preliminary insights into the nature of the associations these bacteria have with this parasite-host complex.
Collapse
Affiliation(s)
- Daniela Tizabi
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Russell T Hill
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Tsvetan Bachvaroff
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| |
Collapse
|
2
|
Selivanova EA, Yakimov MM, Kataev VY, Khlopko YA, Balkin AS, Plotnikov AO. The Cultivation of Halophilic Microalgae Shapes the Structure of Their Prokaryotic Assemblages. Microorganisms 2024; 12:1947. [PMID: 39458257 PMCID: PMC11509377 DOI: 10.3390/microorganisms12101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
The influence of microalgae on the formation of associated prokaryotic assemblages in halophilic microbial communities is currently underestimated. The aim of this study was to characterize shifts in prokaryotic assemblages of halophilic microalgae upon their transition to laboratory cultivation. Monoalgal cultures belonging to the classes Chlorodendrophyceae, Bacillariophyceae, Trebouxiophyceae, and Chlorophyceae were isolated from habitats with intermediate salinity, about 100 g/L, nearby Elton Lake (Russia). Significant changes were revealed in the structure of algae-associated prokaryotic assemblages, indicating that microalgae supported sufficiently diverse and even communities of prokaryotes. Despite some similarities in their prokaryotic assemblages, taxon-specific complexes of dominant genera were identified for each microalga species. These complexes were most different among Alphaproteobacteria, likely due to their close association with microalgae. Other taxon-specific bacteria included members of phylum Verrucomicrobiota (Coraliomargarita in assemblages of Navicula sp.) and class Gammaproteobacteria (Salinispirillum in microbiomes of A. gracilis). After numerous washings of algal cells, only alphaproteobacteria Marivibrio remained in all assemblages of T. indica, likely due to a firm attachment to the microalgae cells. Our results may be useful for further efforts to develop technologies applied for industrial cultivation of halophilic microalgae and for developing approaches to obtain new prokaryotes with a microalgae-associated lifestyle.
Collapse
Affiliation(s)
- Elena A. Selivanova
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of Russian Academy of Sciences, Orenburg Federal Research Center of the Ural Branch of Russian Academy of Sciences, 460000 Orenburg, Russia; (V.Y.K.); (Y.A.K.); (A.S.B.)
| | - Michail M. Yakimov
- Extreme Microbiology, Biotechnology and Astrobiology Group, Institute of Polar Research, The Institute of Polar Sciences of the National Research Council (ISP-CNR), 98122 Messina, Italy;
| | - Vladimir Y. Kataev
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of Russian Academy of Sciences, Orenburg Federal Research Center of the Ural Branch of Russian Academy of Sciences, 460000 Orenburg, Russia; (V.Y.K.); (Y.A.K.); (A.S.B.)
| | - Yuri A. Khlopko
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of Russian Academy of Sciences, Orenburg Federal Research Center of the Ural Branch of Russian Academy of Sciences, 460000 Orenburg, Russia; (V.Y.K.); (Y.A.K.); (A.S.B.)
| | - Alexander S. Balkin
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of Russian Academy of Sciences, Orenburg Federal Research Center of the Ural Branch of Russian Academy of Sciences, 460000 Orenburg, Russia; (V.Y.K.); (Y.A.K.); (A.S.B.)
| | - Andrey O. Plotnikov
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of Russian Academy of Sciences, Orenburg Federal Research Center of the Ural Branch of Russian Academy of Sciences, 460000 Orenburg, Russia; (V.Y.K.); (Y.A.K.); (A.S.B.)
