1
|
Katz L, Ben-Arush M, Blanche E, Meir I, Mordechai O. The Clinical Utility of Next-Generation Sequencing in Childhood and Adolescent/Young Adult Solid Tumors: A Systematic Review and Meta-Analysis. Cancers (Basel) 2025; 17:1292. [PMID: 40282467 PMCID: PMC12026244 DOI: 10.3390/cancers17081292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) has emerged as a transformative tool in precision medicine, offering insights into actionable genomic alterations and informing clinical decision-making in childhood and adolescent/young adult (AYA) solid tumors. METHODS We conducted a systematic review and meta-analysis to assess the utility of NGS in identifying actionable genomic alterations and its impact on clinical decision-making. Studies involving patients aged 0-40 years with solid tumors were included. Data were extracted using Covidence, and pooled estimates were calculated using a random-effects model. Bias was assessed using Begg-Mazumdar, Egger, and Harbord tests. RESULTS Out of 13,624 references screened, 24 studies met eligibility criteria, comprising 5278 patients and 5359 samples, of which 5207 provided usable data. The pooled proportion of actionable alterations was 57.9% (95% CI: 49.0-66.5%), with minimal evidence of publication bias. Clinical decision-making outcomes were reported in 21 studies, with a pooled proportion of 22.8% (95% CI: 16.4-29.9%). Germline mutation rates, reported in 11 studies, yielded a pooled proportion of 11.2% (95% CI: 8.4-14.3%), consistent with rates typically observed in childhood cancers. Significant heterogeneity was observed across studies due to differences in sequencing methodologies, tumor types, and sampling strategies. CONCLUSIONS NGS demonstrates considerable potential in identifying actionable genomic targets and guiding clinical decision-making in childhood and AYA solid tumors. However, the variability in methodologies underscores the need for standardized protocols and reporting practices to enhance comparability and generalizability. This meta-analysis highlights the promise of genomic medicine while acknowledging challenges posed by heterogeneity in study designs.
Collapse
Affiliation(s)
- Lior Katz
- Pediatrics, Ruth Rappaport Children’s Hospital, Rambam Medical Center, Haifa 3109601, Israel
| | - Myriam Ben-Arush
- Joan and Sanford Weill Pediatric Hematology Oncology and Bone Marrow Transplantation Division, Ruth Rappaport Children’s Hospital, Rambam Medical Center, Haifa 3109601, Israel
| | - Einav Blanche
- Joan and Sanford Weill Pediatric Hematology Oncology and Bone Marrow Transplantation Division, Ruth Rappaport Children’s Hospital, Rambam Medical Center, Haifa 3109601, Israel
| | - Inbar Meir
- Joan and Sanford Weill Pediatric Hematology Oncology and Bone Marrow Transplantation Division, Ruth Rappaport Children’s Hospital, Rambam Medical Center, Haifa 3109601, Israel
| | - Oz Mordechai
- Joan and Sanford Weill Pediatric Hematology Oncology and Bone Marrow Transplantation Division, Ruth Rappaport Children’s Hospital, Rambam Medical Center, Haifa 3109601, Israel
| |
Collapse
|
2
|
Debortoli E, McGahan E, Yanes T, Berkman J, Fuentes-Bolanos N, Milch V, Steinberg J, McInerney-Leo A. Utility of genomic testing in children, adolescents, and young adults with cancer. J Natl Cancer Inst 2025; 117:601-610. [PMID: 39312684 DOI: 10.1093/jnci/djae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Genomic testing can inform the diagnosis and personalize management of cancers in children, adolescents, and young adults (CAYA). This scoping review explored the clinical utility and impact of genomic testing in general CAYA cancer cohorts. Relevant records published in English between 2017 and 2024 were identified by searching PubMed. 36 studies (32 original articles; 4 reviews) were identified on genomic testing in CAYA cancers, most of which were advanced cancers. Studies internationally reported that approximately 16%-18% of CAYAs with cancer carry an associated pathogenic germline variant where 40% are de novo, and can guide treatment (eg, DNA repair gene variants). Somatic variants, predominantly copy number or structural rearrangements, inform diagnosis in up to 95% of primary cancers. Between 18% and 69% of patients have a somatic variant with a matched therapy, but only one third receive the genomic-guided recommendation, predominantly due to declining patient condition. Few studies evaluated the impact of matched therapies on response and survival. Combining comprehensive DNA and RNA sequencing maximises sensitivity. Circulating tumour DNA was detected in most primary cancers and shows high concordance with tumour tissue. In conclusion, genomic testing of CAYA cancers is feasible, informs diagnoses and guides personalised care. Further research is needed on response to genomic-guided treatments.
