1
|
Silue T, Agre PA, Olasanmi B, Adewumi AS, Adejumobi II, Abebe AT. Genetic diversity and population structure of soybean (Glycine max (L.) Merril) germplasm. PLoS One 2025; 20:e0312079. [PMID: 40341701 PMCID: PMC12061401 DOI: 10.1371/journal.pone.0312079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/05/2025] [Indexed: 05/10/2025] Open
Abstract
Soybean (Glycine max (L.) Merril) is a significant legume crop for oil and protein. However, its yield in Africa is less than half the global average resulting in low production, which is inadequate for satisfying the continent's needs. To address this disparity in productivity, it is crucial to develop new high-yielding cultivars by utilizing the genetic diversity of existing germplasms. Consequently, the genetic diversity and population structure of various soybean accessions were evaluated in this study. To achieve this objective, a collection of 147 soybean accessions was genotyped using the Diversity Array Technology Sequencing method, enabling high-throughput analysis of 7,083 high-quality single-nucleotide polymorphisms (SNPs) distributed across the soybean genome. The average values observed for polymorphism information content (PIC), minor allele frequency, expected heterozygosity and observed heterozygosity were 0.277, 0.254, 0.344, and 0.110, respectively. The soybean genotypes were categorized into four groups on the basis of model-based population structure, principal component analysis, and discriminant analysis of the principal component. Alternatively, hierarchical clustering was used to organize the accessions into three distinct clusters. Analysis of molecular variance indicated that the genetic variance (77%) within the populations exceeded the variance (23%) among them. The insights gained from this study will assist breeders in selecting parental lines for genetic recombination. The present study demonstrates that soybean improvement is viable within the IITA breeding program, and its outcome will help to optimize the genetic enhancement of soybeans.
Collapse
Affiliation(s)
- Tenena Silue
- Pan African University Life and Earth Sciences Institute (including Health and Agriculture), University of Ibadan, Ibadan, Oyo State, Nigeria
- International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| | - Paterne Angelot Agre
- International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| | - Bunmi Olasanmi
- Department of Crop and Horticultural Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | | | - Abush Tesfaye Abebe
- International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| |
Collapse
|
2
|
Elsafy M, Badawi W, Zakaria A, Abdelhalim TS, Rahmatov M, Johansson E. Exploring the Diversity in Oil Content, Fatty Acid Profiles, and Seed Coat Color in Sudanese Sesame Germplasm: Implications for Breeding and Crop Improvement. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2025; 6:e70051. [PMID: 40190787 PMCID: PMC11970955 DOI: 10.1002/pei3.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025]
Abstract
Sesame, a key oilseed crop, thrives in arid environments and offers high-quality oils. Sudan, a major producer and center of sesame genetic diversity, remains underutilized in breeding efforts. This study analyzed 87 Sudanese sesame accessions, revealing significant variations in oil content, fatty acid composition, and seed coat color. The findings highlight the potential of Sudanese germplasm for improving oil quality and broadening trait diversity in breeding programs. Oil content ranged from 32.8% to 50.2%, with oleic acid (41.3%-47.6%) and linoleic acid (35.0%-41.4%) as the predominant fatty acids, consistent with other regions. Some samples showed exceptionally high oleic acid levels. Seed coat color varied significantly, particularly in lightness (L*), but it showed no correlation with oil content or fatty acid composition. Its potential link to bioactive compounds warrants further study. Principal coordinates analysis showed no link between oil levels, fatty acid profiles, and the original collection sites. The findings highlight the breeding potential of Sudanese sesame germplasm, particularly for developing varieties with high unsaturated fatty acids, such as oleic acid, and diverse seed coat colors. Further studies across environments and genetic investigations are needed to ensure trait stability and optimize their use.
Collapse
Affiliation(s)
- Mohammed Elsafy
- Department of Plant BreedingSwedish University of Agricultural Sciences (SLU)UppsalaSweden
| | - Wafa Badawi
- Matuq Research Station, Agricultural Research CorporationMatuqSudan
| | - Ali Zakaria
- Agricultural Plant Genetic Resources Conservation and Research CenterAgricultural Research CorporationWad MedaniSudan
| | - Tilal Sayed Abdelhalim
- Biotechnology and Biosafety Research CenterAgricultural Research CorporationShambatKhartoum NorthSudan
| | - Mahbubjon Rahmatov
- Department of Plant BreedingSwedish University of Agricultural Sciences (SLU)UppsalaSweden
| | - Eva Johansson
- Department of Plant BreedingSwedish University of Agricultural Sciences (SLU)UppsalaSweden
| |
Collapse
|
3
|
Xu G, Cui Y, Li S, Guan Z, Miao H, Guo Y. High-density genetic map construction and QTL mapping to identify genes for blight defense- and yield-related traits in sesame ( Sesamum indicum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1446062. [PMID: 39391773 PMCID: PMC11464332 DOI: 10.3389/fpls.2024.1446062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
Sesame (Sesamum indicum L.) is an important oilseed crop widely cultivated in subtropical and tropical areas. Low genetic yield potential and susceptibility to disease contribute to low productivity in sesame. However, the genetic basis of sesame yield- and disease-related traits remains unclear. Here, we represent the construction of a high-density bin map of sesame using whole genome sequencing of an F2 population derived from 'Yizhi' and 'Mingdeng Zhima'. A total of 2766 Bins were categorized into 13 linkage groups. Thirteen significant QTLs were identified, including ten QTLs related to yield, two QTLs related to Sesame Fusarium wilt (SFW) disease, and one QTL related to seed color. Among these QTLs, we found that SFW-QTL1.1 and SFW-QTL1.2 were major QTLs related to Fusarium wilt disease, explaining more than 20% of the phenotypic variation with LOD > 6. SCC-QTL1.1 was related to seed coat color, explaining 52% of the phenotypic variation with LOD equal to 25.3. This suggests that seed color traits were controlled by a major QTL. Candidate genes related to Fusarium wilt disease and seed color in the QTLs were annotated. We discovered a significant enrichment of genes associated with resistance to late blight. These genes could be spectral disease resistance genes and may have a role in the regulation of Fusarium wilt disease resistance. Our study will benefit the implementation of marker-assisted selection (MAS) for the genetic improvement of disease resistance and yield-related traits in sesame.
