1
|
Berlau A, Stoll S, Edel B, Löffler B, Rödel J. Evaluation of the Eazyplex ®Candida ID LAMP Assay for the Rapid Diagnosis of Positive Blood Cultures. Diagnostics (Basel) 2024; 14:2125. [PMID: 39410532 PMCID: PMC11476059 DOI: 10.3390/diagnostics14192125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/20/2024] Open
Abstract
Rapid molecular assays can be used to identify Candida pathogens directly from positive blood cultures (BCs) in a timely manner compared to standard methods using subcultures. In this study, the eazyplex®Candida ID assay, which is based on loop-mediated amplification (LAMP) and is currently for research use only, was evaluated for the identification of the most common fungal species. A total of 190 BCs were analysed. Sensitivity and specificity were 93.88% and 99.26% for C. albicans, 89.13% and 100% for Nakaseomyces glabratus (N. glabratus), 100% and 100% for Pichia kudravzevii (P. kudriavzevii), 100% and 100% for C. tropicalis, and 100% and 99.44% for C. parapsilosis. Sample preparation took approximately 11 min and positive amplification results were obtained between 8.5 and 19 min. The eazyplex®Candida ID LAMP assay is an easy-to-use diagnostic tool that can optimise the management of patients with candidemia.
Collapse
Affiliation(s)
| | | | | | | | - Jürgen Rödel
- Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany; (A.B.); (S.S.); (B.E.); (B.L.)
| |
Collapse
|
2
|
Salimi M, Javidnia J, Faeli L, Moslemi A, Hedayati M, Haghani I, Aghili S, Moazeni M, Badiee P, Roudbari M, Zarrinfar H, Mohammadi R, Lotfali E, Nouripour‐Sisakht S, Seyedmousavi S, Shokohi T, Abastabar M. Molecular Epidemiology and Antifungal Susceptibility Profile in Nakaseomyces glabrata Species Complex: A 5-Year Countrywide Study. J Clin Lab Anal 2024; 38:e25042. [PMID: 38775102 PMCID: PMC11137845 DOI: 10.1002/jcla.25042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/05/2024] [Accepted: 04/21/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The current study aimed to identify Iranian Nakaseomyces (Candida) glabrata complex species in the clinical isolates and determine their antifungal susceptibility profile. METHODS In total, 320 N. glabrata clinical isolates were collected from patients hospitalized in different geographical regions of Iran. The initial screening was performed by morphological characteristics on CHROMagar Candida. Each isolate was identified by targeting the D1/D2 rDNA using a multiplex-PCR method. To validate the mPCR method and determine genetic diversity, the ITS-rDNA region was randomly sequenced in 40 isolates. Additionally, antifungal susceptibility was evaluated against nine antifungal agents following the CLSI M27-A4 guidelines. RESULTS All clinical isolates from Iran were identified as N. glabrata. The analysis of ITS-rDNA sequence data revealed the presence of eight distinct ITS clades and 10 haplotypes among the 40 isolates of N. glabrata. The predominant clades identified were Clades VII, V, and IV, which respectively accounted for 22.5%, 17.5%, and 17.5% isolates. The widest MIC ranges were observed for voriconazole (0.016-8 μg/mL) and isavuconazole (0.016-2 μg/mL), whereas the narrowest ranges were seen with itraconazole and amphotericin B (0.25-2 μg/mL). CONCLUSION Haplotype diversity can be a valuable approach for studying the genetic diversity, transmission patterns, and epidemiology of the N. glabrata complex.