Collapse
Affiliation(s)
- Emily Debortoli
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| | - Ella McGahan
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| | - Tatiane Yanes
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| | - Jennifer Berkman
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| | - Noemi Fuentes-Bolanos
- School of Clinical Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Sydney, NSW, Australia
- Children's Cancer Institute, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Vivienne Milch
- Cancer Australia, Sydney, NSW, Australia
- Caring Futures Institute, Flinders University, Adelaide, SA, Australia
| | - Julia Steinberg
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, Australia
| | - Aideen McInerney-Leo
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Vasquez YA, Beale HC, Sanders L, Lyle AG, Kephart ET, Learned K, Thompson D, Peralez J, Li A, Huang M, Pyke-Grimm KA, Salama SR, Haussler D, Bjork I, Sheri LS, Vaske OM. Comparative analysis of RNA expression in a single institution cohort of pediatric cancer patients. NPJ Precis Oncol 2025; 9:81. [PMID: 40119139 PMCID: PMC11928651 DOI: 10.1038/s41698-025-00852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/26/2025] [Indexed: 03/24/2025] Open
Abstract
With the low incidence of mutations in pediatric cancers, alternate genomic approaches are needed to identify therapeutic targets. Our study, the Comparative Analysis of RNA Expression to Improve Pediatric and Young Adult Cancer Treatment, was conducted by the UC Santa Cruz Treehouse Childhood Cancer Initiative and Stanford University School of Medicine. RNA sequencing data from 33 children and young adults with a relapsed, refractory or rare cancer underwent CARE analysis to reveal activated cancer driver pathways and nominate treatments. We compare our pipeline to other gene expression outlier detection approaches and discuss challenges for clinical implementation. Of our 33 patients, 31 (94%) had findings of potential clinical significance. Findings were implemented in 5 patients, 3 of which had defined clinical benefit. We demonstrate that comparator cohort composition determines which outliers are detected. This study highlights the clinical utility and challenges of implementing comparative RNA sequencing analysis in the clinic.
Collapse
Affiliation(s)
- Yvonne A Vasquez
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA
| | - Holly C Beale
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA
| | - Lauren Sanders
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, School of Engineering, University of California, Santa Cruz, CA, USA
- Blue Marble Space Institute of Science, NASA Ames GeneLab, Silicon Valley, CA, USA
| | - A Geoffrey Lyle
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA
| | | | | | - Drew Thompson
- Department of Biomolecular Engineering, School of Engineering, University of California, Santa Cruz, CA, USA
| | | | - Amy Li
- Stanford University School of Medicine, Stanford, CA, USA
| | - Min Huang
- Stanford University School of Medicine, Stanford, CA, USA
| | - Kimberly A Pyke-Grimm
- Stanford University School of Medicine, Stanford, CA, USA
- Department of Nursing Research and Evidence-Based Practice at Stanford Medicine Children's Health, Stanford, USA
| | - Sofie R Salama
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA
| | - David Haussler
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, School of Engineering, University of California, Santa Cruz, CA, USA
| | - Isabel Bjork
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA
- Foundation to Advance Vascular Cures, Redwood City, CA, USA
| | - L Spunt Sheri
- Stanford University School of Medicine, Stanford, CA, USA
| | - Olena M Vaske
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA.