Collapse
Affiliation(s)
- Guizhen Xu
- Hebei Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yanqin Cui
- Hebei Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Sida Li
- Hebei Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Zhongbo Guan
- Hebei Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Hongmei Miao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yuanzhang Guo
- Hebei Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| |
Collapse
|
4
|
Seay D, Szczepanek A, De La Fuente GN, Votava E, Abdel-Haleem H. Genetic Diversity and Population Structure of a Large USDA Sesame Collection. PLANTS (BASEL, SWITZERLAND) 2024; 13:1765. [PMID: 38999604 PMCID: PMC11243581 DOI: 10.3390/plants13131765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
Sesame, Sesamum indicum L., is one of the oldest domesticated crops used for its oil and protein in many parts of the world. To build genomic resources for sesame that could be used to improve sesame productivity and responses to stresses, a USDA sesame germplasm collection of 501 accessions originating from 36 countries was used in this study. The panel was genotyped using genotyping-by-sequencing (GBS) technology to explore its genetic diversity and population structure and the relatedness among its accessions. A total of 24,735 high-quality single-nucleotide polymorphism (SNP) markers were identified over the 13 chromosomes. The marker density was 1900 SNP per chromosome, with an average polymorphism information content (PIC) value of 0.267. The marker polymorphisms and heterozygosity estimators indicated the usefulness of the identified SNPs to be used in future genetic studies and breeding activities. The population structure, principal components analysis (PCA), and unrooted neighbor-joining phylogenetic tree analyses classified two distinct subpopulations, indicating a wide genetic diversity within the USDA sesame collection. Analysis of molecular variance (AMOVA) revealed that 29.5% of the variation in this population was due to subpopulations, while 57.5% of the variation was due to variation among the accessions within the subpopulations. These results showed the degree of differentiation between the two subpopulations as well as within each subpopulation. The high fixation index (FST) between the distinguished subpopulations indicates a wide genetic diversity and high genetic differentiation among and within the identified subpopulations. The linkage disequilibrium (LD) pattern averaged 161 Kbp for the whole sesame genome, while the LD decay ranged from 168 Kbp at chromosome LG09 to 123 Kbp in chromosome LG05. These findings could explain the complications of linkage drag among the traits during selections. The selected accessions and genotyped SNPs provide tools to enhance genetic gain in sesame breeding programs through molecular approaches.
Collapse
Affiliation(s)
- Damien Seay
- US Arid Land Agricultural Research Center, USDA ARS, Maricopa, AZ 85138, USA
| | - Aaron Szczepanek
- US Arid Land Agricultural Research Center, USDA ARS, Maricopa, AZ 85138, USA
| | | | - Eric Votava
- Sesaco Corporation, 5405 Bandera Rd. San Antonio, TX 78238, USA
| | | |
Collapse
|
5
|
Ruperao P, Bajaj P, Yadav R, Angamuthu M, Subramani R, Rai V, Tiwari K, Rathore A, Singh K, Singh GP, Angadi UB, Mayes S, Rangan P. Double-digest restriction-associated DNA sequencing-based genotyping and its applications in sesame germplasm management. THE PLANT GENOME 2024; 17:e20447. [PMID: 38628142 DOI: 10.1002/tpg2.20447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 07/02/2024]
Abstract
Sesame (Sesamum indicum L.) is an ancient oilseed crop belonging to the family Pedaliaceae and a globally cultivated crop for its use as oil and food. In this study, 2496 sesame accessions, being conserved at the National Genebank of ICAR-National Bureau of Plant Genetic Resources (NBPGR), were genotyped using genomics-assisted double-digest restriction-associated DNA sequencing (ddRAD-seq) approach. A total of 64,910 filtered single-nucleotide polymorphisms (SNPs) were utilized to assess the genome-scale diversity. Applications of this genome-scale information (reduced representation using restriction enzymes) are demonstrated through the development of a molecular core collection (CC) representing maximal SNP diversity. This information is also applied in developing a mid-density panel (MDP) comprising 2515 hyper-variable SNPs, representing almost equally the genic and non-genic regions. The sesame CC comprising 384 accessions, a representative set of accessions with maximal diversity, was identified using multiple criteria such as k-mer (subsequence of length "k" in a sequence read) diversity, observed heterozygosity, CoreHunter3, GenoCore, and genetic differentiation. The coreset constituted around 15% of the total accessions studied, and this small subset had captured >60% SNP diversity of the entire population. In the coreset, the admixture analysis shows reduced genetic complexity, increased nucleotide diversity (π), and is geographically distributed without any repetitiveness in the CC germplasm. Within the CC, India-originated accessions exhibit higher diversity (as expected based on the center of diversity concept), than those accessions that were procured from various other countries. The identified CC set and the MDP will be a valuable resource for genomics-assisted accelerated sesame improvement program.
