1
|
Schoenmaekers C, De Smet D, Peeters S, Zarowski A, Deblieck C, Wuyts FL. Galvanic vestibular stimulation for Mal de Debarquement syndrome: a pilot study on therapeutic potential. Exp Brain Res 2025; 243:145. [PMID: 40369206 PMCID: PMC12078377 DOI: 10.1007/s00221-025-07102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025]
Abstract
Mal de Debarquement Syndrome (MdDS) is a debilitating neuro-otological disorder causing a persistent sensation of self-motion, often triggered by passive motion like being on a boat (MT-MdDS) or non-motion triggered (non-MT MdDS). Due to the unknown pathophysiological mechanism, available treatment options for managing symptoms are limited. Within the framework of a pilot study, our objective was to investigate the effect, safety, and feasibility of galvanic vestibular stimulation (GVS) as a potential alternative treatment option for MdDS. The trial included 12 MdDS patients and 12 controls. In Part 1, the perceptual threshold for movement perception was determined using both sine and noisy (white noise) GVS for both patients and controls. In Part 2, patients received up to eight four-minute GVS at varying intensities, determined by their individual threshold, during both sine and noisy GVS (i.e., at their threshold, 120%, 70%, and 20%). The effectiveness was evaluated using visual analogue scale (VAS) scores and static posturography. Five patients reported improvement with noisy GVS at 70%, two at noisy threshold, one at noise 20%, one at 120%, one at sine 20%, and one at sine 120%. Our findings show statistically significant positive trends in both subjective and objective outcome measures following specific GVS sessions. Particularly, notable improvements were observed with noisy GVS at intensities 70% and 20% below perceptual threshold levels. All patients found GVS to be safe and manageable, with no worsening of their symptoms. GVS demonstrated positive trends in posturographic stability, particularly with 70% currents and noisy GVS. While further research is necessary, the potential benefits, safety, and feasibility of GVS for MdDS patients have been demonstrated as promising.
Collapse
Affiliation(s)
- Catho Schoenmaekers
- Lab for Equilibrium Investigations and Aerospace (LEIA), Universirty of Antwerp, Wilrijk, Belgium.
| | - Dario De Smet
- Lab for Equilibrium Investigations and Aerospace (LEIA), Universirty of Antwerp, Wilrijk, Belgium
| | - Stefaan Peeters
- Department of Physics, Faculty of Sciences, University of Antwerp, Antwerp, Belgium
| | - Andrzej Zarowski
- European Institute for ORL-HNS, Sint-Augustinus Hospital, Wilrijk, Belgium
| | - Choi Deblieck
- Lab for Equilibrium Investigations and Aerospace (LEIA), Universirty of Antwerp, Wilrijk, Belgium
| | - Floris L Wuyts
- Lab for Equilibrium Investigations and Aerospace (LEIA), Universirty of Antwerp, Wilrijk, Belgium
- European Institute for ORL-HNS, Sint-Augustinus Hospital, Wilrijk, Belgium
| |
Collapse
|
2
|
Gavriilidou A, Mylonas V, Tsalavoutas I, Konstantakos V, Psillas G, Wuehr M, Hatzitaki V. Effects of individually calibrated white and pink noise vestibular stimulation on standing balance of young healthy adults. Exp Brain Res 2024; 243:33. [PMID: 39710745 DOI: 10.1007/s00221-024-06979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Imperceptible noisy galvanic vestibular stimulation (nGVS) improves standing balance due to the presence of stochastic resonance (SR). There is, however, a lack of consensus regarding the optimal levels and type of noise used to elicit SR like dynamics. We aimed to confirm the presence of SR behavior in the vestibular system of young healthy adults by examining postural responses to increasing amplitudes of white and pink noise stimulation scaled to individual cutaneous perceptual threshold. Forty (40) healthy young participants (19 males, 25.1 ± 5.6 years) were randomly divided into a group that received nGVS with white (WHITE group) or pink noise (PINK group). Participants performed a cutaneous perceptual threshold detection task followed by 8 trials of quiet standing and eyes closure (60s) with nGVS applied during the last 30s. Balance stabilization was quantified in the ratio of the stimulus versus pre-stimulus Centre of Pressure (CoP) 90% ellipse area, Root Mean Square (RMS) and mean velocity. Cutaneous perceptual threshold was similar across groups. Group analysis confirmed that the mean CoP velocity increased across nGVS intensities, particularly for the PINK group while the other two variables remained unchanged. Single subject analysis indicated that 55% of WHITE and 30% of PINK group participants showed an SR-like response judged by three experts. Results are puzzling with respect to the presence of SR-like response dynamics in young healthy adults and highlight the need for further research using individual calibrated stimulus intensities. White noise seems more effective than pink noise in revealing an SR-like response to nGVS.