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA.
| |
Collapse
|
4
|
Lensker P, Cuba L, Gessner K, Fromm MF, Dörje F, Metzler M. Medication safety with oral antitumour therapeutics in paediatrics (youngAMBORA): A mixed-methods approach towards a tailored care program. PLoS One 2024; 19:e0315077. [PMID: 39637156 PMCID: PMC11620591 DOI: 10.1371/journal.pone.0315077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVE Oral antitumour therapeutics (OAT) are increasingly used due to improvements in outcomes and their convenient application. However, complex intake regimens pose several challenges. The randomised AMBORA trial (Medication Safety With Oral Antitumour Drugs) demonstrated highly positive outcomes of a clinical pharmacological/pharmaceutical care program for adults treated with numerous OAT, but comparable concepts in paediatrics are lacking so far. METHODS We used a parallel mixed-methods approach to develop a tailored pharmacological/pharmaceutical care program for OAT in paediatrics (youngAMBORA). We combined a quantitative analysis of tumour entities and used OAT in a paediatric cancer centre with a qualitative survey for patients, caregivers, and healthcare professionals to identify particular demands and educational needs (e.g., application problems, side effects). RESULTS Leukaemia (77/315) and antimetabolites (95/151) were the most frequently observed entity and OAT, respectively. Of 22 surveyed patients, 81.8% wanted to be involved in oral medication education. Compared to caregivers, significantly more healthcare professionals graded the three most common application problems to be challenging ('Smell/taste': 32/36 vs. 23/42, p = 0.001; 'Refusal of intake': 31/36 vs. 16/42, p<0.001; 'Swallowing problems': 28/36 vs. 21/42, p = 0.011). We identified nine relevant side effects, of which two ('Skin dryness', 'Taste changes') were not included in 15 previously published core side effects of the Common Terminology Criteria of Adverse Events (CTCAE) item library. CONCLUSION Based on the present findings, the tailored youngAMBORA care program will include: 1) counselling sessions for classic and targeted OAT, 2) child-friendly support with drug application, and 3) systematic evaluation of 17 relevant side effects from patients' and caregivers' points of view including age-appropriate information material.
Collapse
Affiliation(s)
- Phyllis Lensker
- Pharmacy Department, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich- Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Paediatrics and Adolescent Medicine, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Cuba
- Pharmacy Department, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich- Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katja Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich- Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Martin F. Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich- Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
- FAU NeW–Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Frank Dörje
- Pharmacy Department, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
- FAU NeW–Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Metzler
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Paediatrics and Adolescent Medicine, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Valencia-Sama I, Kee L, Christopher G, Ohh M, Layeghifard M, Shlien A, Hayes MN, Irwin MS. SHP2 Inhibition with TNO155 Increases Efficacy and Overcomes Resistance of ALK Inhibitors in Neuroblastoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:2608-2622. [PMID: 38032104 PMCID: PMC10752212 DOI: 10.1158/2767-9764.crc-23-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/05/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
Survival rates among patients with high-risk neuroblastoma remain low and novel therapies for recurrent neuroblastomas are required. ALK is commonly mutated in primary and relapsed neuroblastoma tumors and ALK tyrosine kinase inhibitors (TKI) are promising treatments for ALK-driven neuroblastoma; however, innate or adaptive resistance to single-agent ALK-TKIs remain a clinical challenge. Recently, SHP2 inhibitors have been shown to overcome ALK-TKI resistance in lung tumors harboring ALK rearrangements. Here, we have assessed the efficacy of the SHP2 inhibitor TNO155 alone and in combination with the ALK-TKIs crizotinib, ceritinib, or lorlatinib for the treatment of ALK-driven neuroblastoma using in vitro and in vivo models. In comparison to wild-type, ALK-mutant neuroblastoma cell lines were more sensitive to SHP2 inhibition with TNO155. Moreover, treatment with TNO155 and ALK-TKIs