Collapse
Affiliation(s)
- Pradeep Ruperao
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Prasad Bajaj
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rashmi Yadav
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, India
| | | | - Rajkumar Subramani
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, India
| | - Vandana Rai
- ICAR-National Institute of Plant Biotechnology, PUSA Campus, New Delhi, India
| | - Kapil Tiwari
- Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India
| | | | - Kuldeep Singh
- Genebank, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Ulavappa B Angadi
- ICAR-Indian Agricultural Statistical Research Institute, New Delhi, India
| | - Sean Mayes
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Parimalan Rangan
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, India
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
6
|
Weldemichael MY, Gebremedhn HM. Omics technologies towards sesame improvement: a review. Mol Biol Rep 2023; 50:6885-6899. [PMID: 37326753 DOI: 10.1007/s11033-023-08551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
Genetic improvement of sesame (Sesamum indicum L.), one of the most important oilseed crops providing edible oil, proteins, minerals, and vitamins, is important to ensure a balanced diet for the growing world population. Increasing yield, seed protein, oil, minerals, and vitamins is urgently needed to meet the global demand. The production and productivity of sesame is very low due to various biotic and abiotic stresses. Therefore, various efforts have been made to combat these constraints and increase the production and productivity of sesame through conventional breeding. However, less attention has been paid to the genetic improvement of the crop through modern biotechnological methods, leaving it lagging behind other oilseed crops. Recently, however, the scenario has changed as sesame research has entered the era of "omics" and has made significant progress. Therefore, the purpose of this paper is to provide an overview of the progress made by omics research in improving sesame. This review presents a number of efforts that have been made over past decade using omics technologies to improve various traits of sesame, including seed composition, yield, and biotic and abiotic resistant varieties. It summarizes the advances in genetic improvement of sesame using omics technologies, such as germplasm development (web-based functional databases and germplasm resources), gene discovery (molecular markers and genetic linkage map construction), proteomics, transcriptomics, and metabolomics that have been carried out in the last decade. In conclusion, this review highlights future directions that may be important for omics-assisted breeding in sesame genetic improvement.
Collapse
Affiliation(s)
- Micheale Yifter Weldemichael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, P.O. Box 231, Mekelle, Tigrai, Ethiopia.
| | - Hailay Mehari Gebremedhn
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, P.O. Box 231, Mekelle, Tigrai, Ethiopia
| |
Collapse
|
7
|
Guden B, Yol E, Erdurmus C, Lucas SJ, Uzun B. Construction of a high-density genetic linkage map and QTL mapping for bioenergy-related traits in sweet sorghum [ Sorghum bicolor (L.) Moench]. FRONTIERS IN PLANT SCIENCE 2023; 14:1081931. [PMID: 37342135 PMCID: PMC10278949 DOI: 10.3389/fpls.2023.1081931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/15/2023] [Indexed: 06/22/2023]
Abstract
Sorghum is an important but arguably undervalued cereal crop, grown in large areas in Asia and Africa due to its natural resilience to drought and heat. There is growing demand for sweet sorghum as a source of bioethanol as well as food and feed. The improvement of bioenergy-related traits directly affects bioethanol production from sweet sorghum; therefore, understanding the genetic basis of these traits would enable new cultivars to be developed for bioenergy production. In order to reveal the genetic architecture behind bioenergy-related traits, we generated an F2 population from a cross between sweet sorghum cv. 'Erdurmus' and grain sorghum cv. 'Ogretmenoglu'. This was used to construct a genetic map from SNPs discovered by double-digest restriction-site associated DNA sequencing (ddRAD-seq). F3 lines derived from each F2 individual were phenotyped for bioenergy-related traits in two different locations and their genotypes were analyzed with the SNPs to identify QTL regions. On chromosomes 1, 7, and 9, three major plant height (PH) QTLs (qPH1.1, qPH7.1, and qPH9.1) were identified, with phenotypic variation explained (PVE) ranging from 10.8 to 34.8%. One major QTL (qPJ6.1) on chromosome 6 was associated with the plant juice trait (PJ) and explained 35.2% of its phenotypic variation. For fresh biomass weight (FBW), four major QTLs (qFBW1.1, qFBW6.1, qFBW7.1, and qFBW9.1) were determined on chromosomes 1, 6, 7, and 9, which explained 12.3, 14.5, 10.6, and 11.9% of the phenotypic variation, respectively. Moreover, two minor QTLs (qBX3.1 and qBX7.1) of Brix (BX) were mapped on chromosomes 3 and 7, explaining 8.6 and 9.7% of the phenotypic variation, respectively. The QTLs in two clusters (qPH7.1/qBX7.1 and qPH7.1/qFBW7.1) overlapped for PH, FBW and BX. The QTL, qFBW6.1, has not been previously reported. In addition, eight SNPs were converted into cleaved amplified polymorphic sequences (CAPS) markers, which can be easily detected by agarose gel electrophoresis. These QTLs and molecular markers can be used for pyramiding and marker-assisted selection studies in sorghum, to develop advanced lines that include desirable bioenergy-related traits.
Collapse
Affiliation(s)
- Birgul Guden
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Türkiye
| | - Engin Yol
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Türkiye
| | - Cengiz Erdurmus
- Department of Field Crops, West Mediterranean Agricultural Research Institute, Antalya, Türkiye
| | - Stuart James Lucas
- Sabanci University Nanotechnology Research and Application Centre, Sabanci University, Istanbul, Türkiye
| | - Bulent Uzun
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Türkiye
| |
Collapse
|
8
|
Ruperao P, Bajaj P, Subramani R, Yadav R, Reddy Lachagari VB, Lekkala SP, Rathore A, Archak S, Angadi UB, Singh R, Singh K, Mayes S, Rangan P. A pilot-scale comparison between single and double-digest RAD markers generated using GBS strategy in sesame (Sesamum indicum L.). PLoS One 2023; 18:e0286599. [PMID: 37267340 DOI: 10.1371/journal.pone.0286599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
To reduce the genome sequence representation, restriction site-associated DNA sequencing (RAD-seq) protocols is being widely used either with single-digest or double-digest methods. In this study, we genotyped the sesame population (48 sample size) in a pilot scale to compare single and double-digest RAD-seq (sd and ddRAD-seq) methods. We analysed the resulting short-read data generated from both protocols and assessed their performance impacting the downstream analysis using various parameters. The distinct k-mer count and gene presence absence variation (PAV) showed a significant difference between the sesame samples studied. Additionally, the variant calling from both datasets (sdRAD-seq and ddRAD-seq) exhibits a significant difference between them. The combined variants from both datasets helped in identifying the most diverse samples and possible sub-groups in the sesame population. The most diverse samples identified from each analysis (k-mer, gene PAV, SNP count, Heterozygosity, NJ and PCA) can possibly be representative samples holding major diversity of the small sesame population used in this study. The best possible strategies with suggested inputs for modifications to utilize the RAD-seq strategy efficiently on a large dataset containing thousands of samples to be subjected to molecular analysis like diversity, population structure and core development studies were discussed.