| |
Collapse
|
3
|
Abate R, Oon YL, Oon YS, Bi Y, Mi W, Song G, Gao Y. Diverse interactions between bacteria and microalgae: A review for enhancing harmful algal bloom mitigation and biomass processing efficiency. Heliyon 2024; 10:e36503. [PMID: 39286093 PMCID: PMC11402748 DOI: 10.1016/j.heliyon.2024.e36503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
The interactions between bacteria and microalgae play pivotal roles in resource allocation, biomass accumulation, nutrient recycling, and species succession in aquatic systems, offering ample opportunities to solve several social problems. The escalating threat of harmful algal blooms (HABs) in the aquatic environment and the lack of cheap and eco-friendly algal-biomass processing methods have been among the main problems, demanding efficient and sustainable solutions. In light of this, the application of algicidal bacteria to control HABs and enhance algal biomass processing has been promoted in the past few decades as potentially suitable mechanisms to solve those problems. Hence, this comprehensive review aims to explore the diverse interaction modes between bacteria and microalgae, ranging from synergistic to antagonistic, and presents up-to-date information and in-depth analysis of their potential biotechnological applications, particularly in controlling HABs and enhancing microalgal biomass processing. For instance, several studies revealed that algicidal bacteria can effectively inhibit the growth of Microcystis aeruginosa, a notorious freshwater HAB species, with an antialgal efficiency of 24.87 %-98.8 %. The review begins with an overview of the mechanisms behind algae-bacteria interactions, including the environmental factors influencing these dynamics and their broader implications for aquatic ecosystems. It then provides a detailed analysis of the role of algicidal bacteria in controlling harmful algal blooms, as well as their role in bioflocculation and the pretreatment of microalgal biomass. Additionally, the review identifies and discusses the constraints and challenges in the biotechnological application of these interactions. By exploring the strategic use of algicidal bacteria, this review not only underscores their importance in maintaining aquatic environmental health but also in enhancing biomass processing efficiency. It offers valuable insights into future research avenues and the potential scalability of these applications, both in situ and at an industrial level.
Collapse
Affiliation(s)
- Rediat Abate
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Natural and Computatinal Science, Arba Minch University, Ethiopia
| | - Yoong-Ling Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yoong-Sin Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yonghong Bi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wujuan Mi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gaofei Song
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yahui Gao
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
4
|
Filek K, Vuković BB, Žižek M, Kanjer L, Trotta A, Di Bello A, Corrente M, Bosak S. Loggerhead Sea Turtles as Hosts of Diverse Bacterial and Fungal Communities. MICROBIAL ECOLOGY 2024; 87:79. [PMID: 38814337 PMCID: PMC11139726 DOI: 10.1007/s00248-024-02388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024]
Abstract
Research on microbial communities associated with wild animals provides a valuable reservoir of knowledge that could be used for enhancing their rehabilitation and conservation. The loggerhead sea turtle (Caretta caretta) is a globally distributed species with its Mediterranean population categorized as least concern according to the IUCN Red List of Threatened Species as a result of robust conservation efforts. In our study, we aimed to further understand their biology in relation to their associated microorganisms. We investigated epi- and endozoic bacterial and endozoic fungal communities of cloaca, oral mucosa, carapace biofilm. Samples obtained from 18 juvenile, subadult, and adult turtles as well as 8 respective enclosures, over a 3-year period, were analysed by amplicon sequencing of 16S rRNA gene and ITS2 region of nuclear ribosomal gene. Our results reveal a trend of decreasing diversity of distal gut bacterial communities with the age of turtles. Notably, Tenacibaculum species show higher relative abundance in juveniles than in adults. Differential abundances of taxa identified as Tenacibaculum, Moraxellaceae, Cardiobacteriaceae, and Campylobacter were observed in both cloacal and oral samples in addition to having distinct microbial compositions with Halioglobus taxa present only in oral samples. Fungal communities in loggerheads' cloaca were diverse and varied significantly among individuals, differing from those of tank water. Our findings expand the known microbial diversity repertoire of loggerhead turtles, highlighting interesting taxa specific to individual body sites. This study provides a comprehensive view of the loggerhead sea turtle bacterial microbiota and marks the first report of distal gut fungal communities that contributes to establishing a baseline understanding of loggerhead sea turtle holobiont.