synergistically reduced cell growth and promoted inactivation of ALK and MAPK signaling in ALK-mutant neuroblastoma cells. ALK-mutant cells engrafted into larval zebrafish and treated with single agents or dual SHP2/ALK inhibitors showed reduced growth and invasion. In murine ALK-mutant xenografts, tumor growth was likewise reduced or delayed, and survival was prolonged upon combinatorial treatment of TNO155 and lorlatinib. Finally, we show that lorlatinib-resistant ALK-F1174L neuroblastoma cells harbor additional RAS-MAPK pathway alterations and can be resensitized to lorlatinib when combined with TNO155 in vitro and in vivo. Our results report the first evaluation of TNO155 in neuroblastoma and suggest that combinatorial inhibition of ALK and SHP2 could be a novel approach to treating ALK-driven neuroblastoma, potentially including the increasingly common tumors that have developed resistance to ALK-TKIs. SIGNIFICANCE These findings highlight the translatability between zebrafish and murine models, provide evidence of aberrant RAS-MAPK signaling as an adaptive mechanism of resistance to lorlatinib, and demonstrate the clinical potential for SHP2/ALK inhibitor combinations for the treatment of ALK-mutant neuroblastoma, including those with acquired tolerance or potentially resistance to ALK-TKIs.
Collapse
Affiliation(s)
| | - Lynn Kee
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | | | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Mehdi Layeghifard
- Genetics and Genomics Program, The Hospital for Sick Children, Toronto, Canada
| | - Adam Shlien
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Genetics and Genomics Program, The Hospital for Sick Children, Toronto, Canada
| | - Madeline N. Hayes
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Meredith S. Irwin
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
6
|
Vodicska B, Déri J, Tihanyi D, Várkondi E, Kispéter E, Dóczi R, Lakatos D, Dirner A, Vidermann M, Filotás P, Szalkai-Dénes R, Szegedi I, Bartyik K, Gábor KM, Simon R, Hauser P, Péter G, Kiss C, Garami M, Peták I. Real-world performance analysis of a novel computational method in the precision oncology of pediatric tumors. World J Pediatr 2023; 19:992-1008. [PMID: 36914906 PMCID: PMC10497647 DOI: 10.1007/s12519-023-00700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/31/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND The utility of routine extensive molecular profiling of pediatric tumors is a matter of debate due to the high number of genetic alterations of unknown significance or low evidence and the lack of standardized and personalized decision support methods. Digital drug assignment (DDA) is a novel computational method to prioritize treatment options by aggregating numerous evidence-based associations between multiple drivers, targets, and targeted agents. DDA has been validated to improve personalized treatment decisions based on the outcome data of adult patients treated in the SHIVA01 clinical trial. The aim of this study was to evaluate the utility of DDA in pediatric oncology. METHODS Between 2017 and 2020, 103 high-risk pediatric cancer patients (< 21 years) were involved in our precision oncology program, and samples from 100 patients were eligible for further analysis. Tissue or blood samples were analyzed by whole-exome (WES) or targeted panel sequencing and other molecular diagnostic modalities and processed by a software system using the DDA algorithm for therapeutic decision support. Finally, a molecular tumor board (MTB) evaluated the results to provide therapy recommendations. RESULTS Of the 100 cases with comprehensive molecular diagnostic data, 88 yielded WES and 12 panel sequencing results. DDA identified matching off-label targeted treatment options (actionability) in 72/100 cases (72%), while 57/100 (57%) showed potential drug resistance. Actionability reached 88% (29/33) by 2020 due to the continuous updates of the evidence database. MTB approved the clinical use of a DDA-top-listed treatment in 56 of 72 actionable cases (78%). The approved therapies had significantly higher aggregated evidence levels (AELs) than dismissed therapies. Filtering of WES results for targeted panels missed important mutations affecting therapy selection. CONCLUSIONS DDA is a promising approach to overcome challenges associated with the interpretation of extensive molecular profiling in the routine care of high-risk pediatric cancers. Knowledgebase updates enable automatic interpretation of a continuously expanding gene set, a "virtual" panel, filtered out from genome-wide analysis to always maximize the performance of precision treatment planning.
