1
|
Arik N, Elcin E, Tezcaner A, Oktem HA. Biosensing of arsenic by whole-cell bacterial bioreporter immobilized on polycaprolactone (PCL) electrospun fiber. ENVIRONMENTAL TECHNOLOGY 2024; 45:4874-4886. [PMID: 37965791 DOI: 10.1080/09593330.2023.2283405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/19/2023] [Indexed: 11/16/2023]
Abstract
In recent years, heavy metals derived from several anthropogenic sources have both direct and indirect detrimental effects on the health of the environment and living organisms. Whole-cell bioreporters (WCBs) that can be used to monitor the levels of heavy metals in drinking and natural spring waters are important. In this study, whole-cell arsenic bacterial bioreporters were immobilized using polycaprolactone (PCL) electrospun fibers as the support material. The aim is to determine the properties of this immobilized bioreporter system by evaluating its performance in arsenic detection. Within the scope of the study, different growth media and fiber immobilization times were tested to determine the parameters affecting the fluorescent signals emitted by the immobilized bioreporter system in the presence of two dominant forms of arsenic, namely arsenite (As(III)) and arsenate (As(V)). In addition, the sensitivity, selectivity, response time, and shelf-life of the developed bioreporter system were evaluated. As far as the literature is concerned, this is the first study to investigate the potential of using PCL-electrospun fiber-immobilized fluorescent bacterial bioreporter for arsenic detection. This study will open new avenues in environmental arsenic monitoring.
Collapse
Affiliation(s)
- Nehir Arik
- Department of Molecular Biology and Genetics, Middle East Technical University, Ankara, Türkiye
| | - Evrim Elcin
- Department of Agricultural Biotechnology, Aydın Adnan Menderes University, Aydın, Türkiye
| | - Aysen Tezcaner
- Department of Engineering Sciences, Middle East Technical University, Ankara, Türkiye
- Center of Excellence in Biomaterials and Tissue Engineering (METU BIOMATEN), Ankara, Türkiye
| | - Huseyin A Oktem
- Department of Molecular Biology and Genetics, Middle East Technical University, Ankara, Türkiye
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| |
Collapse
|
2
|
Asif A, Chen JS, Hussain B, Hsu GJ, Rathod J, Huang SW, Wu CC, Hsu BM. The escalating threat of human-associated infectious bacteria in surface aquatic resources: Insights into prevalence, antibiotic resistance, survival mechanisms, detection, and prevention strategies. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104371. [PMID: 38851127 DOI: 10.1016/j.jconhyd.2024.104371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Anthropogenic activities and climate change profoundly impact water quality, leading to a concerning increase in the prevalence and abundance of bacterial pathogens across diverse aquatic environments. This rise has resulted in a growing challenge concerning the safety of water sources, particularly surface waters and marine environments. This comprehensive review delves into the multifaceted challenges presented by bacterial pathogens, emphasizing threads to human health within ground and surface waters, including marine ecosystems. The exploration encompasses the intricate survival mechanisms employed by bacterial pathogens and the proliferation of antimicrobial resistance, largely driven by human-generated antibiotic contamination in aquatic systems. The review further addresses prevalent pathogenic bacteria, elucidating associated risk factors, exploring their eco-physiology, and discussing the production of potent toxins. The spectrum of detection techniques, ranging from conventional to cutting-edge molecular approaches, is thoroughly examined to underscore their significance in identifying and understanding waterborne bacterial pathogens. A critical aspect highlighted in this review is the imperative for real-time monitoring of biomarkers associated with waterborne bacterial pathogens. This monitoring serves as an early warning system, facilitating the swift implementation of action plans to preserve and protect global water resources. In conclusion, this comprehensive review provides fresh insights and perspectives, emphasizing the paramount importance of preserving the quality of aquatic resources to safeguard human health on a global scale.