Collapse
Affiliation(s)
- Alkistis Gavriilidou
- Motor Behavior and Adapted Physical Activity Laboratory, Aristotle University, Thessaloniki, Greece
- Present address: Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Vasileios Mylonas
- Biomechanics Laboratory, Aristotle University, Thessaloniki, Greece
- Present address: Department of Biomechanics, University of Nebraska at Omaha, Omaha, USA
| | - Ioannis Tsalavoutas
- Motor Behavior and Adapted Physical Activity Laboratory, Aristotle University, Thessaloniki, Greece
| | - Vasileios Konstantakos
- Laboratory of Electronics, School of Physics, Aristotle University, Thessaloniki, Greece
| | - George Psillas
- Otolaryngology Department, AHEPA Hospital, Aristotle University, Thessaloniki, Greece
| | - Max Wuehr
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University, Munich, Germany
| | - Vassilia Hatzitaki
- Motor Behavior and Adapted Physical Activity Laboratory, Aristotle University, Thessaloniki, Greece.
| |
Collapse
|
3
|
Kollmansperger S, Decker J, Berkes S, Jahn K, Wuehr M. A mobile electrical stimulator for therapeutic modulation of the vestibular system - design, safety, and functionality. Front Neurol 2024; 15:1502204. [PMID: 39606706 PMCID: PMC11598921 DOI: 10.3389/fneur.2024.1502204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Low-intensity noisy galvanic vestibular stimulation (nGVS) is a promising non-invasive treatment for enhancing vestibular perceptual performance and postural control in patients with chronic vestibular hypofunction. However, this approach has so far been studied mainly under laboratory conditions. Evidence indicates that continuous application of nGVS in daily life is necessary for it to be effective. To address this need, we have developed a mobile nGVS stimulator and conducted a series of pilot studies to evaluate its safety, tolerability, functionality, and therapeutic effects. The device is a lightweight, compact, and portable AC stimulator featuring a user-friendly interface for the individualized adjustment of nGVS parameters. It includes an integrated motion sensor that automatically activates stimulation during body movement and deactivates it during inactivity, optimizing its practical use in real-world settings. The stimulator adheres to strict safety standards and, in initial long-term use, has exhibited only mild side effects (e.g., skin irritation and headaches), likely attributable to the current electrode placement, which requires further optimization. As expected, the device consistently elicits known vestibular sensorimotor reflex responses in healthy individuals. Importantly, further pilot studies in healthy participants demonstrate that the device can reliably replicate known facilitating effects on vestibular perception and postural control. Together, these findings suggest that this mobile stimulation device can facilitate the translation of nGVS into therapeutic everyday use.
Collapse
Affiliation(s)
- Sandra Kollmansperger
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Julian Decker
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University of Munich, Munich, Germany
- Schön Klinik Bad Aibling, Bad Aibling, Germany
| | | | - Klaus Jahn
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University of Munich, Munich, Germany
- Schön Klinik Bad Aibling, Bad Aibling, Germany
| | - Max Wuehr
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University of Munich, Munich, Germany
- Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
4
|
Wuehr M, Eilles E, Lindner M, Grosch M, Beck R, Ziegler S, Zwergal A. Repetitive Low-Intensity Vestibular Noise Stimulation Partly Reverses Behavioral and Brain Activity Changes following Bilateral Vestibular Loss in Rats. Biomolecules 2023; 13:1580. [PMID: 38002261 PMCID: PMC10669117 DOI: 10.3390/biom13111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Low-intensity noisy galvanic vestibular stimulation (nGVS) can improve static and dynamic postural deficits in patients with bilateral vestibular loss (BVL). In this study, we aimed to explore the neurophysiological and neuroanatomical substrates underlying nGVS treatment effects in a rat model of BVL. Regional brain activation patterns and behavioral responses to a repeated 30 min nGVS treatment in comparison to sham stimulation were investigated by serial whole-brain 18F-FDG-PET measurements and quantitative locomotor assessments before and at nine consecutive time points up to 60 days after the chemical bilateral labyrinthectomy (BL). The 18F-FDG-PET revealed a broad nGVS-induced modulation on regional brain activation patterns encompassing biologically plausible brain networks in the brainstem, cerebellum, multisensory cortex, and basal ganglia during the entire observation period post-BL. nGVS broadly reversed brain activity adaptions occurring in the natural course post-BL. The parallel behavioral locomotor assessment demonstrated a beneficial treatment effect of nGVS on sensory-ataxic gait alterations, particularly in the early stage of post-BL recovery. Stimulation-induced locomotor improvements were finally linked to nGVS brain activity responses in the brainstem, hemispheric motor, and limbic networks. In conclusion, combined 18F-FDG-PET and locomotor analysis discloses the potential neurophysiological and neuroanatomical substrates that mediate previously observed therapeutic nGVS effects on postural deficits in patients with BVL.