Collapse
Affiliation(s)
- Maryam Salimi
- Student Research Committee, School of MedicineMazandaran University of Medical SciencesSariIran
- Invasive Fungi Research Center, Communicable Diseases InstituteMazandaran University of Medical SciencesSariIran
| | - Javad Javidnia
- Invasive Fungi Research Center, Communicable Diseases InstituteMazandaran University of Medical SciencesSariIran
- Department of Medical Mycology, School of MedicineMazandaran University of Medical SciencesSariIran
| | - Leila Faeli
- Student Research Committee, School of MedicineMazandaran University of Medical SciencesSariIran
- Invasive Fungi Research Center, Communicable Diseases InstituteMazandaran University of Medical SciencesSariIran
| | - Azam Moslemi
- Student Research Committee, School of MedicineMazandaran University of Medical SciencesSariIran
- Invasive Fungi Research Center, Communicable Diseases InstituteMazandaran University of Medical SciencesSariIran
| | - Mohammad Taghi Hedayati
- Invasive Fungi Research Center, Communicable Diseases InstituteMazandaran University of Medical SciencesSariIran
- Department of Medical Mycology, School of MedicineMazandaran University of Medical SciencesSariIran
| | - Iman Haghani
- Invasive Fungi Research Center, Communicable Diseases InstituteMazandaran University of Medical SciencesSariIran
- Department of Medical Mycology, School of MedicineMazandaran University of Medical SciencesSariIran
| | - Seyed Reza Aghili
- Invasive Fungi Research Center, Communicable Diseases InstituteMazandaran University of Medical SciencesSariIran
- Department of Medical Mycology, School of MedicineMazandaran University of Medical SciencesSariIran
| | - Maryam Moazeni
- Invasive Fungi Research Center, Communicable Diseases InstituteMazandaran University of Medical SciencesSariIran
- Department of Medical Mycology, School of MedicineMazandaran University of Medical SciencesSariIran
| | - Parisa Badiee
- Clinical Microbiology Research CenterShiraz University of Medical SciencesShirazIran
| | - Maryam Roudbari
- Department of Parasitology and Mycology, School of MedicineIran University of Medical SciencesTehranIran
| | - Hossein Zarrinfar
- Allergy Research CenterMashhad University of Medical SciencesMashhadIran
| | - Rasoul Mohammadi
- Department of Medical Parasitology and Mycology, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Ensieh Lotfali
- Department of Medical Parasitology and Mycology, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | | | - Seyedmojtaba Seyedmousavi
- Microbiology Service, Department of Laboratory Medicine, Clinical CenterNational Institutes of HealthBethesdaMarylandUSA
| | - Tahereh Shokohi
- Invasive Fungi Research Center, Communicable Diseases InstituteMazandaran University of Medical SciencesSariIran
- Department of Medical Mycology, School of MedicineMazandaran University of Medical SciencesSariIran
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Communicable Diseases InstituteMazandaran University of Medical SciencesSariIran
- Department of Medical Mycology, School of MedicineMazandaran University of Medical SciencesSariIran
| |
Collapse
|
3
|
Ahmad S, Asadzadeh M, Al-Sweih N, Khan Z. Spectrum and management of rare Candida/yeast infections in Kuwait in the Middle East. Ther Adv Infect Dis 2024; 11:20499361241263733. [PMID: 39070702 PMCID: PMC11273600 DOI: 10.1177/20499361241263733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/06/2024] [Indexed: 07/30/2024] Open
Abstract
Invasive fungal infections (IFIs) are associated with high mortality rates and mostly affect patients with compromised immunity. The incidence of IFIs is increasing worldwide with the expanding population of susceptible patients. Candida and other yeast infections represent a major component of IFIs. Rare Candida/yeast infections have also increased in recent years and pose considerable diagnostic and management challenges as they are not easily recognized by routine phenotypic characteristic-based diagnostic methods and/or by the automated yeast identification systems. Rare Candida/yeasts also exhibit reduced susceptibility to antifungal drugs making proper management of invasive infections challenging. Here, we review the diagnosis and management of 60 cases of rare Candida/yeast IFIs described so far in Kuwait, an Arabian Gulf country in the Middle East. Interestingly, majority (34 of 60, 56.7%) of these rare Candida/yeast invasive infections occurred among neonates or premature, very-low-birth-weight neonates, usually following prior bacteremia episodes. The clinical details, treatment given, and outcome were available for 28 of 34 neonates. The crude mortality rate among these neonates was 32.2% as 19 of 28 (67.8%) survived the infection and were discharged in healthy condition, likely due to accurate diagnosis and frequent use of combination therapy. Physicians treating patients with extended stay under intensive care, on mechanical ventilation, receiving broad spectrum antibiotics and with gastrointestinal surgery/complications should proactively investigate IFIs. Timely diagnosis and early antifungal treatment are essential to decrease mortality. Understanding the epidemiology and spectrum of rare Candida/yeast invasive infections in different geographical regions, their susceptibility profiles and management will help to devise novel diagnostic and treatment approaches and formulate guidelines for improved patient outcome.