Collapse
Affiliation(s)
- Klara Filek
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Borna Branimir Vuković
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia
- Ruđer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia
| | - Marta Žižek
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia
- Ruđer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia
| | - Lucija Kanjer
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia
| | - Adriana Trotta
- Campus Universitario, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, BA, Italy
| | - Antonio Di Bello
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. Per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Marialaura Corrente
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. Per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Sunčica Bosak
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia.
| |
Collapse
|
5
|
Gaonkar CC, Campbell L. A full-length 18S ribosomal DNA metabarcoding approach for determining protist community diversity using Nanopore sequencing. Ecol Evol 2024; 14:e11232. [PMID: 38606340 PMCID: PMC11007259 DOI: 10.1002/ece3.11232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Protist diversity studies are frequently conducted using DNA metabarcoding methods. Currently, most studies have utilized short read sequences to assess protist diversity. One limitation of using short read sequences is the low resolution of the markers. For better taxonomic resolution longer sequences of the 18S rDNA are required because the full-length has both conserved and hypervariable regions. In this study, a new primer pair combination was used to amplify the full-length 18S rDNA and its efficacy was validated with a test community and then validated with field samples. Full-length sequences obtained with the Nanopore MinION for protist diversity from field samples were compared with Illumina MiSeq V4 and V8-V9 short reads. Sequences generated from the high-throughput sequencers are Amplicon Sequence Variants (ASVs). Metabarcoding results show high congruency among the long reads and short reads in taxonomic annotation at the major taxonomic group level; however, not all taxa could be successfully detected from sequences. Based on the criteria of ≥95% similarity and ≥1000 bp query length, 298 genera were identified by all markers in the field samples, 250 (84%) were detected by 18S, while only 226 (76%) by V4 and 213 (71%) by V8-V9. Of the total 85 dinoflagellate genera observed, 19 genera were not defined by 18S dinoflagellate ASVs compared to only three among the total 52 diatom genera. The discrepancy in this resolution is due to the lack of taxonomically available 18S reference sequences in particular for dinoflagellates. Overall, this preliminary investigation demonstrates that application of the full-length 18S rDNA approach can be successful in field studies.
Collapse
Affiliation(s)
- Chetan C. Gaonkar
- Department of OceanographyTexas A&M UniversityCollege StationTexasUSA
| | - Lisa Campbell
- Department of OceanographyTexas A&M UniversityCollege StationTexasUSA
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
6
|
Sildever S, Nishi N, Inaba N, Asakura T, Kikuchi J, Asano Y, Kobayashi T, Gojobori T, Nagai S. Monitoring harmful microalgal species and their appearance in Tokyo Bay, Japan, using metabarcoding. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.79471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During the recent decade, high-throughput sequencing (HTS) techniques, in particular, DNA metabarcoding, have facilitated increased detection of biodiversity, including harmful algal bloom (HAB) species. In this study, the presence of HAB species and their appearance patterns were investigated by employing molecular and light microscopy-based monitoring in Tokyo Bay, Japan. The potential co-appearance patterns between the HAB species, as well as with other eukaryotes and prokaryotes were investigated using correlation and association rule-based time-series analysis. In total, 40 unique HAB species were detected, including 12 toxin-producing HAB species previously not reported from the area. More than half of the HAB species were present throughout the sampling season (summer to autumn) and no structuring or succession patterns associated with the environmental conditions could be detected. Statistically significant (p < 0.05, rS ranging from −0.88 to 0.90) associations were found amongst the HAB species and other eukaryotic and prokaryotic species, including genera containing growth-limiting bacteria. However, significant correlations between species differed amongst the years, indicating that variability in environmental conditions between the years may have a stronger influence on the microalgal community structure and interspecies interactions than the variability during the sampling season. The association rule-based time-series analysis allowed the detection of a previously reported negative relationship between Synechococcus sp. and Skeletonema sp. in nature. Overall, the results support the applicability of metabarcoding and HTS-based microalgae monitoring, as it facilitates more precise species identification compared to light microscopy, as well as provides input for investigating potential interactions amongst different species/groups through simultaneous detection of multiple species/genera.
