1
|
Long Q, Zhang L, Zhu T, Zhao S, Zou C, Xu L, He Y, Chen S, Zou X. Competitive control of CsNCED1-1 by CsLOB1 and CsbZIP40 triggers susceptibility to citrus canker. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1625-1642. [PMID: 39427329 DOI: 10.1111/tpj.17075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Pustule formation is pivotal for the development of the Xanthomonas citri subsp. citri (Xcc)-induced citrus canker disease (CCD). Although our previous study demonstrated that the exogenous application of abscisic acid (ABA) facilitated pustule formation induced by Xcc, the precise mechanism remains elusive. The 9-cis-epoxycarotenoid dioxygenase (NCED) is a crucial enzyme in ABA biosynthesis. This study explored the role of citrus CsNCED1-1 in CCD resistance through overexpression and RNA interference of CsNCED1-1 in Wanjincheng orange (Citrus sinensis). Our findings indicated that CsNCED1-1 negatively modulated CCD resistance by fostering ABA accumulation, concomitant with an increase in jasmonic acid (JA) and a decrease in salicylic acid (SA). Plants overexpressing CsNCED1-1 displayed shortened leaves with smaller and denser stomata along with irregular and increased palisade cells. CsLOB1 is a known susceptibility gene for CCD, and CsbZIP40 positively influences resistance to this disease. We further confirmed that CsLOB1 promoted and CsbZIP40 suppressed the transcription of CsNCED1-1 by directly binding to the CsNCED1-1 promoter. Notably, CsbZIP40 and CsLOB1 showed a competitive relationship in the regulation of CsNCED1-1 expression, with CsbZIP40 exhibiting greater competitiveness. Overall, our findings highlight that CsNCED1-1 promotes susceptibility to citrus canker by disrupting JA- and SA-mediated defense mechanisms and triggering the proliferation and remodeling of palisade cells, thereby facilitating pathogen colonization and pustule formation. This study offers novel insights into the regulatory mechanisms underlying citrus canker resistance and the role of CsNCED1-1 in citrus.
Collapse
Affiliation(s)
- Qin Long
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Lehuan Zhang
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Tianxiang Zhu
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Shuyang Zhao
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Changyu Zou
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Lanzhen Xu
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Yongrui He
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Shanchun Chen
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Xiuping Zou
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| |
Collapse
|
2
|
Yu Q, He H, Xian B, Zhang C, Zhong X, Liu Y, Zhang M, Li M, He Y, Chen S, Li Q. The wall-associated receptor-like kinase CsWAKL01, positively regulated by the transcription factor CsWRKY53, confers resistance to citrus bacterial canker via regulation of phytohormone signaling. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5805-5818. [PMID: 38820225 DOI: 10.1093/jxb/erae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/30/2024] [Indexed: 06/02/2024]
Abstract
Citrus bacterial canker (CBC) is a disease that poses a major threat to global citrus production and is caused by infection with Xanthomonas citri subsp. citri (Xcc). Wall-associated receptor-like kinase (WAKL) proteins play an important role in shaping plant resistance to various bacterial and fungal pathogens. In a previous report, CsWAKL01 was identified as a candidate Xcc-inducible gene found to be up-regulated in CBC-resistant citrus plants. However, the functional role of CsWAKL01 and the mechanisms whereby it may influence resistance to CBC have yet to be clarified. Here, CsWAKL01 was found to localize to the plasma membrane, and the overexpression of the corresponding gene in transgenic sweet oranges resulted in pronounced enhancement of CBC resistance, whereas its knockdown had the opposite effect. Mechanistically, the effect of CsWAKL01 was linked to its ability to reprogram jasmonic acid, salicylic acid, and abscisic acid signaling activity. CsWRKY53 was further identified as a transcription factor capable of directly binding to the CsWAKL01 promoter and inducing its transcriptional up-regulation. CsWRKY53 silencing conferred greater CBC susceptibility to infected plants. Overall, these data support a model wherein CsWRKY53 functions as a positive regulator of CsWAKL01 to enhance resistance to CBC via the reprogramming of phytohormone signaling. Together these results offer new insights into the mechanisms whereby WAKLs shape phytopathogen resistance while underscoring the potential value of targeting the CsWRKY53-CsWAKL01 axis when seeking to breed CBC-resistant citrus plant varieties.