Collapse
Affiliation(s)
- Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Noura Al-Sweih
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Ziauddin Khan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
4
|
Asadzadeh M, Ahmad S, Al-Sweih N, Khan Z. Molecular fingerprinting by multi-locus sequence typing identifies microevolution and nosocomial transmission of Candida glabrata in Kuwait. Front Public Health 2023; 11:1242622. [PMID: 37744513 PMCID: PMC10515652 DOI: 10.3389/fpubh.2023.1242622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Backgrounds Candida glabrata is a frequently isolated non-albicans Candida species and invasive C. glabrata infections in older patients are associated with high mortality rates. Opportunistic Candida infections in critically ill patients may be either endogenous or nosocomial in origin and this distinction is critical for effective intervention strategies. This study performed multi-locus sequence typing (MLST) to study genotypic relatedness among clinical C. glabrata isolates in Kuwait. Methods Candida glabrata isolates (n = 91) cultured from 91 patients were analyzed by MLST. Repeat isolates (n = 16) from 9 patients were also used. Antifungal susceptibility testing for fluconazole, voriconazole, caspofungin and amphotericin B (AMB) was determined by Etest. Genetic relatedness was determined by constructing phylogenetic tree and minimum spanning tree by using BioNumerics software. Results Resistance to fluconazole, voriconazole and AMB was detected in 7, 2 and 10 C. glabrata isolates, respectively. MLST identified 28 sequence types (STs), including 12 new STs. ST46 (n = 33), ST3 (n = 8), ST7 (n = 6) and ST55 (n = 6) were prevalent in ≥4 hospitals. Repeat isolates obtained from same or different site yielded identical ST. No association of ST46 with source of isolation or resistance to antifungals was apparent. Microevolution and cross-transmission of infection was indicated in two hospitals that yielded majority (57 of 91, 67%) of C. glabrata. Conclusion Our data suggest that C. glabrata undergoes microevolution in hospital environment and can be nosocomially transmitted to other susceptible patients. Thus, proper infection control practices during routine procedures on C. glabrata-infected patients may prevent transmission of this pathogen to other hospitalized patients.
Collapse
Affiliation(s)
| | - Suhail Ahmad
- Department of Microbiology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | | | | |
Collapse
|
5
|
Kumar S, Kumar A, Roudbary M, Mohammadi R, Černáková L, Rodrigues CF. Overview on the Infections Related to Rare Candida Species. Pathogens 2022; 11:963. [PMID: 36145394 PMCID: PMC9505029 DOI: 10.3390/pathogens11090963] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022] Open
Abstract
Atypical Candida spp. infections are rising, mostly due to the increasing numbers of immunocompromised patients. The most common Candida spp. is still Candida albicans; however, in the last decades, there has been an increase in non-Candida albicans Candida species infections (e.g., Candida glabrata, Candida parapsilosis, and Candida tropicalis). Furthermore, in the last 10 years, the reports on uncommon yeasts, such as Candida lusitaniae, Candida intermedia, or Candida norvegensis, have also worryingly increased. This review summarizes the information, mostly related to the last decade, regarding the infections, diagnosis, treatment, and resistance of these uncommon Candida species. In general, there has been an increase in the number of articles associated with the incidence of these species. Additionally, in several cases, there was a suggestive antifungal resistance, particularly with azoles, which is troublesome for therapeutic success.
Collapse
Affiliation(s)
- Sunil Kumar
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, Chhattisgarh, India
| | - Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Rasoul Mohammadi
- Department of Medical Parasitology and Mycology, Infectious Diseases and Tropical Medicine Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Célia Fortuna Rodrigues
- TOXRUN—Toxicology Research Unit, CESPU—Cooperativa de Ensino Superior Politécnico e Universitário, 4585-116 Gandra PRD, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
6
|
Wang K, Huo L, Li Y, Zhu L, Wang Y, Wang L. Establishment of a rapid diagnosis method for Candida glabrata based on the ITS2 gene using recombinase polymerase amplification combined with lateral flow strips. Front Cell Infect Microbiol 2022; 12:953302. [PMID: 35967865 PMCID: PMC9366737 DOI: 10.3389/fcimb.2022.953302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Candida glabrata is the second or third most common Candida-associated species isolated from hospital-acquired infections, surpassing even C. albicans in some hospitals. With the rapid progression of the disease course of C. glabrata infections, there is an urgent need for a rapid and sensitive on-site assay for clinical diagnosis. Isothermal amplification is a recently developed method for rapid nucleic acid detection that is being increasingly used for on-site detection, especially recombinase polymerase amplification (RPA). RPA combined with lateral flow strips (LFS) can rapidly amplify and visually detect the target gene within 20 min. The whole detection process can be controlled within 30–60 min by rapid sample pre-treatment. In this study, RPA-LFS was used to amplify the internal transcribed spacer region 2 gene of C. glabrata. The primer–probe design was optimized by introducing base mismatches (probe modification of one base) to obtain a highly specific and sensitive primer–probe combination for clinical sample detection. RPA-LFS was performed on 23 common clinical pathogens to determine the specificity of the assay system. The RPA-LFS system specifically detected C. glabrata without cross-reaction with other fungi or bacteria. Gradient dilutions of the template were tested to explore the lower limit of detection of this detection system and to determine the sensitivity of the assay. The sensitivity was 10 CFU/µL, without interference from genomic DNA of other species. The RPA-LFS and qPCR assays were performed on 227 clinical samples to evaluate the detection performance of the RPA-LFS system. Eighty-five samples were identified as C. glabrata, representing a detection rate of 37.5%. The results were consistent with qPCR and conventional culture methods. The collective findings indicate a reliable molecular diagnostic method for the detection of C. glabrata, and to meet the urgent need for rapid, specific, sensitive, and portable clinical field-testing.