Collapse
|
7
|
Deng Y, Wang K, Hu Z, Hu Q, Tang YZ. Identification and implications of a core bacterial microbiome in 19 clonal cultures laboratory-reared for months to years of the cosmopolitan dinoflagellate Karlodinium veneficum. Front Microbiol 2022; 13:967610. [PMID: 36033882 PMCID: PMC9416233 DOI: 10.3389/fmicb.2022.967610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Identification of a core microbiome (a group of taxa commonly present and consistently abundant in most samples of host populations) is important to capture the key microbes closely associated with a host population, as this process may potentially contribute to further revealing their spatial distribution, temporal stability, ecological influence, and even impacts on their host’s functions and fitness. The naked dinoflagellate Karlodinium veneficum is a cosmopolitan and toxic species, which is also notorious in forming harmful algal blooms (HABs) and causing massive fish-kills. Here we reported the core microbiome tightly associated with 19 strains of K. veneficum that were originally isolated from 6 geographic locations along the coast of China and from an estuary of Chesapeake Bay, United States, and have been maintained in the laboratory for several months to over 14 years. Using high-throughput metabarcoding of the partial 16S rRNA gene amplicons, a total of 1,417 prokaryotic features were detected in the entire bacterial microbiome, which were assigned to 17 phyla, 35 classes, 90 orders, 273 families, and 716 genera. Although the bacterial communities associated with K. veneficum cultures displayed heterogeneity in feature (sequences clustered at 100% sequence similarity) composition among strains, a core set of 6 genera were found persistent in their phycospheres, which could contribute up to 74.54% of the whole bacterial microbiome. Three γ-proteobacteria members of the “core,” namely, Alteromonas, Marinobacter, and Methylophaga, were the predominant core genera and made up 83.25% of the core bacterial microbiome. The other 3 core genera, Alcanivorax, Thalassospira, and Ponticoccus, are reported to preferably utilize hydrocarbons as sole or major source of carbon and energy, and two of which (Alcanivorax and Ponticoccus) are recognized as obligate hydrocarbonoclastic bacteria (OHCB). Since OHCB generally present in extremely low abundance in marine water and elevate their abundance mostly in petroleum-impacted water, our detection in K. veneficum cultures suggests that the occurrence of obligate and generalist hydrocarbon-degrading bacteria living with dinoflagellates may be more frequent in nature. Our work identified a core microbiome with stable association with the harmful alga K. veneficum and opened a window for further characterization of the physiological mechanisms and ecological implications for the dinoflagellate-bacteria association.
Collapse
Affiliation(s)
- Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Kui Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Qiang Hu
- Faculty of Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- *Correspondence: Ying Zhong Tang,
| |
Collapse
|
8
|
Fortin SG, Song B, Anderson IC, Reece KS. Blooms of the harmful algae Margalefidinium polykrikoides and Alexandrium monilatum alter the York River Estuary microbiome. HARMFUL ALGAE 2022; 114:102216. [PMID: 35550296 DOI: 10.1016/j.hal.2022.102216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 06/15/2023]
Abstract
Harmful algal blooms (HABs) cause damage to fisheries, aquaculture, and human health around the globe. However, the impact of HABs on water column microbiomes and biogeochemistry is poorly understood. This study examined the impacts of consecutive blooms of the ichthyotoxic dinoflagellates Margalefidinium polykrikoides and Alexandrium monilatum on the water microbiome in the York River Estuary, Chesapeake Bay, USA. The samples dominated by single dinoflagellate species and by a mix of the two dinoflagellates had different microbiome compositions than the ones with low levels of both species. The M. polykrikoides bloom was co-dominated by Winogradskyella and had increased concentrations of dissolved organic carbon. The A. monilatum bloom had little impact on the prokaryotic portion of the whole community but was associated with a specific group of prokaryotes in the particle-attached (>3 µm) fraction including Candidatus Nitrosopumilus, Candidatus Actinomarina, SAR11 Clade Ia, Candidatus Bealeia, and Rhodobacteraceae HIMB11. Thus, blooms of these two algal species impacted the estuarine microbiome in different ways, likely leading to shifts in estuarine carbon and nutrient cycling, with M. polykrikoides potentially having a greater impact on carbon cycling in the estuarine ecosystem than A. monilatum.