Collapse
Affiliation(s)
- Max Wuehr
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
| | - Eva Eilles
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
| | - Magdalena Lindner
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
| | - Maximilian Grosch
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
| | - Roswitha Beck
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
- Pharmaceutical Radiochemistry, TUM School of Natural Sciences, TU Munich, 85748 Garching, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany;
| | - Andreas Zwergal
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
- Department of Neurology, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
5
|
Sherman SO, Greenstein M, Basner M, Clark TK, Anderson AP. Effects of additive sensory noise on cognition. Front Hum Neurosci 2023; 17:1092154. [PMID: 37333835 PMCID: PMC10270290 DOI: 10.3389/fnhum.2023.1092154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Background Adding noise to a system to improve a weak signal's throughput is known as stochastic resonance (SR). SR has been shown to improve sensory perception. Some limited research shows noise can also improve higher order processing, such as working memory, but it is unknown whether SR can broadly improve cognition. Objective We investigated cognitive performance while applying auditory white noise (AWN) and/or noisy galvanic vestibular stimulation (nGVS). Methods We measured cognitive performance (n = 13 subjects) while completing seven tasks in the cognition test battery (CTB). Cognition was assessed with and without the influence of AWN, nGVS, and both simultaneously. Performance in speed, accuracy, and efficiency was observed. A subjective questionnaire regarding preference for working in noisy environments was collected. Results We did not find broad cognitive performance improvement under the influence of noise (p > 0.1). However, a significant interaction was found between subject and noise condition for accuracy (p = 0.023), indicating that some subjects exhibited cognitive changes with the addition of noise. Across all metrics, noisy environment preference may trend to be a potential indicator of whether subjects will exhibit SR cognitive benefits with a significant predictor in efficiency (p = 0.048). Conclusion This study investigated using additive sensory noise to induce SR in overall cognition. Our results suggest that using noise to improve cognition is not applicable for a broad population; however, the effect of noise differs across individuals. Further, subjective questionnaires may be a means to identify which individuals are sensitive to SR cognitive benefits, but further investigation is needed.
Collapse
Affiliation(s)
- Sage O. Sherman
- Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Boulder, CO, United States
| | - Maya Greenstein
- Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Boulder, CO, United States
| | - Mathias Basner
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Torin K. Clark
- Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Boulder, CO, United States
| | - Allison P. Anderson
- Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Boulder, CO, United States
| |
Collapse
|
6
|
McLaren R, Smith PF, Taylor RL, Niazi IK, Taylor D. Scoping out noisy galvanic vestibular stimulation: a review of the parameters used to improve postural control. Front Neurosci 2023; 17:1156796. [PMID: 37205050 PMCID: PMC10187481 DOI: 10.3389/fnins.2023.1156796] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/04/2023] [Indexed: 05/21/2023] Open
Abstract
Objective Noisy galvanic vestibular stimulation (nGVS) has been used to facilitate vestibular function and improve gait and balance in people with poor postural control. The aim of this scoping review is to collate, summarize and report on the nGVS parameters that have been used to augment postural control. Method A systematic scoping review was conducted up to December 2022. Data were extracted and synthesized from 31 eligible studies. Key nGVS parameters were identified, and the importance of these parameters and their influence on postural control evaluated. Results A range of nGVS parameters have been used to augment postural control, including; noise waveform, amplitude, frequency band, duration of stimulation, method of amplitude optimization, size and composition of electrodes and the electrode skin interface. Conclusion Systematic evaluation of the individual parameters that can be manipulated in the nGVS waveform identified that a broad array of settings have been utilized in each parameter across the studies. Choices made around the electrode and electrode-skin interface, as well as the amplitude, frequency band, duration and timing of the waveform are likely to influence the efficacy of nGVS. The ability to draw robust conclusions about the selection of optimal nGVS parameters to improve postural control, is hindered by a lack of studies that directly compare parameter settings or consider the variability in individuals' response to nGVS. We propose a guideline for the accurate reporting of nGVS parameters, as a first step toward establishing standardized stimulation protocols.