Collapse
Affiliation(s)
- Barbara Vodicska
- Oncompass Medicine Hungary Kft, Retek Str. 34, Budapest, 1024, Hungary
| | - Júlia Déri
- Oncompass Medicine Hungary Kft, Retek Str. 34, Budapest, 1024, Hungary
| | - Dóra Tihanyi
- Oncompass Medicine Hungary Kft, Retek Str. 34, Budapest, 1024, Hungary
| | - Edit Várkondi
- Oncompass Medicine Hungary Kft, Retek Str. 34, Budapest, 1024, Hungary
| | - Enikő Kispéter
- Oncompass Medicine Hungary Kft, Retek Str. 34, Budapest, 1024, Hungary
| | - Róbert Dóczi
- Oncompass Medicine Hungary Kft, Retek Str. 34, Budapest, 1024, Hungary
| | - Dóra Lakatos
- Oncompass Medicine Hungary Kft, Retek Str. 34, Budapest, 1024, Hungary
| | - Anna Dirner
- Oncompass Medicine Hungary Kft, Retek Str. 34, Budapest, 1024, Hungary
| | - Mátyás Vidermann
- Oncompass Medicine Hungary Kft, Retek Str. 34, Budapest, 1024, Hungary
| | - Péter Filotás
- Oncompass Medicine Hungary Kft, Retek Str. 34, Budapest, 1024, Hungary
| | | | - István Szegedi
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Bartyik
- Department of Pediatrics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Krisztina Míta Gábor
- Department of Pediatrics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Réka Simon
- Onco-Hematology Department, Velkey László Paediatric Health Centre, Miskolc, Hungary
| | - Péter Hauser
- Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - György Péter
- Onco-Hematology Department, Heim Pál Children's Hospital, Budapest, Hungary
| | - Csongor Kiss
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklós Garami
- Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - István Peták
- Oncompass Medicine Hungary Kft, Retek Str. 34, Budapest, 1024, Hungary.
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, USA.
- Genomate Health, Cambridge, MA, USA.
| |
Collapse
|
7
|
Lee J, Gillam L, Visvanathan K, Hansford JR, McCarthy MC. Clinical Utility of Precision Medicine in Pediatric Oncology: A Systematic Review. JCO Precis Oncol 2021; 5:1088-1102. [DOI: 10.1200/po.20.00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Precision medicine uses advanced molecular techniques to guide the use of targeted therapeutic drugs and is an emerging paradigm in pediatric oncology. Clinical evidence related to the efficacy of many novel targeted drugs, however, is currently very limited given the rarity of pediatric cancer and the lack of published evidence for the use of these drugs in children. This systematic review aimed to evaluate the existing evidence for the feasibility and clinical efficacy of precision medicine in pediatric oncology. METHODS A systematic review was conducted using the PubMed, Medline, and Embase databases. Clinical trials and observational studies, which used molecular assays such as whole-exome sequencing to identify molecular targets that guided the allocation of targeted cancer drugs and reported clinical outcomes, were included in this review. RESULTS Twenty-one clinical trials and observational studies were identified, collectively enrolling 1,408 pediatric patients across nine countries. Therapeutic targets were found in 647 patients (46.0%); however, only 175 of these patients (27.0%) received a targeted drug. Objective responses were recorded for 73 (41.7%) of these 175 patients, only 5.2% of the total sample. Inconsistent outcome reporting and limited comparison with conventional treatment hindered evaluation of the clinical utility of precision medicine. CONCLUSION Precision medicine can feasibly identify molecular targets in a clinical setting. However, the inaccessibility of targeted drugs is a significant barrier, restricting the exploration of its therapeutic potential in pediatric oncology. Future clinical trials should endeavor to link the molecular testing results with access to targeted drugs and standardize outcome reporting to advance understanding of the benefits of this novel paradigm in improving patient outcomes.