Collapse
Affiliation(s)
- Pradeep Ruperao
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Prasad Bajaj
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rajkumar Subramani
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, India
| | - Rashmi Yadav
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, India
| | | | | | | | - Sunil Archak
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, India
| | - Ulavappa B Angadi
- ICAR-Indian Agricultural Statistical Research Institute, New Delhi, India
| | - Rakesh Singh
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, India
| | - Kuldeep Singh
- Genebank, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sean Mayes
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Parimalan Rangan
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, India
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
9
|
Scariolo F, Palumbo F, Farinati S, Barcaccia G. Pipeline to Design Inbred Lines and F1 Hybrids of Leaf Chicory (Radicchio) Using Male Sterility and Genotyping-by-Sequencing. PLANTS (BASEL, SWITZERLAND) 2023; 12:1242. [PMID: 36986929 PMCID: PMC10055022 DOI: 10.3390/plants12061242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Chicory, a horticultural crop cultivated worldwide, presents many botanical varieties and local biotypes. Among these, cultivars of the Italian radicchio group of the pure species Cichorium intybus L. and its interspecific hybrids with Cichorium endivia L.-as the "Red of Chioggia" biotype-includes several phenotypes. This study uses a pipeline to address the marker-assisted breeding of F1 hybrids: it presents the genotyping-by-sequencing results of four elite inbred lines using a RADseq approach and an original molecular assay based on CAPS markers for screening mutants with nuclear male sterility in the radicchio of Chioggia. A total of 2953 SNP-carrying RADtags were identified and used to compute the actual estimates of homozygosity and overall genetic similarity and uniformity of the populations, as well as to determine their genetic distinctiveness and differentiation. Molecular data were further used to investigate the genomic distribution of the RADtags among the two Cichorium species, allowing their mapping in 1131 and 1071 coding sequences in chicory and endive, respectively. Paralleling this, an assay to screen the genotype at the male sterility locus Cims-1 was developed to discriminate wild-type and mutant alleles of the causative gene myb80-like. Moreover, a RADtag mapped close to this genomic region proved the potential application of this method for future marker-assisted selection tools. Finally, after combining the genotype information of the core collection, the best 10 individuals from each inbred line were selected to compute the observed genetic similarity as a measure of uniformity as well as the expected homozygosity and heterozygosity estimates scorable by the putative progenies derived from selfing (pollen parent) and full-sibling (seed parent) or pair-wise crossing (F1 hybrids). This predictive approach was conducted as a pilot study to understand the potential application of RADseq in the fine tuning of molecular marker-assisted breeding strategies aimed at the development of inbred lines and F1 hybrids in leaf chicory.
Collapse
|
10
|
Li H, Tahir ul Qamar M, Yang L, Liang J, You J, Wang L. Current Progress, Applications and Challenges of Multi-Omics Approaches in Sesame Genetic Improvement. Int J Mol Sci 2023; 24:3105. [PMID: 36834516 PMCID: PMC9965044 DOI: 10.3390/ijms24043105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Sesame is one of the important traditional oil crops in the world, and has high economic and nutritional value. Recently, due to the novel high throughput sequencing techniques and bioinformatical methods, the study of the genomics, methylomics, transcriptomics, proteomics and metabonomics of sesame has developed rapidly. Thus far, the genomes of five sesame accessions have been released, including white and black seed sesame. The genome studies reveal the function and structure of the sesame genome, and facilitate the exploitation of molecular markers, the construction of genetic maps and the study of pan-genomes. Methylomics focus on the study of the molecular level changes under different environmental conditions. Transcriptomics provide a powerful tool to study abiotic/biotic stress, organ development, and noncoding RNAs, and proteomics and metabonomics also provide some support in studying abiotic stress and important traits. In addition, the opportunities and challenges of multi-omics in sesame genetics breeding were also described. This review summarizes the current research status of sesame from the perspectives of multi-omics and hopes to provide help for further in-depth research on sesame.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Muhammad Tahir ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| | - Li Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Junchao Liang
- Jiangxi Province Key Laboratory of Oil Crops Biology, Crop Research Institute, Nanchang Branch of National Center of Oil Crops Improvement, Jiangxi Academy of Agricultural Sciences, Nanchang 330000, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
11
|
Kefale H, Wang L. Discovering favorable genes, QTLs, and genotypes as a genetic resource for sesame ( Sesamum indicum L.) improvement. Front Genet 2022; 13:1002182. [PMID: 36544489 PMCID: PMC9763032 DOI: 10.3389/fgene.2022.1002182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/03/2022] [Indexed: 12/12/2022] Open
Abstract
Sesame (Sesamum indicum L.) is an ancient diploid oilseed crop with high oil content, quality protein, and antioxidant characteristics that is produced in many countries worldwide. The genes, QTLs, and genetic resources of sesame are utilized by sesame researchers and growers. Researchers have identified the many useful traits of this crop, which are available on different platforms. The genes, genotypes, QTLs, and other genetic diversity data of sesame have been collected and stored in more than nine genomic resources, and five sesame crop marker databases are available online. However, data on phenotypic and genotypic variability, which would contribute to sesame improvements, are limited and not yet accessible. The present study comprehensively reviewed more than 110 original published research papers and scientifically incorporated the results. The candidate genes, genotypes, and QTLs of significantly important traits of sesame were identified. Genetic resources related to grain yield and yield component traits, oil content and quality, drought tolerance, salt tolerance, waterlogging resistance, disease resistance, mineral nutrient, capsule shattering resistance, and other agronomic important traits of sesame were studied. Numerous candidate genotypes, genes, QTLs, and alleles associated with those traits were summarized and discovered. The chromosome regions and linkage groups, maps associated with the best traits, and candidate genes were also included. The variability presented in this paper combined with sesame genetic information will help inform further sesame improvement.