Collapse
Affiliation(s)
- Samantha G Fortin
- Virginia Institute of Marine Science, William and Mary, Gloucester Point, VA, USA.
| | - Bongkeun Song
- Virginia Institute of Marine Science, William and Mary, Gloucester Point, VA, USA.
| | - Iris C Anderson
- Virginia Institute of Marine Science, William and Mary, Gloucester Point, VA, USA
| | - Kimberly S Reece
- Virginia Institute of Marine Science, William and Mary, Gloucester Point, VA, USA
| |
Collapse
|
9
|
Deng Y, Wang K, Hu Z, Tang YZ. Abundant Species Diversity and Essential Functions of Bacterial Communities Associated with Dinoflagellates as Revealed from Metabarcoding Sequencing for Laboratory-Raised Clonal Cultures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4446. [PMID: 35457312 PMCID: PMC9024509 DOI: 10.3390/ijerph19084446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022]
Abstract
Interactions between algae and bacteria represent an important inter-organism association in aquatic environments, which often have cascading bottom-up influences on ecosystem-scale processes. Despite the increasing recognition of linkages between bacterioplankton and dynamics of dinoflagellate blooms in the field, knowledge about the forms and functions of dinoflagellate-bacteria associations remains elusive, mainly due to the ephemeral and variable conditions in the field. In this study, we characterized the bacterial community associated with laboratory cultures of 144 harmful algal strains, including 130 dinoflagellates (covering all major taxonomic orders of dinoflagellates) and 14 non-dinoflagellates, via high-throughput sequencing for 16S rRNA gene amplicons. A total of 4577 features belonging to bacteria kingdom comprising of 24 phyla, 55 classes, 134 orders, 273 families, 716 genera, and 1104 species were recovered from the algal culture collection, and 3 phyla (Proteobacteria, Bacteroidetes, and Firmicutes) were universally present in all the culture samples. Bacterial communities in dinoflagellates cultures exhibited remarkable conservation across different algal strains, which were dominated by a relatively small number of taxa, most notably the γ-proteobacteria Methylophaga, Marinobacter and Alteromonas. Although the bacterial community composition between dinoflagellates and non-dinoflagellate groups did not show significant difference in general, dinoflagellates harbored a large number of unique features (up to 3811) with relatively low individual abundance and enriched in the potential methylotrophs Methylophaga. While the bacterial assemblages associated with thecate and athecate dinoflagellates displayed no general difference in species composition and functional groups, athecate dinoflagellates appeared to accommodate more aerobic cellulolytic members of Actinobacteria, implying a more possible reliance on cellulose utilization as energy source. The extensive co-occurrence discovered here implied that the relationships between these algal species and the bacterial consortia could be viewed as either bilaterally beneficial (i.e., mutualism) or unilaterally beneficial at least to one party but virtually harmless to the other party (i.e., commensalism), whereas both scenarios support a long-term and stable co-existence rather than an exclusion of one or the other. Our results demonstrated that dinoflagellates-associated bacterial communities were similar in composition, with enrichment of potential uncultured methylotrophs to one-carbon compounds. This work enriches the knowledge about the fundamental functions of bacteria consortia associated with the phycospheres of dinoflagellates and other HABs-forming microalgae.