Collapse
Affiliation(s)
- Aslia Asif
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Gwo-Jong Hsu
- Division of Infectious Disease and Department of Internal Medicine, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Jagat Rathod
- Department of Environmental Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance and Tec (GIFT)-City, Gandhinagar 382355, Gujarat, India
| | - Shih-Wei Huang
- Institute of Environmental Toxin and Emerging Contaminant, Cheng Shiu University, Kaohsiung, Taiwan; Center for Environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, Kaohsiung, Taiwan
| | - Chin-Chia Wu
- Division of Colorectal Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
3
|
Dixon B, Ahmed WM, Felton T, Fowler SJ. Molecular phenotyping approaches for the detection and monitoring of carbapenem-resistant Enterobacteriaceae by mass spectrometry. J Mass Spectrom Adv Clin Lab 2022; 26:9-19. [PMID: 36105942 PMCID: PMC9464899 DOI: 10.1016/j.jmsacl.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Breanna Dixon
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, United Kingdom
| | - Waqar M Ahmed
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, United Kingdom
| | - Tim Felton
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
- NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Stephen J Fowler
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
- NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
- Corresponding author at: Education and Research Centre, Wythenshawe Hospital, Manchester M23 9LT, United Kingdom.
| |
Collapse
|
4
|
Pavić D, Grbin D, Hudina S, Prosenc Zmrzljak U, Miljanović A, Košir R, Varga F, Ćurko J, Marčić Z, Bielen A. Tracing the oomycete pathogen Saprolegnia parasitica in aquaculture and the environment. Sci Rep 2022; 12:16646. [PMID: 36198674 PMCID: PMC9534867 DOI: 10.1038/s41598-022-16553-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
Saprolegnia parasitica causes saprolegniosis, a disease responsible for significant economic losses in aquaculture and declines of fish populations in the wild, but the knowledge of its distribution and prevalence in the environment is limited. We developed a fast, sensitive and specific S. parasitica droplet digital PCR (ddPCR) assay and demonstrated its applicability for the detection and quantification of the pathogen in environmental samples: swab DNA collected from the host (trout skin, surface of eggs) and environmental DNA extracted from water. The developed assay was used to assess how abiotic (i.e. physico-chemical parameters of the water) and biotic (health status of the host) factors influence the S. parasitica load in the environment. The pathogen load in water samples was positively correlated with some site-specific abiotic parameters such as electrical conductivity (EC) and calcium, while fluorides were negatively correlated, suggesting that physico-chemical parameters are important for determining S. parasitica load in natural waters. Furthermore, skin swabs of injured trout had significantly higher pathogen load than swabs collected from healthy fish, confirming that S. parasitica is a widespread opportunistic pathogen. Our results provide new insights into various environmental factors that influence the distribution and abundance of S. parasitica.
Collapse
Affiliation(s)
- Dora Pavić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000, Zagreb, Croatia
| | - Dorotea Grbin
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000, Zagreb, Croatia.,Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Sandra Hudina
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | | | - Anđela Miljanović
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000, Zagreb, Croatia
| | - Rok Košir
- Labena Ltd, BIA Separations CRO - Molecular Biology Laboratory, 1000, Ljubljana, Slovenia
| | - Filip Varga
- Department of Seed Science and Technology, Faculty of Agriculture, University of Zagreb, 10000, Zagreb, Croatia.,Centre of Excellence for Biodiversity and Molecular Plant Breeding, CoE CroP-BioDiv), 10000, Zagreb, Croatia
| | - Josip Ćurko
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000, Zagreb, Croatia
| | - Zoran Marčić
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Ana Bielen
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000, Zagreb, Croatia.