Collapse
Affiliation(s)
- Kun Wang
- Department of Medicine Laboratory, Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Li Huo
- Department of Medicine Laboratory, Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Yuanyuan Li
- Department of Medicine Laboratory, Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Lihua Zhu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Lihua Zhu, ; Yan Wang, ; Lei Wang,
| | - Yan Wang
- Department of Medicine Laboratory, Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
- *Correspondence: Lihua Zhu, ; Yan Wang, ; Lei Wang,
| | - Lei Wang
- Department of Medicine Laboratory, Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- *Correspondence: Lihua Zhu, ; Yan Wang, ; Lei Wang,
| |
Collapse
|
7
|
Wang L, Xu A, Zhou P, Zhao M, Xu C, Wang Y, Wang K, Wang F, Miao Y, Zhao W, Gao X. Rapid Detection of Candida tropicalis in Clinical Samples From Different Sources Using RPA-LFS. Front Cell Infect Microbiol 2022; 12:898186. [PMID: 35873165 PMCID: PMC9301490 DOI: 10.3389/fcimb.2022.898186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Candida tropicalis is one of the few Candida species besides Candida albicans that is able to produce true hyphae. At present, the commonly used clinical methods for the identification of this organism are traditional fungal culture, CTB staining, and color development. Polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR) are also used to identify this fungus. Since the course of C. tropicalis infection progresses rapidly, there is an urgent need for rapid, sensitive, real-time field assays to meet the needs of clinical diagnosis. Recombinase polymerase amplification (RPA) combined with lateral flow strip (LFS) can rapidly amplify and visualize target genes within 20 min, and by pre-processing samples from different sources, the entire process can be controlled within 30 min. In this study, RPA-LFS was used to amplify the internal transcribed spacer-2 (ITS2) gene of C. tropicalis, and primer-probe design was optimized by introducing base mismatches to obtain a specific and sensitive primer-probe combination for clinical sample detection. LFS assay for 37 common clinical pathogens was performed, sensitivity and specificity of the detection system was determined, reaction temperature and time were optimized, and 191 actual clinical samples collected from different sources were tested to evaluate the detection performance of the established RPA-LFS system to provide a reliable molecular diagnostic method for the detection of C. tropicalis, the results show that the RPA-LFS system can specifically detect C. tropicalis without cross-reacting with other fungi or bacterial, with a sensitivity of 9.94 CFU/µL, without interference from genomic DNA of other species, at an optimal reaction temperature of 39°C, and the whole reaction process can be controlled within 20 min, and to meet the clinical need for rapid, sensitive, real-time, and portable field testing.