Collapse
Affiliation(s)
- Justin Lee
- Children's Cancer Centre, Royal Children's Hospital, Parkville, VIC, Australia
| | - Lynn Gillam
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia
- Department of Human Bioethics, University of Melbourne, Melbourne, VIC, Australia
| | - Keshini Visvanathan
- Children's Cancer Centre, Royal Children's Hospital, Parkville, VIC, Australia
| | - Jordan R. Hansford
- Children's Cancer Centre, Royal Children's Hospital, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Maria C. McCarthy
- Children's Cancer Centre, Royal Children's Hospital, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Langenberg KPS, Looze EJ, Molenaar JJ. The Landscape of Pediatric Precision Oncology: Program Design, Actionable Alterations, and Clinical Trial Development. Cancers (Basel) 2021; 13:4324. [PMID: 34503139 PMCID: PMC8431194 DOI: 10.3390/cancers13174324] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
Over the last years, various precision medicine programs have been developed for pediatric patients with high-risk, relapsed, or refractory malignancies, selecting patients for targeted treatment through comprehensive molecular profiling. In this review, we describe characteristics of these initiatives, demonstrating the feasibility and potential of molecular-driven precision medicine. Actionable events are identified in a significant subset of patients, although comparing results is complicated due to the lack of a standardized definition of actionable alterations and the different molecular profiling strategies used. The first biomarker-driven trials for childhood cancer have been initiated, but until now the effect of precision medicine on clinical outcome has only been reported for a small number of patients, demonstrating clinical benefit in some. Future perspectives include the incorporation of novel approaches such as liquid biopsies and immune monitoring as well as innovative collaborative trial design including combination strategies, and the development of agents specifically targeting aberrations in childhood malignancies.
Collapse
Affiliation(s)
- Karin P. S. Langenberg
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (E.J.L.); (J.J.M.)
| | - Eleonora J. Looze
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (E.J.L.); (J.J.M.)
| | - Jan J. Molenaar
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (E.J.L.); (J.J.M.)
- Department of Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
9
|
Bellantoni AJ, Wagner LM. Pursuing Precision: Receptor Tyrosine Kinase Inhibitors for Treatment of Pediatric Solid Tumors. Cancers (Basel) 2021; 13:3531. [PMID: 34298746 PMCID: PMC8303693 DOI: 10.3390/cancers13143531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Receptor tyrosine kinases are critical for the growth and proliferation of many different cancers and therefore represent a potential vulnerability that can be therapeutically exploited with small molecule inhibitors. Over forty small molecule inhibitors are currently approved for the treatment of adult solid tumors. Their use has been more limited in pediatric solid tumors, although an increasing number of single-agent and combination studies are now being performed. These agents have been quite successful in certain clinical contexts, such as the treatment of pediatric tumors driven by kinase fusions or activating mutations. By contrast, only modest activity has been observed when inhibitors are used as single agents for solid tumors that do not have genetically defined alterations in the target genes. The absence of predictive biomarkers has limited the wider applicability of these drugs and much work remains to define the appropriate patient population and clinical situation in which receptor tyrosine kinase inhibitors are most beneficial. In this manuscript, we discuss these issues by highlighting past trials and identifying future strategies that may help add precision to the use of these agents for pediatric extracranial solid tumors.