| |
Collapse
|
5
|
Structural diagnosis of benthic invertebrate communities in relation to salinity gradient in Baltic coastal lake ecosystems using biological trait analysis. Sci Rep 2022; 12:12750. [PMID: 35882939 PMCID: PMC9325777 DOI: 10.1038/s41598-022-17002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/19/2022] [Indexed: 12/05/2022] Open
Abstract
This study is based on biological trait analysis (BTA), which provides a link between the distribution and biological characteristics of species. The paper investigates differences in the structure and functional diversity of benthic fauna in terms of seven biological traits (mobility, habitat, feeding type, habitat modification, body form, body size and feeding apparatus) in nine Baltic coastal lakes whose salinity ranged from 0.1 to 7.3 PSU. Mobile organisms were more common in lakes with higher salinity, while sessile and semi-mobile species preferred low-salinity or freshwater environments. There were also noticeable differences connected with feeding type: collectors and scrapers were more common in brackish lakes, and collectors were significantly dominant in freshwater and transitional ones. This indicates that Baltic coastal lakes are inhabited by similar species of benthic fauna, but that certain biological traits occur with different frequencies. We therefore identified features that may affect the functioning of coastal lakes with a relatively narrow salinity gradient (0.1–7.3 PSU). It seems to confirm the possibility of using BTA methods to determine key characteristics that are helpful for understanding the differences between aquatic ecosystems. The results may provide a basis for further research on changes in the functional diversity of lakes along the southern coast of the Baltic Sea, particularly in view of climate change, given their being small, shallow and less resilient lakes.
Collapse
|
6
|
Pavić D, Grbin D, Gregov M, Ćurko J, Vladušić T, Šver L, Miljanović A, Bielen A. Variations in the Sporulation Efficiency of Pathogenic Freshwater Oomycetes in Relation to the Physico-Chemical Properties of Natural Waters. Microorganisms 2022; 10:microorganisms10030520. [PMID: 35336096 PMCID: PMC8955207 DOI: 10.3390/microorganisms10030520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 01/27/2023] Open
Abstract
Oomycete pathogens in freshwaters, such as Saprolegnia parasitica and Aphanomyces astaci, are responsible for fish/crayfish population declines in the wild and disease outbreaks in aquaculture. Although the formation of infectious zoospores in the laboratory can be triggered by washing their mycelium with natural water samples, the physico-chemical properties of the water that might promote sporulation are still unexplored. We washed the mycelia of A. astaci and S. parasitica with a range of natural water samples and observed differences in sporulation efficiency. The results of Partial Least Squares Regression (PLS-R) multivariate analysis showed that SAC (spectral absorption coefficient measured at 254 nm), DOC (dissolved organic carbon), ammonium-N and fluoride had the strongest positive effect on sporulation of S. parasitica, while sporulation of A. astaci was not significantly correlated with any of the analyzed parameters. In agreement with this, the addition of environmentally relevant concentrations of humic acid, an important contributor to SAC and DOC, to the water induced sporulation of S. parasitica but not of A. astaci. Overall, our results point to the differences in ecological requirements of these pathogens, but also present a starting point for optimizing laboratory protocols for the induction of sporulation.
Collapse
|
7
|
Cervera-Mata A, Delgado G, Fernández-Arteaga A, Fornasier F, Mondini C. Spent coffee grounds by-products and their influence on soil C-N dynamics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114075. [PMID: 34800772 DOI: 10.1016/j.jenvman.2021.114075] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/04/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
SCG are a bio-waste generated in great amount worldwide which are attractive as soil amendment for their high content of organic matter and nutritive elements. Nevertheless, several studies have shown that soil application of untreated SCG has detrimental agronomic and environmental effects due to their high degradability and content of noxious compounds (phenols, caffeine, and tannins). However, SCG can be valorised, in the frame of circular economy, by extraction of energy and valuable products (carbohydrates, proteins, bio-oil, bio-diesel) and generation of solid by products (biochar, hydrochar, compost) that can be utilized as soil fertilizers and amendments. Therefore, the aim of this work was the characterization of different solid SCG by-products (as second-generation products) and their assessment as effective organic amendments. The novelty of this study is that for the first time 8 different by-products derived from the same SCG were characterized and comparatively evaluated