Collapse
Affiliation(s)
- Lei Wang
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Aiguo Xu
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Ping Zhou
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Mengdi Zhao
- Department of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Chenglai Xu
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Yan Wang
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Kun Wang
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Fang Wang
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Yongchang Miao
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
- *Correspondence: Weiguo Zhao, ; Yongchang Miao, ; Xuzhu Gao,
| | - Weiguo Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- *Correspondence: Weiguo Zhao, ; Yongchang Miao, ; Xuzhu Gao,
| | - Xuzhu Gao
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
- *Correspondence: Weiguo Zhao, ; Yongchang Miao, ; Xuzhu Gao,
| |
Collapse
|
8
|
Szymankiewicz M, Kamecki K, Jarzynka S, Koryszewska-Bagińska A, Olędzka G, Nowikiewicz T. Case Report: Echinocandin-Resistance Candida glabrata FKS Mutants From Patient Following Radical Cystoprostatectomy Due to Muscle-Invasive Bladder Cancer. Front Oncol 2022; 11:794235. [PMID: 34976835 PMCID: PMC8714647 DOI: 10.3389/fonc.2021.794235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Invasive Candida glabrata infections are not common complications after radical cystoprostatectomy. Furthermore, resistance to echinocandins arising during the course of a patient’s treatment is rarely recognised. We described a case of development of echinocandin resistance in a patient with muscle-invasive bladder cancer (pT2b N0 M0, high grade) diagnosis, subjected to radical cystoprostatectomy and exposed to echinocandins. A male patient with a previous surgical history after a traffic accident, who was operated on due to bladder cancer, underwent an episode of candidemia and mixed postoperative wound and urinary tract infection caused by C. glabrata and extended spectrum β-lactamase (ESBL)-producing Escherichia coli during hospital treatment. The patient was started on caspofungin. Repeat blood cultures showed clearance of the bloodstream infection; however, infection persisted at the surgical site. Resistance to echinocandins developed within 2 months from the day of initiation of therapy with caspofungin in the C. glabrata strain obtained from the surgical site. The isolates sequentially obtained during the patient’s treatment demonstrated resistance to echinocandins due to the mutation in hotspot 1 FKS2. Although resistance to echinocandins is relatively rare, it should be considered in oncological patients with increased complexity of treatment and intestinal surgery.
Collapse
Affiliation(s)
- Maria Szymankiewicz
- Department of Microbiology, Prof. F. Łukaszczyk Oncology Centre, Bydgoszcz, Poland
| | - Krzysztof Kamecki
- Department of Urological Oncology, Prof. F. Łukaszczyk Oncology Centre, Bydgoszcz, Poland
| | - Sylwia Jarzynka
- Department of Medical Biology, Medical University of Warsaw, Warsaw, Poland
| | | | - Gabriela Olędzka
- Department of Medical Biology, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Nowikiewicz
- Department of Surgical Oncology, Nicolaus Copernicus University Ludwik Rydygier's Collegium Medicum, Bydgoszcz, Poland.,Department of Clinical Breast Cancer and Reconstructive Surgery, Prof. F. Łukaszczyk Oncology Centre, Bydgoszcz, Poland
| |
Collapse
|
9
|
Hernando-Ortiz A, Eraso E, Quindós G, Mateo E. Candidiasis by Candida glabrata, Candida nivariensis and Candida bracarensis in Galleria mellonella: Virulence and Therapeutic Responses to Echinocandins. J Fungi (Basel) 2021; 7:jof7120998. [PMID: 34946981 PMCID: PMC8708380 DOI: 10.3390/jof7120998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Candida albicans is the major etiological agent of invasive candidiasis but the increasing prevalence of emerging species of Candida, such as Candida glabrata and phylogenetically closely related species, Candida nivariensis and Candida bracarensis, requires special attention. Differences in virulence among these species and their therapeutic responses using in vivo non-mammalian models are scarcely analysed. The aim of this study was analyse the survival of G. mellonella and host-pathogen interactions during infection by C. glabrata, C. nivariensis and C. bracarensis. Moreover, therapeutic responses to echinocandins were also assessed in the G. mellonella model of candidiasis. These three species produced lethal infection in G. mellonella; C. glabrata was the most virulent species and C. bracarensis the less. Haemocytes of G. mellonella phagocytised C. bracarensis cells more effectively than those of the other two species. Treatment with caspofungin and micafungin was most effective to protect larvae during C. glabrata and C. nivariensis infections while anidulafungin was during C. bracarensis infection. The model of candidiasis in G. mellonella is simple and appropriate to assess the virulence and therapeutic response of these emerging Candida species. Moreover, it successfully allows for detecting differences in the immune system of the host depending on the virulence of pathogens.