Collapse
Affiliation(s)
- Ruth McLaren
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, School of Clinical Sciences, Auckland University of Technology, Auckland, New Zealand
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
- *Correspondence: Ruth McLaren,
| | - Paul F. Smith
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, The Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Rachael L. Taylor
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Imran Khan Niazi
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, School of Clinical Sciences, Auckland University of Technology, Auckland, New Zealand
- Centre of Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
- Centre for Sensory-Motor Interactions, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Denise Taylor
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, School of Clinical Sciences, Auckland University of Technology, Auckland, New Zealand
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
The effect of galvanic vestibular stimulation on postural balance in Parkinson's disease: A systematic review and meta-analysis. J Neurol Sci 2022; 442:120414. [PMID: 36116217 DOI: 10.1016/j.jns.2022.120414] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/08/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022]
Abstract
People with Parkinson's disease (PD) develop postural imbalance and falls. Galvanic Vestibular Stimulation (GVS) may potentially improve postural balance in humans and hence reduce falls in PD. This systematic review and meta-analysis investigate the effects of GVS on postural balance in PD. Six separate databases and research registers were searched for cross-over design trials that evaluated the effects of GVS on postural balance in PD. We used standardized mean difference (Hedges' g) as a measure of effect size in all studies. We screened 223 studies, evaluated 14, of which five qualified for the meta-analysis. Among n = 40 patients in five studies (range n = 5 to 13), using a fixed effects model we found an effect size estimate of g = 0.43 (p < 0.001, 95% CI [0.29,0.57]). However, the test for residual heterogeneity was significant (p < 0.001), thus we used a random effects model and found a pooled effect size estimate of 0.62 (p > 0.05, 95% CI [- 0.17, 1.41], I2 = 96.21%). Egger's test was not significant and thus trim and funnel plot indicated no bias. To reduce heterogeneity, we performed sensitivity analysis and by removing one outlier study (n = 7 patients), we found an effect size estimate of 0.16 (p < 0.05, 95% CI [0.01, 0.31], I2 = 0%). Our meta-analysis found GVS has a favourable effect on postural balance in PD patients, but due to limited literature and inconsistent methodologies, this favourable effect must be interpreted with caution.
Collapse
|
8
|
Eder J, Kellerer S, Amberger T, Keywan A, Dlugaiczyk J, Wuehr M, Jahn K. Combining vestibular rehabilitation with noisy galvanic vestibular stimulation for treatment of bilateral vestibulopathy. J Neurol 2022; 269:5731-5737. [PMID: 35212789 PMCID: PMC9553809 DOI: 10.1007/s00415-022-11033-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Noisy galvanic vestibular stimulation (nGVS) has been shown to partly restore vestibular function and to stabilize stance and gait in patients with incomplete bilateral vestibulopathy (BVP). Here, we examined potential synergistic effects of nGVS when combined with standardized vestibular rehabilitation training (VRT). METHODS 23 patients with confirmed BVP received a 30-min vestibular rehabilitation training (VRT) program three times a week for 2 weeks. The intervention group (n = 12) was stimulated with nGVS (at individually determined optimal amplitudes) during training, whereas the control group (n = 11) received zero-amplitude nGVS (sham stimulation) during training. Outcome measurements assessed at baseline, after 2 weeks of training, and at 2-week follow-up included quantitative posturography, instrumented gait analysis, Timed Up and Go Test (TUG), Functional Gait Assessment (FGA), and clinical scores related to quality of life and balance confidence. RESULTS After 2 weeks of VRT, all patients showed moderate improvement in balance. Irrespective of nGVS treatment, performance improved in the TUG (p < 0.013), and in the FGA (p < 0.040). Furthermore, base of support when walking with closed eyes was reduced after 2-week training (p < 0.003). Postural sway did not change. There was no difference between groups and thereby no evidence for an additional influence of nGVS on the VRT treatment effects. CONCLUSION nGVS does not induce synergistic treatment effects in combination with VRT in patients with BVP when applied during treatment sessions. Hence, rather than being applied in parallel, nGVS and VRT might be complementary therapeutic options with nGVS being used during postural activities in daily life, e.g., walking.