for their impact on the C and N cycles of soil. SCG was collected and treated to generate 8 different SCG by-products (biochars produced at 270 and 400 °C, hydrochars produced at 160 and 200 °C, vermicompost, defatted SCG and biochars produced from defatted SCG at 270 and 400 °C). SCG and derived by-products were characterized for SEM micromorphology, pH and EC values, and C, N, H, O, volatile matter, fixed C, LOI, carbonates, water soluble C and N, NO3- and NH4+ content. SCG and SCG by-products assessment as organic amendments was performed with an incubation experiment. The residues were added (2.5%) to a moist Mediterranean agricultural soil and the amended soil samples were placed in mesocosms and incubated at 20 °C for 30 days. During incubation, CO2 and N2O emissions were measured every 6 h by means of a gas chromatography automated system for GHG sampling and measurement. The percentage of added C remaining (CR) in the soil was calculated by fitting the cumulative respiration of amended soil to a two-pool model. After 2, 7 and 30 days of incubation, the control and amended soils were sampled and analyzed for their content of extractable organic C, N, NO3- and NH4+ and microbial biomass C and N. Results showed that SCG by-products presented a great variability in their properties. SCG and hydrochars presented higher contents in volatile matter and water soluble C and N, and low content of fixed C, while biochars showed an opposite behaviour. SEM images confirmed the different characteristics of the SCG by-products: the biochar presented a porous structure, honeycomb-like form, due to the loss of the more soluble compounds, while the SCG and hydrochars' pores were filled with amorphous carbonaceous materials. Consequently, soil addition of SCG by-products showed a distinct impact on C and N cycle and microbial biomass content. Addition of SCG and hydrochars generated the highest cumulative CO2-C emissions (2103-2300 μg g-1), the lower amount of CR (86.8-88.6%), increased the soil extractable organic C and microbial biomass C and N and caused N immobilization. On the other hand, the addition of biochars generated lower CO2-C emissions (542-1060 μg g-1), higher amounts of CR (96. 3-99.9%) and lower amounts of extractable compounds and microbial biomass C and N, generating also N immobilization, but to a lesser extent. The addition of vermicompost generated 723 μg g-1 of CO2-C and 98% of CR remaining. However, this by-product did not generate N immobilization being able to act as N fertilizer. None of the residues generated N2O emissions. The different properties of the SCG by-products and their impact on C and N cycle indicated that they can be effectively applied to soil to exert different agronomical and environmental functions.
Collapse
Affiliation(s)
- Ana Cervera-Mata
- Departamento de Edafología y Química Agrícola. Facultad de Farmacia. Universidad de Granada, Granada, Spain; Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain.
| | - Gabriel Delgado
- Departamento de Edafología y Química Agrícola. Facultad de Farmacia. Universidad de Granada, Granada, Spain
| | | | - Flavio Fornasier
- CREA Centro di ricerca Viticoltura ed Enologia, sede di Gorizia, Gorizia, Italy
| | - Claudio Mondini
- CREA Centro di ricerca Viticoltura ed Enologia, sede di Gorizia, Gorizia, Italy
| |
Collapse
|
8
|
Hu J, Richwine JD, Keyser PD, Li L, Yao F, Jagadamma S, DeBruyn JM. Ammonia-oxidizing bacterial communities are affected by nitrogen fertilization and grass species in native C 4 grassland soils. PeerJ 2022; 9:e12592. [PMID: 35003922 PMCID: PMC8684740 DOI: 10.7717/peerj.12592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/12/2021] [Indexed: 11/20/2022] Open
Abstract
Background Fertilizer addition can contribute to nitrogen (N) losses from soil by affecting microbial populations responsible for nitrification. However, the effects of N fertilization on ammonia oxidizing bacteria under C4 perennial grasses in nutrient-poor grasslands are not well studied. Methods In this study, a field experiment was used to assess the effects of N fertilization rate (0, 67, and 202 kg N ha−1) and grass species (switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii)) on ammonia-oxidizing bacterial (AOB) communities in C4 grassland soils using quantitative PCR, quantitative reverse transcription-PCR, and high-throughput amplicon sequencing of amoA genes. Results Nitrosospira were dominant AOB in the C4 grassland soil throughout the growing season. N fertilization rate had a stronger influence on AOB community composition than C4 grass species. Elevated N fertilizer application increased the abundance, activity, and alpha-diversity of AOB communities as well as nitrification potential, nitrous oxide (N2O) emission and soil acidity. The abundance and species richness of AOB were higher under switchgrass compared to big bluestem. Soil pH, nitrate, nitrification potential, and N2O emission were significantly related to the variability in AOB community structures (p < 0.05).