Collapse
Affiliation(s)
- Qiyuan Yu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Houzheng He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Baohang Xian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Chenxi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Xin Zhong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Yiqi Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Miao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Man Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Yongrui He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| | - Shanchun Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| | - Qiang Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| |
Collapse
|
3
|
Li Q, Xian B, Yu Q, Jia R, Zhang C, Zhong X, Zhang M, Fu Y, Liu Y, He H, Li M, Chen S, He Y. The CsAP2-09-CsWRKY25-CsRBOH2 cascade confers resistance against citrus bacterial canker by regulating ROS homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:534-548. [PMID: 38230828 DOI: 10.1111/tpj.16623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024]
Abstract
Citrus bacterial canker (CBC) is a serious bacterial disease caused by Xanthomonas citri subsp. citri (Xcc) that adversely impacts the global citrus industry. In a previous study, we demonstrated that overexpression of an Xcc-inducible apetala 2/ethylene response factor encoded by Citrus sinensis, CsAP2-09, enhances CBC resistance. The mechanism responsible for this effect, however, is not known. In the present study, we showed that CsAP2-09 targeted the promoter of the Xcc-inducible WRKY transcription factor coding gene CsWRKY25 directly, activating its transcription. CsWRKY25 was found to localize to the nucleus and to activate transcriptional activity. Plants overexpressing CsWRKY25 were more resistant to CBC and showed higher expression of the respiratory burst oxidase homolog (RBOH) CsRBOH2, in addition to exhibiting increased RBOH activity. Transient overexpression assays in citrus confirmed that CsWRKY25 and CsRBOH2 participated in the generation of reactive oxygen species (ROS) bursts, which were able to restore the ROS degradation caused by CsAP2-09 knockdown. Moreover, CsWRKY25 was found to bind directly to W-box elements within the CsRBOH2 promoter. Notably, CsRBOH2 knockdown had been reported previously to reduce the CBC resistance, while demonstrated in this study, CsRBOH2 transient overexpression can enhance the CBC resistance. Overall, our results outline a pathway through which CsAP2-09-CsWRKY25 transcriptionally reprograms CsRBOH2-mediated ROS homeostasis in a manner conducive to CBC resistance. These data offer new insight into the mechanisms and regulatory pathways through which CsAP2-09 regulates CBC resistance, highlighting its potential utility as a target for the breeding of CBC-resistant citrus varieties.
Collapse
Affiliation(s)
- Qiang Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
- National Citrus Engineering Research Center, Chongqing, 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing, 400712, China
| | - Baohang Xian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Qiyuan Yu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Ruirui Jia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
- National Citrus Engineering Research Center, Chongqing, 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing, 400712, China
| | - Chenxi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Xin Zhong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Miao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Yongyao Fu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - Yiqi Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Houzheng He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Man Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Shanchun Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
- National Citrus Engineering Research Center, Chongqing, 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing, 400712, China
| | - Yongrui He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
- National Citrus Engineering Research Center, Chongqing, 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing, 400712, China
| |
Collapse
|
4
|
Faysal Ahmed F, Dola FS, Zohra FT, Rahman SM, Konak JN, Sarkar MAR. Genome-wide identification, classification, and characterization of lectin gene superfamily in sweet orange (Citrus sinensis L.). PLoS One 2023; 18:e0294233. [PMID: 37956187 PMCID: PMC10642848 DOI: 10.1371/journal.pone.0294233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Lectins are sugar-binding proteins found abundantly in plants. Lectin superfamily members have diverse roles, including plant growth, development, cellular processes, stress responses, and defense against microbes. However, the genome-wide identification and functional analysis of lectin genes in sweet orange (Citrus sinensis L.) remain unexplored. Therefore, we used integrated bioinformatics approaches (IBA) for in-depth genome-wide identification, characterization, and regulatory factor analysis of sweet orange lectin genes. Through genome-wide comparative analysis, we identified a total of 141 lectin genes distributed across 10 distinct gene families such as 68 CsB-Lectin, 13 CsLysin Motif (LysM), 4 CsChitin-Bind1, 1 CsLec-C, 3 CsGal-B, 1 CsCalreticulin, 3 CsJacalin, 13 CsPhloem, 11 CsGal-Lec, and 24 CsLectinlegB.This classification relied on characteristic domain and phylogenetic analysis, showing significant homology with Arabidopsis thaliana's lectin gene families. A thorough analysis unveiled common similarities within specific groups and notable variations across different protein groups. Gene Ontology (GO) enrichment analysis highlighted the predicted genes' roles in diverse cellular components, metabolic processes, and stress-related regulation. Additionally, network analysis of lectin genes with transcription factors (TFs) identified pivotal regulators like ERF, MYB, NAC, WRKY, bHLH, bZIP, and TCP. The cis-acting regulatory elements (CAREs) found in sweet orange lectin genes showed their roles in crucial pathways, including light-responsive (LR), stress-responsive (SR), hormone-responsive (HR), and more. These findings will aid in the in-depth molecular examination of these potential genes and their regulatory elements, contributing to targeted enhancements of sweet orange species in breeding programs.