Collapse
Affiliation(s)
- Habtamu Kefale
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China,Department of Plant Science, College of Agriculture and Natural Resources, Debre Markos University, Debre Markos, Ethiopia,*Correspondence: Habtamu Kefale,
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
12
|
Teklu DH, Shimelis H, Tesfaye A, Shayanowako AIT. Analyses of genetic diversity and population structure of sesame (Sesamum indicum L.) germplasm collections through seed oil and fatty acid compositions and SSR markers. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Pandey BB, Ratnakumar P, Usha Kiran B, Dudhe MY, Lakshmi GS, Ramesh K, Guhey A. Identifying Traits Associated With Terminal Drought Tolerance in Sesame ( Sesamum indicum L.) Genotypes. FRONTIERS IN PLANT SCIENCE 2021; 12:739896. [PMID: 34956253 PMCID: PMC8709571 DOI: 10.3389/fpls.2021.739896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Sesame is predominantly cultivated in rainfed and low fertile lands and is frequently exposed to terminal drought. Sesamum species inhabiting dryland ecosystems adaptively diverge from those inhabiting rainfed habitats, and drought-specific traits have a genetic basis. In sesame, traits associated with drought conditions have not been explored to date, yet studies of these traits are needed given that drought is predicted to become more frequent and severe in many parts of the world because of climate change. Here, 76 accessions from the available Indian core set were used to quantify variation in several traits under irrigated (WW) and terminal drought stress (WS) conditions as well as their association with seed yield over two consecutive years. The range of trait variation among the studied genotypes under WW and WS was significant. Furthermore, the traits associated with seed yield under WW and WS differed. The per se performance of the accessions indicated that the expression of most traits was reduced under WS. The correlation analysis revealed that the number of branches, leaf area (LA), leaves dry weight (LDW), number of capsules plant-1, and harvest index (HI) were positively correlated with seed yield under WW and WS, and total dry matter (TDM), plant stem weight, and canopy temperature (CT) were negatively correlated with seed yield under WW and WS, indicating that smaller and cooler canopy genotypes had higher yields. The genotypes IC-131936, IC-204045, IC-204861, IC-205363, IC-205311, and IC-73576 with the highest seed yields were characterized by low canopy temperature, high relative water content, and high harvest index under WS. Phenotypic and molecular diversity analysis was conducted on genotypes along with checks. Phenotypic diversity was assessed using multivariate analysis, whereas molecular diversity was estimated using simple sequence repeat (SSR) loci to facilitate the use of sesame in breeding and genetic mapping. SSRs showed low allelic variation, as indicated by a low average number of alleles (2.31) per locus, gene diversity (0.25), and polymorphism information content (0.22). Cluster analysis (CA) [neighbor-joining (NJ) tree] revealed three major genotypic groups and structure analysis showed 4 populations. The diverse genotypes identified with promising morpho-physiological traits can be used in breeding programs to develop new varieties.
Collapse
Affiliation(s)
- Brij Bihari Pandey
- Indian Council of Agriculture Research (ICAR)-Indian Institute of Oilseeds Research, Hyderabad, India
- Department of Plant Physiology, Indira Gandhi Agricultural University, Raipur, India
| | - P. Ratnakumar
- Indian Council of Agriculture Research (ICAR)-Indian Institute of Oilseeds Research, Hyderabad, India
| | - B. Usha Kiran
- Indian Council of Agriculture Research (ICAR)-Indian Institute of Oilseeds Research, Hyderabad, India
| | - Mangesh Y. Dudhe
- Indian Council of Agriculture Research (ICAR)-Indian Institute of Oilseeds Research, Hyderabad, India
| | - G. Sowjanya Lakshmi
- Indian Council of Agriculture Research (ICAR)-Indian Institute of Oilseeds Research, Hyderabad, India
- Department of Plant Physiology, Indira Gandhi Agricultural University, Raipur, India
| | - Kulasekaran Ramesh
- Indian Council of Agriculture Research (ICAR)-Indian Institute of Oilseeds Research, Hyderabad, India
| | - Arti Guhey
- Department of Plant Physiology, Indira Gandhi Agricultural University, Raipur, India
| |
Collapse
|
14
|
Sabag I, Morota G, Peleg Z. Genome-wide association analysis uncovers the genetic architecture of tradeoff between flowering date and yield components in sesame. BMC PLANT BIOLOGY 2021; 21:549. [PMID: 34809568 PMCID: PMC8607594 DOI: 10.1186/s12870-021-03328-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/08/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Unrevealing the genetic makeup of crop morpho-agronomic traits is essential for improving yield quality and sustainability. Sesame (Sesamum indicum L.) is one of the oldest oil-crops in the world. Despite its economic and agricultural importance, it is an 'orphan crop-plant' that has undergone limited modern selection, and, as a consequence preserved wide genetic diversity. Here we established a new sesame panel (SCHUJI) that contains 184 genotypes representing wide phenotypic variation and is geographically distributed. We harnessed the natural variation of this panel to perform genome-wide association studies for morpho-agronomic traits under the Mediterranean climate conditions. RESULTS Field-based phenotyping of the SCHUJI panel across two seasons exposed wide phenotypic variation for all traits. Using 20,294 single-nucleotide polymorphism markers, we detected 50 genomic signals associated with these traits. Major genomic region on LG2 was associated with flowering date and yield-related traits, exemplified the key role of the flowering date on productivity. CONCLUSIONS Our results shed light on the genetic architecture of flowering date and its interaction with yield components in sesame and may serve as a basis for future sesame breeding programs in the Mediterranean basin.