Collapse
Affiliation(s)
- Jialin Hu
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, United States of America
| | - Jonathan D Richwine
- Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, United States of America
| | - Patrick D Keyser
- Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, United States of America
| | - Lidong Li
- Agroecosystem Management Research Unit, USDA-Agricultural Research Service, Lincoln, NE, United States of America
| | - Fei Yao
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, United States of America
| | - Sindhu Jagadamma
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, United States of America
| | - Jennifer M DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
9
|
Dragičević P, Grbin D, Maguire I, Blažević SA, Abramović L, Tarandek A, Hudina S. Immune Response in Crayfish Is Species-Specific and Exhibits Changes along Invasion Range of a Successful Invader. BIOLOGY 2021; 10:1102. [PMID: 34827095 PMCID: PMC8615248 DOI: 10.3390/biology10111102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/21/2022]
Abstract
Immunity is an important component of invasion success since it enables invaders' adaptation to conditions of the novel environment as they expand their range. Immune response of invaders may vary along the invasion range due to encountered parasites/microbial communities, conditions of the local environment, and ecological processes that arise during the range expansion. Here, we analyzed changes in the immune response along the invasion range of one of the most successful aquatic invaders, the signal crayfish, in the recently invaded Korana River, Croatia. We used several standard immune parameters (encapsulation response, hemocyte count, phenoloxidaze activity, and total prophenoloxidaze) to: i) compare immune response of the signal crayfish along its invasion range, and between species (comparison with co-occurring native narrow-clawed crayfish), and ii) analyze effects of specific predictors (water temperature, crayfish abundance, and body condition) on crayfish immune response changes. Immune response displayed species-specificity, differed significantly along the signal crayfish invasion range, and was mostly affected by water temperature and population abundance. Specific immune parameters showed density-dependent variation corresponding to increased investment in them during range expansion. Obtained results offer baseline insights for elucidating the role of immunocompetence in the invasion success of an invertebrate freshwater invader.
Collapse
Affiliation(s)
- Paula Dragičević
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (P.D.); (I.M.); (S.A.B.); (L.A.); (A.T.)
| | - Dorotea Grbin
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva Ulica 6, 10000 Zagreb, Croatia;
| | - Ivana Maguire
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (P.D.); (I.M.); (S.A.B.); (L.A.); (A.T.)
| | - Sofia Ana Blažević
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (P.D.); (I.M.); (S.A.B.); (L.A.); (A.T.)
| | - Lucija Abramović
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (P.D.); (I.M.); (S.A.B.); (L.A.); (A.T.)
| | - Anita Tarandek
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (P.D.); (I.M.); (S.A.B.); (L.A.); (A.T.)
| | - Sandra Hudina
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (P.D.); (I.M.); (S.A.B.); (L.A.); (A.T.)
| |
Collapse
|
10
|
Patterns of Structural and Functional Bacterioplankton Metacommunity along a River under Anthropogenic Pressure. SUSTAINABILITY 2021. [DOI: 10.3390/su132011518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacteria, an integral part of aquatic ecosystems, are responsible for the circulation of matter and flow of energy. Since bacterioplankton rapidly responds to any natural and human-induced disturbances in the environment, it can serve as a bioindicator of these changes. Knowing factors that shape the microbial community structure may help the sustainable management of the water environment. However, the identification of environmental signals affecting the structure and function of bacterioplankton is still a challenge. The study analyses the impact of environmental variables on basic microbial parameters, which determines the effectiveness of ecological processes in rivers. Measurements of bacterioplankton abundance (BA) and extracellular enzyme activity (EEA) were based on fluorescent markers. The bacterial community structure was determined by 16S rRNA gene amplicon sequencing (Illumina). The results indicate spatial variation in bacterioplankton abundance. Temporal variation was not significant. Lipase and aminopeptidase had the highest level of activity. EEA was not correlated with bacterial abundance but was significantly correlated with temperature. Moreover, differences in lipase, α-glucosidase and β-glucosidase activity levels between spring and summer were noted. At the same time, the location of sampling site had a significant influence on aminopeptidase activity. The taxonomic analysis of bacterioplankton communities in the Brda River indicated that, although different numbers of OTUs were recorded in the studied river sections, bacterioplankton biodiversity did not change significantly along the river with distance downstream. Anthropogenically modified river sections were characterized by the dominance of Flavobacterium (Bacterioidetes) and hgcl clade (Actinobacteria) taxa, known for their ability to produce extracellular enzymes. PCoA analysis revealed that the sites located in the lower river course (urban area) had the most similar bacterial community structure (β-diversity). The study provides new insight into the changes in microbial communities along the river and emphasizes the potential impact of anthropogenization on these processes.