Collapse
Affiliation(s)
- Fee Faysal Ahmed
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Farah Sumaiya Dola
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Shaikh Mizanur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Jesmin Naher Konak
- Department of Biochemistry and Molecular Biology, Faculty of LifeScience, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Md. Abdur Rauf Sarkar
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
5
|
Ye F, Zhu X, Wu S, Du Y, Pan X, Wu Y, Qian Z, Li Z, Lin W, Fan K. Conserved and divergent evolution of the bZIP transcription factor in five diploid Gossypium species. PLANTA 2022; 257:26. [PMID: 36571656 DOI: 10.1007/s00425-022-04059-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
495 bZIP members with 12 subfamilies were identified in the five diploid cottons. Segmental duplication events in cotton ancestor might have led to primary expansion of the cotton bZIP members. The basic leucine zipper (bZIP) transcription factor is one of the largest and most diverse families in plants. The evolutionary history of the bZIP family is still unclear in cotton. In this study, a total of 495 bZIP members were identified in five diploid Gossypium species, including 100 members in Gossypium arboreum, 104 members in Gossypium herbaceum, 95 members in Gossypium raimondii, 96 members in Gossypium longicalyx, and 100 members in Gossypium turneri. The bZIP members could be divided into 12 subfamilies with biased gene proportions, gene structures, conserved motifs, expansion rates, gene loss rates, and cis-regulatory elements. A total of 239 duplication events were identified in the five Gossypium species, and mainly occurred in their common ancestor. Furthermore, some GabZIPs and GhebZIPs could be regarded as important candidates in cotton breeding. The bZIP members had a conserved and divergent evolution in the five diploid Gossypium species. The current study laid an important foundation on the evolutionary history of the bZIP family in cotton.
Collapse
Affiliation(s)
- Fangting Ye
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Xiaogang Zhu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Shaofang Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Yunyue Du
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Xinfeng Pan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Yuchen Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Zhengyi Qian
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Zhaowei Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Wenxiong Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Kai Fan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China.
| |
Collapse
|
6
|
Yuning L, Xianmei Y, Jingjing Z, Jinghua D, Luyang L, Jintian L, Benshui S. Transcriptome analyses reveal the potential mechanisms for color changes of a sweet orange peel induced by Candidatus Liberibacter asiaticus. Gene 2022; 839:146736. [PMID: 35835404 DOI: 10.1016/j.gene.2022.146736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 11/04/2022]
Abstract
'Shatangju' mandarin (Citrus reticulate Blanco cv. Shatangju) is a Chinese citrus specialty in southern China with a delicious taste and an attractive appearance. Huanglongbing (HLB) caused by Candidatus Liberibacter asiaticus (CLas) threatens the Shatangju industry seriously. Fruits from citrus trees with HLB show 'red nose' peels with a serious reduction in fruit value. Differentially expressed genes (DEGs) have been identified in the leaves of several citrus species with HLB infection. However, similar studies on the fruit peels of citrus trees with HLB infection are very limited. In this study, the pathogen CLas was diagnosed in the 'red nose' fruit peels of Shatangju. The chlorophyll and carotenoid contents in different peels were also analyzed. Besides, we identified DEGs in the comparison between peels from normal red-colored and 'red nose' fruits via RNA-seq. A total of 1922 unigenes were identified as DEGs, of which 434 were up-regulated and 1488 were down-regulated in the 'red nose' fruit peels. DEGs involved in chlorophyll and carotenoids biosynthesis, photosynthesis, and transcription factors could be responsible for fruit color changes after HLB infection. Our findings provide a preliminary understanding of the mechanism underlying the formation of a 'red nose' on fruit peel from HLB-infected trees.