Collapse
Affiliation(s)
- Idan Sabag
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, 7610001, Rehovot, Israel
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
| | - Gota Morota
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA.
| | - Zvi Peleg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, 7610001, Rehovot, Israel.
| |
Collapse
|
15
|
Sodedji FAK, Agbahoungba S, Agoyi EE, Kafoutchoni MK, Choi J, Nguetta SPA, Assogbadjo AE, Kim HY. Diversity, population structure, and linkage disequilibrium among cowpea accessions. THE PLANT GENOME 2021; 14:e20113. [PMID: 34275189 DOI: 10.1002/tpg2.20113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/03/2021] [Indexed: 05/27/2023]
Abstract
Cowpea [Vigna unguiculata (L.) Walp] is a globally important food security crop. However, it is susceptible to pest and disease; hence, constant breeding efforts based on its diversity are required for its improvement. The present study aims to investigate the genetic diversity, population structure, and linkage disequilibrium (LD) among 274 cowpea accessions from different origins. A total of 3,127 single nucleotide polymorphism (SNP) markers generated using diversity array technology (DArT) was used. Population structure, neighbor-joining clustering, and principal component analyses indicated three subpopulations within the germplasm. Results of STRUCTURE analysis and discriminant analysis of principal components (DAPC) were complementary in assessing the structuration of the diversity among the germplasm, with the grouping of the accessions improved in DAPC. Genetic distances of 0.005-0.44 were observed among accessions. Accessions from western and central Africa, eastern and central Africa, and Asia were predominant and distributed across all subpopulations. The subpopulations had fixation indexes of 0.48-0.56. Analysis of molecular variance revealed that within subpopulation variation accounted for 81% of observed genetic variation in the germplasm. The subpopulations mainly consisted of inbred lines (inbreeding coefficient = 1) with common alleles, although they were from different geographical regions. This reflects considerable seed movement and germplasm exchange between regions. The LD was characterized by low decay for great physical distances between markers. The LD decay distance varied among chromosomes with the average distance of 80-100 kb across the genome. Thus, crop improvement is possible, and the LD will facilitate genome-wide association studies on quality attributes and critical agronomic traits in cowpea.
Collapse
Affiliation(s)
- Frejus Ariel Kpedetin Sodedji
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon, 25451, Republic of Korea
- Non-timber Forest Products and Orphan Crop Species Unit, Laboratory of Applied Ecology (LEA), University of Abomey-Calavi (UAC), 01 BP: 526 Cotonou, Benin
- West Africa Center of Excellence in Climate Change Biodiversity and Sustainable Agriculture (CEA-CCBAD), Biosciences Research Unit, University Felix Houphouet-Boigny, Abidjan, Lagunes, 22 BP 461, Côte d'Ivoire
| | - Symphorien Agbahoungba
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon, 25451, Republic of Korea
| | - Eric Echikintho Agoyi
- Non-timber Forest Products and Orphan Crop Species Unit, Laboratory of Applied Ecology (LEA), University of Abomey-Calavi (UAC), 01 BP: 526 Cotonou, Benin
| | - Médard Konoutan Kafoutchoni
- Non-timber Forest Products and Orphan Crop Species Unit, Laboratory of Applied Ecology (LEA), University of Abomey-Calavi (UAC), 01 BP: 526 Cotonou, Benin
| | - Jaeyoung Choi
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon, 25451, Republic of Korea
| | - Simon-Pierre Assanvo Nguetta
- West Africa Center of Excellence in Climate Change Biodiversity and Sustainable Agriculture (CEA-CCBAD), Biosciences Research Unit, University Felix Houphouet-Boigny, Abidjan, Lagunes, 22 BP 461, Côte d'Ivoire
| | - Achille Ephrem Assogbadjo
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon, 25451, Republic of Korea
| | - Ho-Youn Kim
- Non-timber Forest Products and Orphan Crop Species Unit, Laboratory of Applied Ecology (LEA), University of Abomey-Calavi (UAC), 01 BP: 526 Cotonou, Benin
| |
Collapse
|
16
|
Berhe M, Dossa K, You J, Mboup PA, Diallo IN, Diouf D, Zhang X, Wang L. Genome-wide association study and its applications in the non-model crop Sesamum indicum. BMC PLANT BIOLOGY 2021; 21:283. [PMID: 34157965 PMCID: PMC8218510 DOI: 10.1186/s12870-021-03046-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/17/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Sesame is a rare example of non-model and minor crop for which numerous genetic loci and candidate genes underlying features of interest have been disclosed at relatively high resolution. These progresses have been achieved thanks to the applications of the genome-wide association study (GWAS) approach. GWAS has benefited from the availability of high-quality genomes, re-sequencing data from thousands of genotypes, extensive transcriptome sequencing, development of haplotype map and web-based functional databases in sesame. RESULTS In this paper, we reviewed the GWAS methods, the underlying statistical models and the applications for genetic discovery of important traits in sesame. A novel online database SiGeDiD ( http://sigedid.ucad.sn/ ) has been developed to provide access to all genetic and genomic discoveries through GWAS in sesame. We also tested for the first time, applications of various new GWAS multi-locus models in sesame. CONCLUSIONS Collectively, this work portrays steps and provides guidelines for efficient GWAS implementation in sesame, a non-model crop.