Collapse
|
10
|
Alobaid K, Asadzadeh M, Bafna R, Ahmad S. First Isolation of Candida nivariensis, an Emerging Fungal Pathogen, in Kuwait. Med Princ Pract 2021; 30:80-84. [PMID: 32927454 PMCID: PMC7923905 DOI: 10.1159/000511553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/11/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE C. nivariensis is a rare Candida species which is phenotypically closely related to Candida glabrata and Candida bracarensis. The 3 species form the C. glabrata sensu lato complex. Here, we describe the first isolation and characterization of a C. nivariensis isolate cultured from the tracheal aspirate obtained from a young man in Kuwait. MATERIALS AND METHODS The yeast isolate was initially tested by VITEK 2 followed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and multiplex PCR. The identification was confirmed by sequencing of internal transcribed spacer (ITS) region of rDNA. Antifungal susceptibility testing was performed by Etest, and phylogenetic comparison with other international strains was carried out by using MEGA version 7 software. RESULTS The C. nivariensis isolate was misidentified by VITEK 2, but correctly identified by MALDI-TOF MS with updated software and multiplex PCR. The identity was confirmed by sequence comparisons of ITS region of rDNA. Antifungal susceptibility testing revealed high minimum inhibitory concentration (MIC) against fluconazole, but low MICs against amphotericin B and echinocandins. Phylogenetically, our isolate was closely related to Indian isolates. CONCLUSIONS This report extends the geographic distribution of C. nivariensis to the Arabian Peninsula. MALDI-TOF MS with updated software and molecular tests are needed to correctly identify C. nivariensis. Since C. nivariensis may exhibit reduced susceptibility to antifungal agents, accurate identification and antifungal susceptibility testing are essential, particularly for isolates from sterile sites, for optimal patient management.
Collapse
Affiliation(s)
- Khaled Alobaid
- Mycology Laboratory, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait,
| | - Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Ritu Bafna
- Microbiology Unit, Medical Laboratory Department, Sabah Hospital, Shuwaikh, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
11
|
Molecular identification, genotypic heterogeneity and comparative pathogenicity of environmental isolates of Papiliotrema laurentii. J Med Microbiol 2020; 69:1285-1292. [DOI: 10.1099/jmm.0.001254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction.
Papiliotrema laurentii, formerly Cryptococcus laurentii, is typically isolated from environmental sources, but also occasionally from clinical specimens. Other close relatives may be misidentified as P. laurentii by phenotypic methods. P. laurentii usually lacks melanin; however, melanin-forming strains have also been isolated.
Hypothesis/Gap Statement. Although melanin production by encapsulated budding yeasts is considered a major virulence factor, the comparative pathogenicity of melanin-forming and non-melanized environmental strains of P. laurentii has rarely been studied.
Aim. We performed phenotypic and molecular identification and determined the genotypic heterogeneity among P. laurentii isolates. We also studied the pathogenicity of melanin-forming and non-melanized strains in normal and immunosuppressed mice.
Methodology. Eleven environmental isolates were tested for their identity by Vitek2 and/or ID32C systems, and by PCR-sequencing of the internal transcribed spacer (ITS) region and D1/D2 domains of ribosomal DNA (rDNA). Genotypic heterogeneity was studied by sequence comparisons. The pathogenicity of melanized and non-melanized P. laurentii strains was studied in intravenously infected normal and immunosuppressed BALB/c mice.
Results. Phenotypic methods identified seven of the environmental isolates, while PCR-sequencing of the ITS region and D1/D2 domains of rDNA detected two and five isolates, respectively, as P. laurentii. Sequence comparisons demonstrated genotypic heterogeneity among P. laurentii. The remaining four environmental isolates yielded expected results. None of the normal mice infected with 105 cells of melanized/non-melanized P. laurentii strains died. Infection of immunosuppressed mice with 107 cells caused higher mortality with non-melanized P. laurentii, while viable counts in brain/lung tissue were higher in mice infected with a melanized strain and were detectable for up to 14 days.
Conclusion. Phenotypic methods lacked specificity, but PCR-sequencing of D1/D2 domains correctly identified P. laurentii and sequence comparisons demonstrated the genotypic heterogeneity of the isolates. Both melanized and non-melanized strains at a higher dose caused mortality in immunosuppressed mice and persisted in brain/lung tissue up to 14 days post-infection.