Collapse
Affiliation(s)
- Li Yuning
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yang Xianmei
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhang Jingjing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Dai Jinghua
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Liu Luyang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lin Jintian
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Shu Benshui
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
7
|
Genome-Wide Identification, Classification, Expression and Duplication Analysis of bZIP Family Genes in Juglans regia L. Int J Mol Sci 2022; 23:ijms23115961. [PMID: 35682645 PMCID: PMC9180593 DOI: 10.3390/ijms23115961] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 01/08/2023] Open
Abstract
Basic leucine zipper (bZIP), a conserved transcription factor widely found in eukaryotes, has important regulatory roles in plant growth. To understand the information related to the bZIP gene family in walnut, 88 JrbZIP genes were identified at the genome-wide level and classified into 13 subfamilies (A, B, C, D, E, F, G, H, I, J, K, M, and S) using a bioinformatic approach. The number of exons in JrbZIPs ranged from 1 to 12, the number of amino acids in JrbZIP proteins ranged from 145 to 783, and the isoelectric point ranged from 4.85 to 10.05. The majority of JrbZIP genes were localized in the nucleus. The promoter prediction results indicated that the walnut bZIP gene contains a large number of light-responsive and jasmonate-responsive action elements. The 88 JrbZIP genes were involved in DNA binding and nucleus and RNA biosynthetic processes of three ontological categories, molecular functions, cellular components and biological processes. The codon preference analysis showed that the bZIP gene family has a stronger bias for AGA, AGG, UUG, GCU, GUU, and UCU than other codons. Moreover, the transcriptomic data showed that JrbZIP genes might play an important role in floral bud differentiation. The results of a protein interaction network map and kegg enrichment analysis indicated that bZIP genes were mainly involved in phytohormone signaling, anthocyanin synthesis and flowering regulation. qRT-PCR demonstrated the role of the bZIP gene family in floral bud differentiation. Co-expression network maps were constructed for 29 walnut bZIP genes and 6 flowering genes, and JrCO (a homolog of AtCO) was significantly correlated (p < 0.05) with 13 JrbZIP genes in the level of floral bud differentiation expression, including JrbZIP31 (homolog of AtFD), and JrLFY was significantly and positively correlated with JrbZIP10,11,51,59,67 (p < 0.05), and the above results suggest that bZIP family genes may act together with flowering genes to regulate flower bud differentiation in walnut. This study was the first genome-wide report of the walnut bZIP gene family, which could improve our understanding of walnut bZIP proteins and provide a solid foundation for future cloning and functional analyses of this gene family.
Collapse
|
8
|
Khan ZH, Dang S, Memaya MB, Bhadouriya SL, Agarwal S, Mehrotra S, Gupta D, Mehrotra R. Genome-wide analysis of AAAG and ACGT cis-elements in Arabidopsis thaliana reveals their involvement with genes downregulated under jasmonic acid response in an orientation independent manner. G3 GENES|GENOMES|GENETICS 2022; 12:6550508. [PMID: 35302624 PMCID: PMC9073683 DOI: 10.1093/g3journal/jkac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/24/2022] [Indexed: 12/03/2022]
Abstract
Cis-regulatory elements are regions of noncoding DNA that regulate the transcription of neighboring genes. The study of cis-element architecture that functions in transcription regulation are essential. AAAG and ACGT are a class of cis-regulatory elements, known to interact with Dof and bZIP transcription factors respectively, and are known to regulate the expression of auxin response, gibberellin response, floral development, light response, seed storage proteins genes, biotic and abiotic stress genes in plants. Analysis of the frequency of occurrence of AAAG and ACGT motifs from varying spacer lengths (0–30 base pair) between these 2 motifs in both possible orientations—AAAG (N) ACGT and ACGT (N) AAAG, in the promoters and genome of Arabidopsis thaliana which indicated preferred orientation of AAAG (N) ACGT over ACGT (N) AAAG across the genome and in promoters. Further, microarray analysis revealed the involvement of these motifs in the genes downregulated under jasmonic acid response in an orientation-independent manner. These results were further confirmed by the transient expression studies with promoter-reporter cassettes carrying AAAG and ACGT motifs in both orientations. Furthermore, cluster analysis on genes with AAAG (N) ACGT and ACGT (N) AAAG motifs orientations revealed clusters of genes to be involved in ABA signaling, transcriptional regulation, DNA binding, and metal ion binding. These findings can be utilized in designing synthetic promoters for the development of stress-tolerant transgenic plants and also provides an insight into the roles of these motifs in transcriptional regulation.