Collapse
Affiliation(s)
- Josefine Eder
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians University of Munich (LMU), University Hospital Grosshadern, Marchioninistrasse 15, 81377, Munich, Germany
| | - Silvy Kellerer
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians University of Munich (LMU), University Hospital Grosshadern, Marchioninistrasse 15, 81377, Munich, Germany
| | - Tamara Amberger
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians University of Munich (LMU), University Hospital Grosshadern, Marchioninistrasse 15, 81377, Munich, Germany
- Department of Neurology, Schoen Clinic Bad Aibling, Bad Aibling, Germany
| | - Aram Keywan
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians University of Munich (LMU), University Hospital Grosshadern, Marchioninistrasse 15, 81377, Munich, Germany
| | - Julia Dlugaiczyk
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians University of Munich (LMU), University Hospital Grosshadern, Marchioninistrasse 15, 81377, Munich, Germany
- Clinic for Ear, Nose, Throat and Facial Surgery, Interdisciplinary Center for Vertigo and Neurological Disorders, University of Zurich, Zurich, Switzerland
| | - Max Wuehr
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians University of Munich (LMU), University Hospital Grosshadern, Marchioninistrasse 15, 81377, Munich, Germany
| | - Klaus Jahn
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians University of Munich (LMU), University Hospital Grosshadern, Marchioninistrasse 15, 81377, Munich, Germany.
- Department of Neurology, Schoen Clinic Bad Aibling, Bad Aibling, Germany.
| |
Collapse
|
9
|
Pires APBDÁ, Silva TR, Torres MS, Diniz ML, Tavares MC, Gonçalves DU. Galvanic vestibular stimulation and its applications: a systematic review. Braz J Otorhinolaryngol 2022; 88 Suppl 3:S202-S211. [PMID: 35915031 PMCID: PMC9760994 DOI: 10.1016/j.bjorl.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/18/2022] [Accepted: 05/30/2022] [Indexed: 11/02/2022] Open
Abstract
OBJECTIVE Galvanic vestibular stimulation has been evaluated in the context of vestibular rehabilitation. The objective was to identify evidence in the scientific literature about the clinical applications of galvanic vestibular stimulation. METHODS In this systematic review, the articles describing the applications of galvanic vestibular stimulation were extracted from PubMed, Web of Science, MEDLINE, Scopus, LILACS and SciELO databases. The survey was limited to articles published in English, Portuguese and Spanish. All the articles about the clinical applications of galvanic vestibular stimulation were compiled. Repeated articles in the databases, literature review articles, case reports, letters and editorials were excluded. The descriptors included: galvanic vestibular stimulation, postural balance, central nervous system diseases, vestibular diseases, spinal cord diseases and cognition. RESULTS The search strategy resulted in the initial selection of 994 articles; the reading of titles and abstracts was accomplished in 470 articles and the complete reading in 23 articles. Clinical applications of galvanic vestibular stimulation included Ménière's disease, vestibular neuritis, bilateral vestibular disorders, vestibular schwannoma, Parkinson's disease, ischemic central lesions, motor myelopathies, anxiety disorders, cognition and memory. CONCLUSION Galvanic vestibular stimulation has been considered a potentially useful strategy for balance rehabilitation, since it has the effect of stimulating the central connections related to the postural balance, favoring new neuronal synapses that allow the partial or total recovery of postural imbalance.
Collapse
Affiliation(s)
| | - Tatiana Rocha Silva
- Universidade Federal de Minas Gerais (UFMG), Programa de Pós-Graduação em Ciências da Saúde - Infectologia e Medicina Tropical, Belo Horizonte, MG, Brazil
| | - Maíra Soares Torres
- Universidade Federal de Minas Gerais (UFMG), Programa de Residência Médica, Faculdade de Medicina, Belo Horizonte, MG, Brazil
| | - Maria Luiza Diniz
- Universidade Federal de Minas Gerais (UFMG), Faculdade de Medicina, Belo Horizonte, MG, Brazil
| | - Maurício Campelo Tavares
- Contronic Sistemas Automáticos Ltda, PDI - Pesquisa, Desenvolvimento & Inovação, Pelotas, RS, Brazil
| | - Denise Utsch Gonçalves
- Universidade Federal de Minas Gerais (UFMG), Faculdade de Medicina, Departamento de Otorrinolaringologia, Belo Horizonte, MG, Brazil.