Collapse
|
11
|
Mieczan T, Grześkiewicz M. The impact of climate warming on the diurnal dynamics of the microbial loop: Ice cover vs. lack of ice cover on dystrophic lakes. Saudi J Biol Sci 2021; 28:5175-5186. [PMID: 34466095 PMCID: PMC8381083 DOI: 10.1016/j.sjbs.2021.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022] Open
Abstract
One of the effects of warming is earlier retreat of the ice cover or a complete lack of ice cover on water bodies in the winter. However, there is still no information on how climate warming affects the 24-hour dynamics of the planktonic microbial loop in winter. The aim of this investigation was to assess the diurnal dynamics of the taxonomic composition and abundance of microbial communities in experimentally reproduced conditions (samples from under the ice, +2, +4 and +8 °C) and to analyse the relationships between components of the microbial loop in relation to physical and chemical parameters. Samples were taken in winter from three dystrophic reservoir. The biological and physicochemical parameters in the water were analysed at the start (day 0), 15 and end of the experiment (day 30) over a 24-hour cycle. The increase in temperature caused an increase in the numbers of predators (particularly testate amoebae and ciliates) and a reduction in the body size of individual populations. During the period with ice cover, marked dominance of mixotrophic testate amoeba (Hyalosphenia papilio) and ciliates (Paramecium bursaria) was observed, while the increase in temperature caused an increase in the proportion of bacterivorous ciliates (Cinetochilum margaritaceum).
Collapse
|
12
|
Rodríguez Sartori D, Bertuola M, Miñán A, Gonik E, Gonzalez MC, Fernández Lorenzo de Mele M. Environmentally Induced Changes of Commercial Carbon Nanotubes in Aqueous Suspensions. Adaptive Behavior of Bacteria in Biofilms. ACS OMEGA 2021; 6:5197-5208. [PMID: 33681561 PMCID: PMC7931186 DOI: 10.1021/acsomega.0c05114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
The effects of environmental factors such as sunlight irradiation and the presence of humic acid (HA) on the physicochemical properties of commercial multiwall carbon nanotubes (MWCNT) suspended in a simulated inorganic matrix (SIM) and their impacts on bacteria growing in biofilms were evaluated. Both solar irradiation and the presence of HA lead to the dissolution of adsorbed metals on the MWCNT, which are residues of synthesis catalysts. Also, preferential adsorption of certain HA components on the MWCNT induces important modifications in the aliphatic/aromatic relationship of HA components in solution and the generation and release of new moieties. Results demonstrated that the variation of such physicochemical parameters strongly affects the interactions of MWCNT with Pseudomonas aeruginosa sessile bacteria. Thus, the number of attached bacteria increased, and stress responses such as decrease in bacterial size were found in the presence of sunlight-irradiated MWCNT with a particular distribution of extracellular polymeric substances (EPS) strands. A shielding effect was observed when HA was added. It was concluded that physicochemical alterations caused by environmental conditions (with/without irradiation, presence/absence of HA) on MWCNT-containing SIM trigger distinctive adaptive behavior of bacteria in biofilms. This information must be taken into account in the development of biologically assisted treatments for organic metal co-contamination of MWCNT-containing media since MWCNT discharge alters the physicochemical properties and composition of the aqueous environment and the response of the biofilms that interact with it.