Collapse
Affiliation(s)
- Zaiba H Khan
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani , Zuarinagar, Goa 403726, India
| | - Siddhant Dang
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani , Pilani, Jhunjhunu, Rajasthan 333031, India
| | - Mounil B Memaya
- Department of Computer Science and Information Systems, Birla Institute of Technology and Science-Pilani , Zuarinagar, Sancoale, Goa 403726, India
| | - Sneha L Bhadouriya
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani , Zuarinagar, Goa 403726, India
| | - Swati Agarwal
- Department of Computer Science and Information Systems, Birla Institute of Technology and Science-Pilani , Zuarinagar, Sancoale, Goa 403726, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani , Zuarinagar, Goa 403726, India
| | - Divya Gupta
- Faculty of Bioscience, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University , Barabanki, Uttar Pradesh 225003, India
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani , Zuarinagar, Goa 403726, India
| |
Collapse
|
9
|
Wang H, Zhang Y, Norris A, Jiang CZ. S1-bZIP Transcription Factors Play Important Roles in the Regulation of Fruit Quality and Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 12:802802. [PMID: 35095974 PMCID: PMC8795868 DOI: 10.3389/fpls.2021.802802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Sugar metabolism not only determines fruit sweetness and quality but also acts as signaling molecules to substantially connect with other primary metabolic processes and, therefore, modulates plant growth and development, fruit ripening, and stress response. The basic region/leucine zipper motif (bZIP) transcription factor family is ubiquitous in eukaryotes and plays a diverse array of biological functions in plants. Among the bZIP family members, the smallest bZIP subgroup, S1-bZIP, is a unique one, due to the conserved upstream open reading frames (uORFs) in the 5' leader region of their mRNA. The translated small peptides from these uORFs are suggested to mediate Sucrose-Induced Repression of Translation (SIRT), an important mechanism to maintain sucrose homeostasis in plants. Here, we review recent research on the evolution, sequence features, and biological functions of this bZIP subgroup. S1-bZIPs play important roles in fruit quality, abiotic and biotic stress responses, plant growth and development, and other metabolite biosynthesis by acting as signaling hubs through dimerization with the subgroup C-bZIPs and other cofactors like SnRK1 to coordinate the expression of downstream genes. Direction for further research and genetic engineering of S1-bZIPs in plants is suggested for the improvement of quality and safety traits of fruit.
Collapse
Affiliation(s)
- Hong Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States
| | - Yunting Zhang
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ayla Norris
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA, United States
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA, United States
| |
Collapse
|
10
|
Han H, Xu F, Li Y, Yu L, Fu M, Liao Y, Yang X, Zhang W, Ye J. Genome-wide characterization of bZIP gene family identifies potential members involved in flavonoids biosynthesis in Ginkgo biloba L. Sci Rep 2021; 11:23420. [PMID: 34862430 PMCID: PMC8642526 DOI: 10.1038/s41598-021-02839-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/18/2021] [Indexed: 11/28/2022] Open
Abstract
Ginkgo biloba L. is an ancient relict plant with rich pharmacological activity and nutritional value, and its main physiologically active components are flavonoids and terpene lactones. The bZIP gene family is one of the largest gene families in plants and regulates many processes including pathogen defense, secondary metabolism, stress response, seed maturation, and flower development. In this study, genome-wide distribution of the bZIP transcription factors was screened from G. biloba database in silico analysis. A total of 40 bZIP genes were identified in G. biloba and were divided into 10 subclasses. GbbZIP members in the same group share a similar gene structure, number of introns and exons, and motif distribution. Analysis of tissue expression pattern based on transcriptome indicated that GbbZIP08 and GbbZIP15 were most highly expressed in mature leaf. And the expression level of GbbZIP13 was high in all eight tissues. Correlation analysis and phylogenetic tree analysis suggested that GbbZIP08 and GbbZIP15 might be involved in the flavonoid biosynthesis. The transcriptional levels of 20 GbbZIP genes after SA, MeJA, and low temperature treatment were analyzed by qRT-PCR. The expression level of GbbZIP08 was significantly upregulated under 4°C. Protein–protein interaction network analysis indicated that GbbZIP09 might participate in seed germination by interacting with GbbZIP32. Based on transcriptome and degradome data, we found that 32 out of 117 miRNAs were annotated to 17 miRNA families. The results of this study may provide a theoretical foundation for the functional validation of GbbZIP genes in the future.
Collapse
Affiliation(s)
- Huan Han
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yuting Li
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Li Yu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Mingyue Fu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiaoyan Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China. .,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000, Hubei, China.
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
11
|
Mathiazhagan M, Chidambara B, Hunashikatti LR, Ravishankar KV. Genomic Approaches for Improvement of Tropical Fruits: Fruit Quality, Shelf Life and Nutrient Content. Genes (Basel) 2021; 12:1881. [PMID: 34946829 PMCID: PMC8701245 DOI: 10.3390/genes12121881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/23/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
The breeding of tropical fruit trees for improving fruit traits is complicated, due to the long juvenile phase, generation cycle, parthenocarpy, polyploidy, polyembryony, heterozygosity and biotic and abiotic factors, as well as a lack of good genomic resources. Many molecular techniques have recently evolved to assist and hasten conventional breeding efforts. Molecular markers linked to fruit development and fruit quality traits such as fruit shape, size, texture, aroma, peel and pulp colour were identified in tropical fruit crops, facilitating Marker-assisted breeding (MAB). An increase in the availability of genome sequences of tropical fruits further aided in the discovery of SNP variants/Indels, QTLs and genes that can ascertain the genetic determinants of fruit characters. Through multi-omics approaches such as genomics, transcriptomics, metabolomics and proteomics, the identification and quantification of transcripts, including non-coding RNAs, involved in sugar metabolism, fruit development and ripening, shelf life, and the biotic and abiotic stress that impacts fruit quality were made possible. Utilizing genomic assisted breeding methods such as genome wide association (GWAS), genomic selection (GS) and genetic modifications using CRISPR/Cas9 and transgenics has paved the way to studying gene function and developing cultivars with desirable fruit traits by overcoming long breeding cycles. Such comprehensive multi-omics approaches related to fruit characters in tropical fruits and their applications in breeding strategies and crop improvement are reviewed, discussed and presented here.