Collapse
Affiliation(s)
- Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (Z.H.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Kui Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (Z.H.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ying-Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (Z.H.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
10
|
Ramírez C, Gutiérrez MS, Venegas L, Sapag C, Araya C, Caruffo M, López P, Reyes-Jara A, Toro M, González-Rocha G, Yáñez JM, Navarrete P. Microbiota composition and susceptibility to florfenicol and oxytetracycline of bacterial isolates from mussels (Mytilus spp.) reared on different years and distance from salmon farms. ENVIRONMENTAL RESEARCH 2022; 204:112068. [PMID: 34547250 DOI: 10.1016/j.envres.2021.112068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/05/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Chilean aquaculture mainly produces salmonids and molluscs. Salmonid production has been questioned by its excessive use of antimicrobials. This study aimed to investigate the bacterial microbiota composition of Mytilus spp. cultivated near salmonid farms and to determine the minimum inhibitory concentration (MIC) to florfenicol and oxytetracycline of its culturable bacteria. Seven Mytilus farming sites classified according to their proximity to salmon farms as close (CSF) or distant (DSF) were sampled in two years. We analyzed Mytilus microbiota composition through culture-independent methods, and isolated culturable bacteria, and identified those isolates with MIC values ≥ 64 μg mL-1 to florfenicol or oxytetracycline. Results revealed that the alpha diversity was affected by sampling year but not by Mytilus farming site location or its interaction. Nevertheless, in 2018, we observed a significant negative correlation between the alpha diversity of Mytilus microbiota in each farm sites and the tonnes of florfenicol reported for each phytosanitary management area. We detected significant differences in beta diversity and relative abundance of specific bacterial taxa in Mytilus microbiota depending on the proximity to salmon farms and years. A higher proportion of isolates with MIC values ≥ 64 μg mL-1 to both antibiotics was detected in 2019 compared to 2018, but not significant differences were detected according to Mytilus farming site location. However, in 2019, isolates from CSF sites showed higher MIC values for both antibiotics than those from DSF. Bacterial genera corresponding to isolates with MIC values ≥ 64 μg mL-1 represented a low proportion of Mytilus microbiota identified with the culture-independent approach, reflecting the need to implement new methodologies in the study of antimicrobial resistance. These results suggest that the proximity to salmonid farms and sampling year influence the Mytilus microbiota and MIC values of their bacterial isolates; however, other environmental variables should be considered in further studies.
Collapse
Affiliation(s)
- Carolina Ramírez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María Soledad Gutiérrez
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Chile; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Chile
| | - Lucas Venegas
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile; Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Chile
| | | | - Carolina Araya
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Mario Caruffo
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Chile
| | - Paulina López
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile; Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Chile
| | - Angélica Reyes-Jara
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Chile
| | - Magaly Toro
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Chile
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile; Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - José Manuel Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile; Núcleo Milenio INVASAL, Concepción, Chile
| | - Paola Navarrete
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Chile; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Chile.
| |
Collapse
|
11
|
Liu S, Zhang M, Zhao Y, Chen N. Biodiversity and Spatial-Temporal Dynamics of Margalefidinium Species in Jiaozhou Bay, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11637. [PMID: 34770163 PMCID: PMC8582988 DOI: 10.3390/ijerph182111637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 01/04/2023]
Abstract
Many Margalefidinium species are cosmopolitan harmful algal bloom (HAB) species that have caused huge economic and ecological damage. Despite extensive research on Margalefidinium species, the biodiversity and spatial-temporal dynamics of these species remain obscure. Jiaozhou Bay is an ideal area for HAB research, being one of the earliest marine survey areas in China. In this study, we carried out the first metabarcoding study on the temporal and spatial dynamics of Margalefidinium species using the 18S rDNA V4 region as the molecular marker and samples collected monthly at 12 sampling sites in Jiaozhou Bay in 2019. Two harmful Margalefidinium species (M. polykrikoides and M. fulvescens) were identified with potentially high genetic diversity (although we cannot rule out the possibility of intra-genome sequence variations). Both M. polykrikoides and M. fulvescens demonstrated strong temporal preference with a sharp peak of abundance in early autumn (September), but without showing strong location preference in Jiaozhou Bay. Our results revealed that temperature might be the main driver for their temporal dynamics. Knowledge of biodiversity and spatial-temporal dynamics of the Margalefidinium species may shed light on the understanding of mechanisms underlying strongly biased occurrences of Margalefidinium blooms recorded globally.