Collapse
|
12
|
Ahmad S, Khan Z, Al-Sweih N, Alfouzan W, Joseph L, Asadzadeh M. Candida kefyr in Kuwait: Prevalence, antifungal drug susceptibility and genotypic heterogeneity. PLoS One 2020; 15:e0240426. [PMID: 33108361 PMCID: PMC7591085 DOI: 10.1371/journal.pone.0240426] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022] Open
Abstract
Objective Candida kefyr causes invasive candidiasis in immunocompromised patients, particularly among those with oncohematological diseases. This study determined the prevalence of C. kefyr among yeast isolates collected during 2011–2018 in Kuwait. Antifungal susceptibility testing (AST) and genotypic heterogeneity among C. kefyr was also studied. Methods Clinical C. kefyr isolates recovered from bloodstream and other specimens during 2011 to 2018 were retrospectively analyzed. All C. kefyr isolates were identified by CHROMagar Candida, Vitek2 and PCR amplification of rDNA. AST was performed by Etest. Molecular basis of resistance to fluconazole and echinocandins was studied by PCR-sequencing of ERG11 and FKS1, respectively. Genotypic heterogeneity was determined with microsatellite-/minisatellite-based primers and for 27 selected isolates by PCR-sequencing of IGS1 region of rDNA. Results Among 8257 yeast strains, 69 C. kefyr (including four bloodstream) isolates were detected by phenotypic and molecular methods. Isolation from urine and respiratory samples from female and male patients was significantly different (P = 0.001). Four isolates showed reduced susceptibility to amphotericin B and one isolate to all (amphotericin B, fluconazole, voriconazole and caspofungin/micafungin) antifungals tested. Fluconazole-resistant isolate contained only synonymous mutations in ERG11. Echinocandin-resistant isolate contained wild-type hotspot-1 and hotspot-2 of FKS1. Fingerprinting with microsatellite-/minisatellite-based primers identified only three types. IGS1 sequencing identified seven haplotypes among 27 selected isolates. Conclusions The overall prevalence of C. kefyr among clinical yeast isolates and among candidemia cases was recorded as 0.83% and 0.32%, respectively. The frequency of isolation of C. kefyr from bloodstream and other invasive samples was stable during the study period. The C. kefyr isolates grown from invasive (bloodstream, bronchoalveolar lavage, abdominal drain fluid, peritonial fluid and gastric fluid) samples and amphotericin B-resistant isolates were genotypically heterogeneous strains.
Collapse
Affiliation(s)
- Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
- * E-mail: ,
| | - Ziauddin Khan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Noura Al-Sweih
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Wadha Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Leena Joseph
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
13
|
Caenorhabditis elegans as a Model System To Assess Candida glabrata, Candida nivariensis, and Candida bracarensis Virulence and Antifungal Efficacy. Antimicrob Agents Chemother 2020; 64:AAC.00824-20. [PMID: 32718968 DOI: 10.1128/aac.00824-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/19/2020] [Indexed: 12/18/2022] Open
Abstract
Although Candida albicans remains the major etiological agent of invasive candidiasis, Candida glabrata and other emerging species of Candida are increasingly isolated. This species is the second most prevalent cause of candidiasis in many regions of the world. However, clinical isolates of Candida nivariensis and Candida bracarensis can be misidentified and are underdiagnosed due to phenotypic traits shared with C. glabrata Little is known about the two cryptic species. Therefore, pathogenesis studies are needed to understand their virulence traits and their susceptibility to antifungal drugs. The susceptibility of Caenorhabditis elegans to different Candida species makes this nematode an excellent model for assessing host-fungus interactions. We evaluated the usefulness of C. elegans as a nonconventional host model to analyze the virulence of C. glabrata, C. nivariensis, and C. bracarensis The three species caused candidiasis, and the highest virulence of C. glabrata was confirmed. Furthermore, we determined the efficacy of current antifungal drugs against the infection caused by these species in the C. elegans model. Amphotericin B and azoles showed the highest activity against C. glabrata and C. bracarensis infections, while echinocandins were more active for treating those caused by C. nivariensis C. elegans proved to be a useful model system for assessing the pathogenicity of these closely related species.
Collapse
|
14
|
Antifungal drug susceptibility, molecular basis of resistance to echinocandins and molecular epidemiology of fluconazole resistance among clinical Candida glabrata isolates in Kuwait. Sci Rep 2020; 10:6238. [PMID: 32277126 PMCID: PMC7148369 DOI: 10.1038/s41598-020-63240-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/17/2020] [Indexed: 12/24/2022] Open
Abstract
Candida glabrata readily develops resistance to echinocandins. Identification, antifungal susceptibility testing (AST) and resistance mechanism to echinocandins among C. glabrata was determined in Kuwait. C. glabrata isolates (n = 75) were tested by Vitek2, multiplex PCR and/or PCR-sequencing of rDNA. AST to fluconazole, caspofungin, micafungin and amphotericin B was determined by Etest and to micafungin by broth microdilution (BMD). Mutations in hotspot-1/hotspot-2 of FKS1/FKS2 and ERG11 were detected by PCR-sequencing. All isolates were identified as C. glabrata sensu stricto. Seventy isolates were susceptible and five were resistant to micafungin by Etest and BMD (essential agreement, 93%; categorical agreement, 100%). Three micafungin-resistant isolates were resistant and two were susceptible dose-dependent to caspofungin. Four and one micafungin-resistant isolate contained S663P and ∆659 F mutation, respectively, in hotspot-1 of FKS2. Micafungin-resistant isolates were genotypically distinct strains. Only one of 36 fluconazole-resistant isolate contained nonsynonymous ERG11 mutations. Thirty-four of 36 fluconazole-resistant isolates were genotypically distinct strains. Our data show that micafungin susceptibility reliably identifies echinocandin-resistant isolates and may serve as a surrogate marker for predicting susceptibility/resistance of C. glabrata to caspofungin. All micafungin-resistant isolates also harbored a nonsynonymous/deletion mutation in hotspot-1 of FKS2. Fingerprinting data showed that echinocandin/fluconazole resistance development in C. glabrata is not clonal.