Collapse
Affiliation(s)
| | | | | | - Kundapura V. Ravishankar
- Division of Basic Sciences, ICAR Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru 560089, India; (M.M.); (B.C.); (L.R.H.)
| |
Collapse
|
12
|
Li Q, Fu J, Qin X, Yang W, Qi J, Li Z, Chen S, He Y. Systematic Analysis and Functional Validation of Citrus Pectin Acetylesterases (CsPAEs) Reveals that CsPAE2 Negatively Regulates Citrus Bacterial Canker Development. Int J Mol Sci 2020; 21:E9429. [PMID: 33322321 PMCID: PMC7764809 DOI: 10.3390/ijms21249429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 01/20/2023] Open
Abstract
The present study was designed to serve as a comprehensive analysis of Citrus sinensis (C. sinensis) pectin acetylesterases (CsPAEs), and to assess the roles of these PAEs involved in the development of citrus bacterial canker (CBC) caused by Xanthomonas citri subsp. citri (Xcc) infection. A total of six CsPAEs were identified in the genome of C. sinensis, with these genes being unevenly distributed across chromosomes 3, 6, and 9, and the unassembled scaffolds. A subset of CsPAEs were found to be involved in responses to Xcc infection. In particular, CsPAE2 was identified to be associated with such infections, as it was upregulated in CBC-susceptible variety Wanjincheng and inversely in CBC-resistant variety Calamondin. Transgenic citrus plants overexpressing CsPAE2 were found to be more susceptible to CBC, whereas the silencing of this gene was sufficient to confer CBC resistance. Together, these findings provide evolutionary insights into and functional information about the CsPAE family. This study also suggests that CsPAE2 is a potential candidate gene that negatively contributes to bacterial canker disease and can be used to breed CBC-resistant citrus plants.
Collapse
Affiliation(s)
- Qiang Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (J.F.); (X.Q.); (W.Y.); (J.Q.); (S.C.)
| | - Jia Fu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (J.F.); (X.Q.); (W.Y.); (J.Q.); (S.C.)
| | - Xiujuan Qin
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (J.F.); (X.Q.); (W.Y.); (J.Q.); (S.C.)
| | - Wen Yang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (J.F.); (X.Q.); (W.Y.); (J.Q.); (S.C.)
| | - Jingjing Qi
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (J.F.); (X.Q.); (W.Y.); (J.Q.); (S.C.)
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China;
| | - Shanchun Chen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (J.F.); (X.Q.); (W.Y.); (J.Q.); (S.C.)
| | - Yongrui He
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (J.F.); (X.Q.); (W.Y.); (J.Q.); (S.C.)
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China;
| |
Collapse
|
13
|
Li Q, Qin X, Qi J, Dou W, Dunand C, Chen S, He Y. CsPrx25, a class III peroxidase in Citrus sinensis, confers resistance to citrus bacterial canker through the maintenance of ROS homeostasis and cell wall lignification. HORTICULTURE RESEARCH 2020; 7:192. [PMID: 33328465 PMCID: PMC7705758 DOI: 10.1038/s41438-020-00415-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 05/21/2023]
Abstract
Citrus bacterial canker (CBC) results from Xanthomonas citri subsp. citri (Xcc) infection and poses a grave threat to citrus production. Class III peroxidases (CIII Prxs) are key proteins to the environmental adaptation of citrus plants to a range of exogenous pathogens, but the role of CIII Prxs during plant resistance to CBC is poorly defined. Herein, we explored the role of CsPrx25 and its contribution to plant defenses in molecular detail. Based on the expression analysis, CsPrx25 was identified as an apoplast-localized protein that is differentially regulated by Xcc infection, salicylic acid, and methyl jasmone acid in the CBC-susceptible variety Wanjincheng (C. sinensis) and the CBC-resistant variety Calamondin (C. madurensis). Transgenic Wanjincheng plants overexpressing CsPrx25 were generated, and these transgenic plants exhibited significantly increased CBC resistance compared with the WT plants. In addition, the CsPrx25-overexpressing plants displayed altered reactive oxygen species (ROS) homeostasis accompanied by enhanced H2O2 levels, which led to stronger hypersensitivity responses during Xcc infection. Moreover, the overexpression of CsPrx25 enhanced lignification as an apoplastic barrier for Xcc infection. Taken together, the results highlight how CsPrx25-mediated ROS homeostasis reconstruction and cell wall lignification can enhance the resistance of sweet orange to CBC.