Collapse
Affiliation(s)
- Muez Berhe
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, and Rural Affairs, No.2 Xudong 2nd Road, Wuhan, 430062, China
- Humera Agricultural Research Center of Tigray Agricultural Research Institute, Humera, Tigray, Ethiopia
| | - Komivi Dossa
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, and Rural Affairs, No.2 Xudong 2nd Road, Wuhan, 430062, China.
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP 5005 Dakar-Fann, 10700, Dakar, Senegal.
- Laboratory of Genetics, Horticulture and Seed Sciences, Faculty of Agronomic Sciences, University of Abomey-Calavi, 01 BP 526, Cotonou, Republic of Benin.
| | - Jun You
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, and Rural Affairs, No.2 Xudong 2nd Road, Wuhan, 430062, China
| | - Pape Adama Mboup
- Département de Mathématiques et Informatique, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP 5005 Dakar-Fann, 10700, Dakar, Senegal
| | - Idrissa Navel Diallo
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP 5005 Dakar-Fann, 10700, Dakar, Senegal
- Département de Mathématiques et Informatique, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP 5005 Dakar-Fann, 10700, Dakar, Senegal
| | - Diaga Diouf
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP 5005 Dakar-Fann, 10700, Dakar, Senegal
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, and Rural Affairs, No.2 Xudong 2nd Road, Wuhan, 430062, China
| | - Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, and Rural Affairs, No.2 Xudong 2nd Road, Wuhan, 430062, China.
| |
Collapse
|
17
|
Liu C, Chen H, Yang X, Zhang C, Ren Z. Exploring the genomic resources of seven domestic Bactrian camel populations in China through restriction site-associated DNA sequencing. PLoS One 2021; 16:e0250168. [PMID: 33914766 PMCID: PMC8084232 DOI: 10.1371/journal.pone.0250168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 04/01/2021] [Indexed: 12/30/2022] Open
Abstract
The domestic Bactrian camel is a valuable livestock resource in arid desert areas. Therefore, it is essential to understand the roles of important genes responsible for its characteristics. We used restriction site-associated DNA sequencing (RAD-seq) to detect single nucleotide polymorphism (SNP) markers in seven domestic Bactrian camel populations. In total, 482,786 SNPs were genotyped. The pool of all remaining others were selected as the reference population, and the Nanjiang, Sunite, Alashan, Dongjiang, Beijiang, Qinghai, and Hexi camels were the target populations for selection signature analysis. We obtained 603, 494, 622, 624, 444, 588, and 762 selected genes, respectively, from members of the seven target populations. Gene Ontology classifications and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed, and the functions of these genes were further studied using Genecards to identify genes potentially related to the unique characteristics of the camel population, such as heat resistance and stress resistance. Across all populations, cellular process, single-organism process, and metabolic process were the most abundant biological process subcategories, whereas cell, cell part, and organelle were the most abundant cellular component subcategories. Binding and catalytic activity represented the main molecular functions. The selected genes in Alashan camels were mainly enriched in ubiquitin mediated proteolysis pathways, the selected genes in Beijiang camels were mainly enriched in MAPK signaling pathways, the selected genes in Dongjiang camels were mainly enriched in RNA transport pathways, the selected genes in Hexi camels were mainly enriched in endocytosis pathways, the selected genes in Nanjiang camels were mainly enriched in insulin signaling pathways, while the selected genes in Qinghai camels were mainly enriched in focal adhesion pathways; these selected genes in Sunite camels were mainly enriched in ribosome pathways. We also found that Nanjiang (HSPA4L and INTU), and Alashan camels (INO80E) harbored genes related to the environment and characteristics. These findings provide useful insights into the genes related to the unique characteristics of domestic Bactrian camels in China, and a basis for genomic resource development in this species.
Collapse
Affiliation(s)
- Chenmiao Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, shaanxi, China
| | - Huiling Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, shaanxi, China
| | - Xuejiao Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, shaanxi, China
| | - Chengdong Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, shaanxi, China
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, shaanxi, China
- * E-mail:
| |
Collapse
|
18
|
Yol E, Basak M, Kızıl S, Lucas SJ, Uzun B. A High-Density SNP Genetic Map Construction Using ddRAD-Seq and Mapping of Capsule Shattering Trait in Sesame. FRONTIERS IN PLANT SCIENCE 2021; 12:679659. [PMID: 34140967 PMCID: PMC8204047 DOI: 10.3389/fpls.2021.679659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/23/2021] [Indexed: 05/05/2023]
Abstract
The seed-bearing capsule of sesame shatters at harvest. This wildish trait makes the crop unsuitable for mechanized harvesting and also restricts its commercial potential by limiting the cultivation for countries that have no access to low-cost labor. Therefore, the underlying genetic basis of the capsule shattering trait is highly important in order to develop mechanization-ready varieties for sustainable sesame farming. In the present study, we generated a sesame F2 population derived from a cross between a capsule shattering cultivar (Muganli-57) and a non-shattering mutant (PI 599446), which was used to construct a genetic map based on double-digest restriction-site-associated DNA sequencing. The resulting high-density genetic map contained 782 single-nucleotide polymorphisms (SNPs) and spanned a length of 697.3 cM, with an average marker interval of 0.89 cM. Based on the reference genome, the capsule shattering trait was mapped onto SNP marker S8_5062843 (78.9 cM) near the distal end of LG8 (chromosome 8). In order to reveal genes potentially controlling the shattering trait, the marker region (S8_5062843) was examined, and a candidate gene including six CDSs was identified. Annotation showed that the gene encodes a protein with 440 amino acids, sharing ∼99% homology with transcription repressor KAN1. Compared with the capsule shattering allele, the SNP change and altered splicing in the flanking region of S8_5062843 caused a frameshift mutation in the mRNA, resulting in the loss of function of this gene in the mutant parent and thus in non-shattering capsules and leaf curling. With the use of genomic data, InDel and CAPS markers were developed to differentiate shattering and non-shattering capsule genotypes in marker-assisted selection studies. The obtained results in the study can be beneficial in breeding programs to improve the shattering trait and enhance sesame productivity.