| |
Collapse
|
10
|
Abolpour Moshizi S, Pastras CJ, Sharma R, Parvez Mahmud MA, Ryan R, Razmjou A, Asadnia M. Recent advancements in bioelectronic devices to interface with the peripheral vestibular system. Biosens Bioelectron 2022; 214:114521. [PMID: 35820254 DOI: 10.1016/j.bios.2022.114521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022]
Abstract
Balance disorders affect approximately 30% of the population throughout their lives and result in debilitating symptoms, such as spontaneous vertigo, nystagmus, and oscillopsia. The main cause of balance disorders is peripheral vestibular dysfunction, which may occur as a result of hair cell loss, neural dysfunction, or mechanical (and morphological) abnormality. The most common cause of vestibular dysfunction is arguably vestibular hair cell damage, which can result from an array of factors, such as ototoxicity, trauma, genetics, and ageing. One promising therapy is the vestibular prosthesis, which leverages the success of the cochlear implant, and endeavours to electrically integrate the primary vestibular afferents with the vestibular scene. Other translational approaches of interest include stem cell regeneration and gene therapies, which aim to restore or modify inner ear receptor function. However, both of these techniques are in their infancy and are currently undergoing further characterization and development in the laboratory, using animal models. Another promising translational avenue to treating vestibular hair cell dysfunction is the potential development of artificial biocompatible hair cell sensors, aiming to replicate functional hair cells and generate synthetic 'receptor potentials' for sensory coding of vestibular stimuli to the brain. Recently, artificial hair cell sensors have demonstrated significant promise, with improvements in their output, such as sensitivity and frequency selectivity. This article reviews the history and current state of bioelectronic devices to interface with the labyrinth, spanning the vestibular implant and artificial hair cell sensors.
Collapse
Affiliation(s)
| | - Christopher John Pastras
- School of Engineering, Macquarie University, Sydney, NSW, Australia; School of Medical Sciences, University of Sydney, NSW, Australia
| | - Rajni Sharma
- School of Engineering, Macquarie University, Sydney, NSW, Australia
| | - M A Parvez Mahmud
- School of Engineering, Deakin University, Geelong, VIC, 3216, Australia
| | - Rachel Ryan
- College of Public Health, The Ohio State University, Columbus, OH, 43210, United States
| | - Amir Razmjou
- School of Engineering, Macquarie University, Sydney, NSW, Australia; School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
11
|
McLaren R, Smith PF, Taylor RL, Ravindran S, Rashid U, Taylor D. Efficacy of nGVS to improve postural stability in people with bilateral vestibulopathy: A systematic review and meta-analysis. Front Neurosci 2022; 16:1010239. [PMID: 36248647 PMCID: PMC9553993 DOI: 10.3389/fnins.2022.1010239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Noisy galvanic vestibular stimulation (nGVS) has been used to boost vestibular afferent information to the central nervous system. This has the potential to improve postural control for people for whom vestibular signals are weak, such as in bilateral vestibulopathy (BVP). The aim of this systematic review and meta-analysis is to investigate the evidence for nGVS as a modality to improve postural control in people with BVP. Methods A comprehensive systematic search was conducted of five databases up to July 2022 to find studies applying nGVS to people with BVP, with the aim of improving postural control. Two independent reviewers screened and identified eligible studies, completed a risk of bias evaluation (Cochrane) and extracted relevant data. The standardized mean difference (SMD) based on Hedges' g was calculated as a measure of effect size for the primary outcome measure that best identified postural control, and a forest plot generated. Results Seven studies met the eligibility criteria, with five being suitable for meta-analysis. Meta-analysis revealed a moderate effect in favor of nGVS improving postural control during standing and walking [pooled SMD = 0.47 95% CI (0.25, 0.7)]. nGVS-mediated improvements in postural control were most evident in observations of reduced sway velocity when standing on a firm surface with eyes closed, and in the reduced variability of gait parameters, particularly those measuring lateral stability. Conclusions Coincident nGVS in people with BVP improves postural control during standing and walking. This improvement appears to be context specific, in that vestibular augmentation is most effective in situations where visual inputs are limited, and where reliable context specific proprioceptive cues are available. Further research is warranted investigating additional circumstances in which nGVS improves postural control, including investigating the residual, and sustained effects of nGVS. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=342147, identifier: 342147.