Collapse
|
15
|
Khan Z, Ahmad S, Al-Sweih N, Mokaddas E, Al-Banwan K, Alfouzan W, Al-Obaid I, Al-Obaid K, Varghese S. Increasing Trends of Reduced Susceptibility to Antifungal Drugs Among Clinical Candida glabrata Isolates in Kuwait. Microb Drug Resist 2020; 26:982-990. [PMID: 32101082 DOI: 10.1089/mdr.2019.0437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Among non-albicans Candida species, Candida glabrata is the leading cause of invasive infections in critically ill patients. It is intrinsically less susceptible to fluconazole/other azoles that limits therapeutic options. This study determined distribution of C. glabrata in clinical specimens and determined their susceptibility to fluconazole, caspofungin, and amphotericin B by E test. During 8-year period (2011-2018), 1,410 isolates were obtained from 1,410 patients including 600, 409, and 131 isolates from respiratory, urine, and bloodstream specimens, respectively. Proportion of C. glabrata isolates was nearly the same during the two 4-year periods. Demographic details were available from 731 patients and susceptibility data for 1,225 isolates. C. glabrata isolation from bloodstream, respiratory, and urine specimens was higher from elderly (>60 years) versus younger patients. More bloodstream and urine isolates were obtained from female patients, however, more respiratory isolates were recovered from male patients (p = <0.05). Resistance to all three drugs increased during 2015-2018 compared with 2011-2014 but was more pronounced for fluconazole (p = 0.001). More isolates with reduced susceptibility to fluconazole/amphotericin B were obtained from elderly patients versus younger subjects and urine versus respiratory samples (p = <0.05). Our data show increasing trends of reduced susceptibility to antifungals, particularly fluconazole, among clinical C. glabrata isolates in Kuwait. Most isolates with reduced susceptibility to fluconazole/amphotericin B were obtained from elderly patients and urine/respiratory samples with urinary tract appearing as the most favorable niche for antifungal drug resistance development. The study also highlights the need for continued surveillance and better antifungal drug stewardship to control resistance development in C. glabrata.
Collapse
Affiliation(s)
- Ziauddin Khan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Noura Al-Sweih
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Eiman Mokaddas
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Khalifa Al-Banwan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Wadha Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Inaam Al-Obaid
- Department of Microbiology, Al-Sabah Hospital, Shuwaikh, Kuwait
| | - Khaled Al-Obaid
- Department of Microbiology, Mubarak Al-Kabir Hospital, Jabriya, Kuwait
| | - Soumya Varghese
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
16
|
Identification of Cryptic Species of Four Candida Complexes in a Culture Collection. J Fungi (Basel) 2019; 5:jof5040117. [PMID: 31861048 PMCID: PMC6958398 DOI: 10.3390/jof5040117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 01/11/2023] Open
Abstract
Candida spp. are one of the most common causes of fungal infections worldwide. The taxonomy of Candida is controversial and has undergone recent changes due to novel genetically related species. Therefore, some complexes of cryptic species have been proposed. In clinical settings, the correct identification of Candida species is relevant since some species are associated with high resistance to antifungal drugs and increased virulence. This study aimed to identify the species of four Candida complexes (C. albicans, C. glabrata, C. parapsilosis, and C. haemulonii) by molecular methods. This is the first report of six cryptic Candida species in Honduras: C. dubliniensis, C. africana, C. duobushaemulonii, C. orthopsilosis, and C. metapsilosis, and it is also the first report of the allele hwp1-2 of C. albicans sensu stricto. It was not possible to demonstrate the existence of C. auris among the isolates of the C. haemulonii complex. We also propose a simple method based on PCR-RFLP for the discrimination of the multi-resistant pathogen C. auris within the C. haemulonii complex.
Collapse
|