Collapse
Affiliation(s)
- Qiang Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Xiujuan Qin
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Jingjing Qi
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Wanfu Dou
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, 31320, France
| | - Shanchun Chen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, China.
| | - Yongrui He
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, China.
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China.
| |
Collapse
|
14
|
Zheng W, Xie T, Yu X, Chen N, Zhang Z. Characterization of bZIP transcription factors from Dimocarpus longan Lour. and analysis of their tissue-specific expression patterns and response to heat stress. J Genet 2020. [DOI: 10.1007/s12041-020-01229-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Genome-Wide Analysis, Characterization, and Expression Profile of the Basic Leucine Zipper Transcription Factor Family in Pineapple. Int J Genomics 2020; 2020:3165958. [PMID: 32455125 PMCID: PMC7238347 DOI: 10.1155/2020/3165958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 11/18/2022] Open
Abstract
This study identified 57 basic leucine zipper (bZIP) genes from the pineapple genome, and the analysis of these bZIP genes was focused on the evolution and divergence after multiple duplication events in relation to the pineapple genome fusion. According to bioinformatics analysis of a phylogenetic tree, the bZIP gene family was divided into 11 subgroups in pineapple, Arabidopsis, and rice; gene structure and conserved motif analyses showed that bZIP genes within the same subgroup shared similar intron-exon organizations and motif composition. Further synteny analysis showed 17 segmental duplication events with 27 bZIP genes. The study also analyzed the pineapple gene expression of bZIP genes in different tissues, organs, and developmental stages, as well as in abiotic stress responses. The RNA-sequencing data showed that AcobZIP57 was upregulated in all tissues, including vegetative and reproductive tissues. AcobZIP28 and AcobZIP43 together with the other 25 bZIP genes did not show high expression levels in any tissue. Six bZIP genes were exposed to abiotic stress, and the relative expression levels were detected by quantitative real-time PCR. A significant response was observed for AcobZIP24 against all kinds of abiotic stresses at 24 and 48 h in pineapple root tissues. Our study provides a perspective for the evolutionary history and general biological involvement of the bZIP gene family of pineapple, which laid the foundation for future functional characterization of the bZIP genes in pineapple.
Collapse
|
16
|
Li Q, Hu A, Qi J, Dou W, Qin X, Zou X, Xu L, Chen S, He Y. CsWAKL08, a pathogen-induced wall-associated receptor-like kinase in sweet orange, confers resistance to citrus bacterial canker via ROS control and JA signaling. HORTICULTURE RESEARCH 2020; 7:42. [PMID: 32257228 PMCID: PMC7109087 DOI: 10.1038/s41438-020-0263-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 05/18/2023]
Abstract
Citrus bacterial canker (CBC) is a disease resulting from Xanthomonas citri subsp. citri (Xcc) infection and poses a grave threat to citrus production worldwide. Wall-associated receptor-like kinases (WAKLs) are proteins with a central role in resisting a range of fungal and bacterial diseases. The roles of WAKLs in the context of CBC resistance, however, remain unclear. Here, we explored the role of CsWAKL08, which confers resistance to CBC, and we additionally analyzed the molecular mechanisms of CsWAKL08-mediated CBC resistance. Based on systematic annotation and induced expression analysis of the CsWAKL family in Citrus sinensis, CsWAKL08 was identified as a candidate that can be upregulated by Xcc infection in the CBC-resistant variety. CsWAKL08 can also be induced by the phytohormones salicylic acid (SA) and methyl jasmonic acid (MeJA) and spans the plasma membrane. Overexpression of CsWAKL08 resulted in strong CBC resistance in transgenic sweet oranges, whereas silencing of CsWAKL08 resulted in susceptibility to CBC. The peroxidase (POD) and superoxide dismutase (SOD) activities were significantly enhanced in the CsWAKL08-overexpressing plants compared to the control plants, thereby mediating reactive oxygen species (ROS) homeostasis in the transgenic plants. Moreover, the JA levels and the expression of JA biosynthesis and JA responsive genes were substantially elevated in the CsWAKL08 overexpression plants relative to the controls upon Xcc infection. Based on these findings, we conclude that the wall-associated receptor-like kinase CsWAKL08 positively regulates CBC resistance through a mechanism involving ROS control and JA signaling. These results further highlight the importance of this kinase family in plant pathogen resistance.