Collapse
Affiliation(s)
- Engin Yol
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
- *Correspondence: Engin Yol,
| | - Merve Basak
- Department of Medicinal and Aromatic Plants, Akev University, Antalya, Turkey
| | - Sibel Kızıl
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| | - Stuart James Lucas
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Bulent Uzun
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| |
Collapse
|
19
|
Hazra A, Kumar R, Sengupta C, Das S. Genome-wide SNP discovery from Darjeeling tea cultivars - their functional impacts and application toward population structure and trait associations. Genomics 2020; 113:66-78. [PMID: 33276009 DOI: 10.1016/j.ygeno.2020.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 01/07/2023]
Abstract
Genotyping by sequencing and identification of functionally relevant nucleotide variations in crop accessions are the key steps to unravel genetic control of desirable traits. Elite cultivars of Darjeeling tea were undergone SNP genotyping by double-digest restriction-site associated DNA sequencing method. This study reports a set of 54,206 high-quality SNP markers discovered from ~10.4 GB sequence data, encompassing 15 chromosomes of the reference tea genome. Genetic relatedness among the accessions conforms to the analyses of Bayesian clustering, UPGMA, and PCoA methods. Genomic positions of the discovered SNPs and their putative effect on annotated genes designated a thoughtful understanding of their functional aspects in tea system biology. A group of 95 genes was identified to be affected by high impact variants. Genome-wide association analyses of 21 agronomic and biochemical phenotypes resulted in trait-linked polymorphic loci with strong confidence (p < 0.05 and 0.001).
Collapse
Affiliation(s)
- Anjan Hazra
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata 700108, India
| | - Rakesh Kumar
- Darjeeling Tea Research and Development center, Kurseong, West Bengal 734203, India
| | - Chandan Sengupta
- Department of Botany, University of Kalyani, Nadia 742325, India
| | - Sauren Das
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata 700108, India.
| |
Collapse
|
20
|
Teboul N, Gadri Y, Berkovich Z, Reifen R, Peleg Z. Genetic Architecture Underpinning Yield Components and Seed Mineral-Nutrients in Sesame. Genes (Basel) 2020; 11:E1221. [PMID: 33081010 PMCID: PMC7603122 DOI: 10.3390/genes11101221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
Genetic dissection of yield components and seed mineral-nutrient is crucial for understanding plant physiological and biochemical processes and alleviate nutrient malnutrition. Sesame (Sesamum indicum L.) is an orphan crop that harbors rich allelic repertoire for seed mineral-nutrients. Here, we harness this wide diversity to study the genetic architecture of yield components and seed mineral-nutrients using a core-collection of worldwide genotypes and segregating mapping population. We also tested the association between these traits and the effect of seed nutrients concentration on their bio-accessibility. Wide genetic diversity for yield components and seed mineral-nutrients was found among the core-collection. A high-density linkage map consisting of 19,309 markers was constructed and used for genetic mapping of 84 QTL associated with yield components and 50 QTL for seed minerals. To the best of our knowledge, this is the first report on mineral-nutrients QTL in sesame. Genomic regions with a cluster of overlapping QTL for several morphological and nutritional traits were identified and considered as genomic hotspots. Candidate gene analysis revealed potential functional associations between QTL and corresponding genes, which offers unique opportunities for synchronous improvement of mineral-nutrients. Our findings shed-light on the genetic architecture of yield components, seed mineral-nutrients and their inter- and intra- relationships, which may facilitate future breeding efforts to develop bio-fortified sesame cultivars.
Collapse
Affiliation(s)
- Naama Teboul
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (N.T.); (Y.G.)
| | - Yaron Gadri
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (N.T.); (Y.G.)
| | - Zipi Berkovich
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (Z.B.); (R.R.)
| | - Ram Reifen
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (Z.B.); (R.R.)
| | - Zvi Peleg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (N.T.); (Y.G.)
| |
Collapse
|
21
|
Genome-Wide Discovery of InDel Markers in Sesame ( Sesamum indicum L.) Using ddRADSeq. PLANTS 2020; 9:plants9101262. [PMID: 32987937 PMCID: PMC7599716 DOI: 10.3390/plants9101262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 01/15/2023]
Abstract
The development and validation of different types of molecular markers is crucial to conducting marker-assisted sesame breeding. Insertion-deletion (InDel) markers are highly polymorphic and suitable for low-cost gel-based genotyping. From this perspective, this study aimed to discover and develop InDel markers through bioinformatic analysis of double digest restriction site-associated DNA sequencing (ddRADSeq) data from 95 accessions belonging to the Mediterranean sesame core collection. Bioinformatic analysis indicated the presence of 7477 InDel positions genome wide. Deletions accounted for 61% of the InDels and short deletions (1-2 bp) were the most abundant type (94.9%). On average, InDels of at least 2 bp in length had a frequency of 2.99 InDels/Mb. The 86 InDel sites having length ≥8 bp were detected in genome-wide analysis. These regions can be used for the development of InDel markers considering low-cost genotyping with agarose gels. In order to validate these InDels, a total of 38 InDel regions were selected and primers were successfully amplified. About 13% of these InDels were in the coding sequences (CDSs) and in the 3'- and 5'- untranslated regions (UTRs). Furthermore, the efficiencies of these 16 InDel markers were assessed on 32 sesame accessions. The polymorphic information content (PIC) of these 16 markers ranged from 0.06 to 0.62 (average: 0.33). These results demonstrated the success of InDel identification and marker development for sesame with the use of ddRADSeq data. These agarose-resolvable InDel markers are expected to be useful for sesame breeders.
Collapse
|