Collapse
Affiliation(s)
- Damián Rodríguez Sartori
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), CCT La Plata, CONICET, Facultad de Ciencias Exactas, UNLP, C.C. 16 Suc. 4, 1900 La Plata, Argentina
| | - Marcos Bertuola
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), CCT La Plata, CONICET, Facultad de Ciencias Exactas, UNLP, C.C. 16 Suc. 4, 1900 La Plata, Argentina
| | - Alejandro Miñán
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), CCT La Plata, CONICET, Facultad de Ciencias Exactas, UNLP, C.C. 16 Suc. 4, 1900 La Plata, Argentina
| | - Eduardo Gonik
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), CCT La Plata, CONICET, Facultad de Ciencias Exactas, UNLP, C.C. 16 Suc. 4, 1900 La Plata, Argentina
| | - Mónica C. Gonzalez
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), CCT La Plata, CONICET, Facultad de Ciencias Exactas, UNLP, C.C. 16 Suc. 4, 1900 La Plata, Argentina
| | - Mónica Fernández Lorenzo de Mele
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), CCT La Plata, CONICET, Facultad de Ciencias Exactas, UNLP, C.C. 16 Suc. 4, 1900 La Plata, Argentina
- Facultad
de Ingeniería, UNLP, B1900 La Plata, Argentina
| |
Collapse
|
13
|
Heck MA, Lüth VM, van Gessel N, Krebs M, Kohl M, Prager A, Joosten H, Decker EL, Reski R. Axenic in vitro cultivation of 19 peat moss (Sphagnum L.) species as a resource for basic biology, biotechnology, and paludiculture. THE NEW PHYTOLOGIST 2021; 229:861-876. [PMID: 32910470 DOI: 10.1111/nph.16922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/27/2020] [Indexed: 05/07/2023]
Abstract
Sphagnum farming can substitute peat with renewable biomass and thus help mitigate climate change. Large volumes of the required founder material can only be supplied sustainably by axenic cultivation in bioreactors. We established axenic in vitro cultures from sporophytes of 19 Sphagnum species collected in Austria, Germany, Latvia, the Netherlands, Russia, and Sweden: S. angustifolium, S. balticum, S. capillifolium, S. centrale, S. compactum, S. cuspidatum, S. fallax, S. fimbriatum, S. fuscum, S. lindbergii, S. medium/divinum, S. palustre, S. papillosum, S. rubellum, S. russowii, S. squarrosum, S. subnitens, S. subfulvum and S. warnstorfii. These species cover five of the six European Sphagnum subgenera; namely, Acutifolia, Cuspidata, Rigida, Sphagnum and Squarrosa. Their growth was measured in suspension cultures, whereas their ploidy was determined by flow cytometry and compared with the genome size of Physcomitrella patens. We identified haploid and diploid Sphagnum species, found that their cells are predominantly arrested in the G1 phase of the cell cycle, and did not find a correlation between plant productivity and ploidy. DNA barcoding was achieved by sequencing introns of the BRK1 genes. With this collection, high-quality founder material for diverse large-scale applications, but also for basic Sphagnum research, is available from the International Moss Stock Center.
Collapse
Affiliation(s)
- Melanie A Heck
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Volker M Lüth
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Matthias Krebs
- Peatland Studies and Palaeoecology, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, 17487, Germany
- Greifswald Mire Centre, Greifswald, 17489, Germany
| | - Mira Kohl
- Peatland Studies and Palaeoecology, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, 17487, Germany
- Greifswald Mire Centre, Greifswald, 17489, Germany
| | - Anja Prager
- Peatland Studies and Palaeoecology, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, 17487, Germany
- Greifswald Mire Centre, Greifswald, 17489, Germany
| | - Hans Joosten
- Peatland Studies and Palaeoecology, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, 17487, Germany
- Greifswald Mire Centre, Greifswald, 17489, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, 79104, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, 79110, Germany
| |
Collapse
|