Collapse
Affiliation(s)
- Qiang Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712 China
| | - Anhua Hu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712 China
| | - Jingjing Qi
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712 China
| | - Wanfu Dou
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712 China
| | - Xiujuan Qin
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712 China
| | - Xiuping Zou
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712 China
| | - Lanzhen Xu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712 China
| | - Shanchun Chen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712 China
| | - Yongrui He
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712 China
| |
Collapse
|
17
|
Li Q, Qi J, Qin X, Dou W, Lei T, Hu A, Jia R, Jiang G, Zou X, Long Q, Xu L, Peng A, Yao L, Chen S, He Y. CitGVD: a comprehensive database of citrus genomic variations. HORTICULTURE RESEARCH 2020; 7:12. [PMID: 32025315 PMCID: PMC6994598 DOI: 10.1038/s41438-019-0234-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/09/2019] [Accepted: 12/05/2019] [Indexed: 05/29/2023]
Abstract
Citrus is one of the most important commercial fruit crops worldwide. With the vast genomic data currently available for citrus fruit, genetic relationships, and molecular markers can be assessed for the development of molecular breeding and genomic selection strategies. In this study, to permit the ease of access to these data, a web-based database, the citrus genomic variation database (CitGVD, http://citgvd.cric.cn/home) was developed as the first citrus-specific comprehensive database dedicated to genome-wide variations including single nucleotide polymorphisms (SNPs) and insertions/deletions (INDELs). The current version (V1.0.0) of CitGVD is an open-access resource centered on 1,493,258,964 high-quality genomic variations and 84 phenotypes of 346 organisms curated from in-house projects and public resources. CitGVD integrates closely related information on genomic variation annotations, related gene annotations, and details regarding the organisms, incorporating a variety of built-in tools for data accession and analysis. As an example, CitGWAS can be used for genome-wide association studies (GWASs) with SNPs and phenotypic data, while CitEVOL can be used for genetic structure analysis. These features make CitGVD a comprehensive web portal and bioinformatics platform for citrus-related studies. It also provides a model for analyzing genome-wide variations for a wide range of crop varieties.
Collapse
Affiliation(s)
- Qiang Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Jingjing Qi
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Xiujuan Qin
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Wanfu Dou
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Tiangang Lei
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Anhua Hu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Ruirui Jia
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Guojin Jiang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Xiuping Zou
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Qin Long
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Lanzhen Xu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Aihong Peng
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Lixiao Yao
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Shanchun Chen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Yongrui He
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| |
Collapse
|
18
|
Li Q, Dou W, Qi J, Qin X, Chen S, He Y. Genomewide analysis of the CIII peroxidase family in sweet orange (Citrus sinensis) and expression profiles induced by Xanthomonas citri subsp. citri and hormones. J Genet 2020. [DOI: 10.1007/s12041-019-1163-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Li Q, Dou W, Qi J, Qin X, Chen S, He Y. Genomewide analysis of the CIII peroxidase family in sweet orange ( Citrus sinensis) and expression profiles induced by Xanthomonas citri subsp. citri and hormones. J Genet 2020; 99:10. [PMID: 32089529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Class III peroxidase (CIII prx) is a plant-specific multigene family that regulates the physiological and stress responses. This research aimed to exhaustively annotate and analyse the CIII prx family in sweet orange and to explore the regulated expression profiles by Xanthomonas citri subsp. citri (Xcc) and plant hormones. We further assessed the relationship between CIII prxs and citrus bacterial canker. The phylogeny, gene structure, conserved motifs, gene duplications and microsynteny of the CIII prx family were analysed. Expression profiles of specific CsPrxs induced by Xanthomonas citri subsp. citri and plant hormones were detected by quantitative reverse transcription-polymerase chain reaction. Subcellular localization was analysed through transient expression assessments. A total of 72 CIII prx members were identified from the genomes of sweet orange. In all chromosomes of sweet orange, the CsPrxs could be detected except in chromosome 8. In addition, three segmental duplications, four tandem duplications and 11 whole-genome duplications occurred among the CsPrxs, contributing to the family size expansion. From the Ka/Ks ratios, 15 of 18 duplicated CsPrxs pairs have experienced purifying selection process. A total of 15 conserved motifs were detected in CsPrxs, four of which were detected in all complete CsPrxs. A total of 12 expressed genes were identified from the EST database. The expression trends of 12 CsPrxs were differently expressed at different stages of infection by Xcc, five of which were potential candidate genes involved in Xcc resistance. These genes could be induced by salicylic acidand methyl jasmonate, and were extracellular proteins. These results further support our understanding of CIII prxs in citrus, particularly incitrus bacterial canker studies.
Collapse
Affiliation(s)
- Qiang Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, People's Republic of China. ,
| | | | | | | | | | | |
Collapse
|