Collapse
Affiliation(s)
- Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.L.); (M.Z.)
- Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengjia Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.L.); (M.Z.)
- Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China;
| | - Yongfang Zhao
- College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China;
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.L.); (M.Z.)
- Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
12
|
Yarimizu K, Sildever S, Hamamoto Y, Tazawa S, Oikawa H, Yamaguchi H, Basti L, Mardones JI, Paredes-Mella J, Nagai S. Development of an absolute quantification method for ribosomal RNA gene copy numbers per eukaryotic single cell by digital PCR. HARMFUL ALGAE 2021; 103:102008. [PMID: 33980448 DOI: 10.1016/j.hal.2021.102008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Recent increase of Harmful Algal Blooms (HAB) causes world-wide ecological, economical, and health issues, and more attention is paid to frequent coastal monitoring for the early detection of HAB species to prevent or reduce such impacts. Use of molecular tools in addition to traditional microscopy-based observation has become one of the promising methodologies for coastal monitoring. However, as ribosomal RNA (rRNA) genes are commonly targeted in molecular studies, variability in the rRNA gene copy number within and between species must be considered to provide quantitative information in quantitative PCR (qPCR), digital PCR (dPCR), and metabarcoding analyses. Currently, this information is only available for a limited number of species. The present study utilized a dPCR technology to quantify copy numbers of rRNA genes per single cell in 16 phytoplankton species, the majority of which are toxin-producers, using a newly developed universal primer set accompanied by a labeled probe with a fluorophore and a double-quencher. In silico PCR using the newly developed primers allowed the detection of taxa from 8 supergroups, demonstrating universality and broad coverage of the primer set. Chelex buffer was found to be suitable for DNA extraction to obtain DNA fragments with suitable size to avoid underestimation of the copy numbers. The study successfully demonstrated the first comparison of absolute quantification of 18S rRNA copy numbers per cell from 16 phytoplankton species by the dPCR technology.
Collapse
Affiliation(s)
- Kyoko Yarimizu
- Japan Fisheries Research and Education Agency, Fisheries Resources Institute, Fisheries Stock Assessment Center, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan; Office of Industry-Academia-Government and Community Collaboration, Hiroshima University, 1-3-2 22 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8511, Japan
| | - Sirje Sildever
- Japan Fisheries Research and Education Agency, Fisheries Resources Institute, Fisheries Stock Assessment Center, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan; Department of Marine Systems, Tallinn University of Technology, Akadeemia tee 15A, 12618 Tallinn, Estonia
| | - Yoko Hamamoto
- Japan Fisheries Research and Education Agency, Fisheries Resources Institute, Fisheries Stock Assessment Center, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan
| | - Satoshi Tazawa
- AXIOHELIX Co. Ltd, 12-17 Kandaizumicho, Chiyoda-ku, Tokyo 101-0024, Japan
| | - Hiroshi Oikawa
- Japan Fisheries Research and Education Agency, Fisheries Resources Institute, Fisheries Stock Assessment Center, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan
| | - Haruo Yamaguchi
- Faculty of Agriculture and Marine Sciences, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Leila Basti
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Minato, Tokyo 108-8477, Japan
| | - Jorge I Mardones
- Instituto de Fomento Pesquero, Centro de Estudios de Algas Nocivas (IFOP-CREAN), Padre Harter 574, Puerto Montt 5501679, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Javier Paredes-Mella
- Instituto de Fomento Pesquero, Centro de Estudios de Algas Nocivas (IFOP-CREAN), Padre Harter 574, Puerto Montt 5501679, Chile
| | - Satoshi Nagai
- Japan Fisheries Research and Education Agency, Fisheries Resources Institute, Fisheries Stock Assessment Center, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan.
| |
Collapse
|