Collapse
Affiliation(s)
| | - Lars M. Wagner
- Division of Pediatric Hematology/Oncology, Duke University, Durham, NC 27710, USA;
| |
Collapse
|
10
|
Roosan MR, Mambetsariev I, Pharaon R, Fricke J, Baroz AR, Chao J, Chen C, Nasser MW, Chirravuri-Venkata R, Jain M, Smith L, Yost SE, Reckamp KL, Pillai R, Arvanitis L, Afkhami M, Wang EW, Chung V, Cristea M, Fakih M, Koczywas M, Massarelli E, Mortimer J, Yuan Y, Batra SK, Pal S, Salgia R. Evaluation of Somatic Mutations in Solid Metastatic Pan-Cancer Patients. Cancers (Basel) 2021; 13:2776. [PMID: 34204917 PMCID: PMC8199748 DOI: 10.3390/cancers13112776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis continues to be the primary cause of all cancer-related deaths despite the recent advancements in cancer treatments. To evaluate the role of mutations in overall survival (OS) and treatment outcomes, we analyzed 957 metastatic patients with seven major cancer types who had available molecular testing results with a FoundationOne CDx® panel. The most prevalent genes with somatic mutations were TP53, KRAS, APC, and LRP1B. In this analysis, these genes had mutation frequencies higher than in publicly available datasets. We identified that the somatic mutations were seven mutually exclusive gene pairs and an additional fifty-two co-occurring gene pairs. Mutations in the mutually exclusive gene pair APC and CDKN2A showed an opposite effect on the overall survival. However, patients with CDKN2A mutations showed significantly shorter OS (HR: 1.72, 95% CI: 1.34-2.21, p < 0.001) after adjusting for cancer type, age at diagnosis, and sex. Five-year post metastatic diagnosis survival analysis showed a significant improvement in OS (median survival 28 and 43 months in pre-2015 and post-2015 metastatic diagnosis, respectively, p = 0.00021) based on the year of metastatic diagnosis. Although the use of targeted therapies after metastatic diagnosis prolonged OS, the benefit was not statistically significant. However, longer five-year progression-free survival (PFS) was significantly associated with targeted therapy use (median 10.9 months (CI: 9.7-11.9 months) compared to 9.1 months (CI: 8.1-10.1 months) for non-targeted therapy, respectively, p = 0.0029). Our results provide a clinically relevant overview of the complex molecular landscape and survival mechanisms in metastatic solid cancers.
Collapse
Affiliation(s)
- Moom R. Roosan
- School of Pharmacy, Chapman University, Irvine, CA 92618, USA;
| | - Isa Mambetsariev
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Rebecca Pharaon
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Jeremy Fricke
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Angel R. Baroz
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Joseph Chao
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Chen Chen
- Applied AI and Data Science, City of Hope, Duarte, CA 91010, USA;
| | - Mohd W. Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.W.N.); (R.C.-V.); (M.J.); (S.K.B.)
| | - Ramakanth Chirravuri-Venkata
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.W.N.); (R.C.-V.); (M.J.); (S.K.B.)
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.W.N.); (R.C.-V.); (M.J.); (S.K.B.)
| | - Lynette Smith
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Susan E. Yost
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Karen L. Reckamp
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
- Cedars-Sinai Medical Center, Department of Medicine, Division of Medical Oncology, Los Angeles, CA 90048, USA
| | - Raju Pillai
- Department of Pathology, City of Hope, Duarte, CA 91010, USA; (R.P.); (L.A.); (M.A.)
| | - Leonidas Arvanitis
- Department of Pathology, City of Hope, Duarte, CA 91010, USA; (R.P.); (L.A.); (M.A.)
| | - Michelle Afkhami
- Department of Pathology, City of Hope, Duarte, CA 91010, USA; (R.P.); (L.A.); (M.A.)
| | - Edward W. Wang
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Vincent Chung
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Mihaela Cristea
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Marwan Fakih
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Marianna Koczywas
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Erminia Massarelli
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Joanne Mortimer
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Yuan Yuan
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.W.N.); (R.C.-V.); (M.J.); (S.K.B.)
| | - Sumanta Pal
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| |
Collapse
|