Collapse
Affiliation(s)
- Ruth McLaren
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, School of Clinical Science, Auckland University of Technology, Auckland, New Zealand
- *Correspondence: Ruth McLaren
| | - Paul F. Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, The Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| | - Rachael L. Taylor
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Shobika Ravindran
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, School of Clinical Science, Auckland University of Technology, Auckland, New Zealand
| | - Usman Rashid
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, School of Clinical Science, Auckland University of Technology, Auckland, New Zealand
| | - Denise Taylor
- Rehabilitation Innovation Centre, Health and Rehabilitation Research Institute, School of Clinical Science, Auckland University of Technology, Auckland, New Zealand
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Nguyen TT, Kang JJ, Oh SY. Thresholds for vestibular and cutaneous perception and oculomotor response induced by galvanic vestibular stimulation. Front Neurol 2022; 13:955088. [PMID: 36034303 PMCID: PMC9413160 DOI: 10.3389/fneur.2022.955088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Objectives In this study, the specific threshold intensities and response characteristics of galvanic vestibular stimulation (GVS) on vestibular (conscious) and cutaneous (detrimental) perception as well as oculomotor nystagmus (reflex) were determined. Methods The threshold intensities for vestibular and cutaneous perception and oculomotor response induced by GVS were determined in 25 right-handed healthy subjects (32.6 ± 7.2 years of age; 56% female). The subjects were seated upright, and eye movements were recorded while a direct GVS current was applied with paradigms of cathode on the right and anode on the left (CRAL) and also cathode on the left and anode on the right (CLAR). Results Subjects experienced dizziness, sense of spinning, or fall tendency, which was more frequently directed to the cathode (76%) than the anode (24%, p < 0.001, chi-square one-variable test) at mean current greater than 0.98 ± 0.29 mA (mean vestibular threshold). The current also triggered a more frequent mild tingling sensation at the cathode (56%) than the anode (30%) or on both sides (14%; p = 0.001, chi-square one-variable test) when above the mean cutaneous threshold of 0.9 ± 0.29 mA. Above the mean oculomotor threshold of 1.61 ± 0.35 mA, combined horizontal and torsional nystagmus was more frequent toward the cathode (86%) than toward the anode (p < 0.001, chi-square one-variable test). The mean oculomotor threshold was significantly higher than both the vestibular (p < 0.001, Mann–Whitney U-test) and cutaneous (p < 0.001, Mann–Whitney U-test) thresholds, which were comparable (p = 0.317, Mann–Whitney U-test). There was no significant disparity in these specific thresholds between the two GVS paradigms. The vestibular threshold was significantly higher in males than in females [1 (0.5–1.25) mA vs. 0.75 (0.625–1.125) mA, Z = −2.241, p = 0.025, Mann–Whitney U-test]. However, the thresholds of cutaneous perception and oculomotor response did not differ by sex. Conclusion The findings indicate that thresholds for vestibular and somatosensory perception are lower than the oculomotor threshold. Therefore, a strategy to reduce GVS current intensity to the level of vestibular or somatosensory perception threshold could elicit beneficial vestibular effects while avoiding undesirable effects such as oculomotor consequences.
Collapse
Affiliation(s)
- Thanh Tin Nguyen
- Jeonbuk National University College of Medicine, Jeonju, South Korea
- Department of Neurology, Jeonbuk National University Hospital and School of Medicine, Jeonju, South Korea
- Department of Pharmacology, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Jin-Ju Kang
- Department of Neurology, Jeonbuk National University Hospital and School of Medicine, Jeonju, South Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Sun-Young Oh
- Jeonbuk National University College of Medicine, Jeonju, South Korea
- Department of Neurology, Jeonbuk National University Hospital and School of Medicine, Jeonju, South Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- *Correspondence: Sun-Young Oh
| |
Collapse
|
13
|
Putman EJ, Galvan-Garza RC, Clark TK. The Effect of Noisy Galvanic Vestibular Stimulation on Learning of Functional Mobility and Manual Control Nulling Sensorimotor Tasks. Front Hum Neurosci 2021; 15:756674. [PMID: 34803637 PMCID: PMC8595260 DOI: 10.3389/fnhum.2021.756674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Galvanic vestibular stimulation (GVS) is a non-invasive method of electrically stimulating the vestibular system. We investigated whether the application of GVS can alter the learning of new functional mobility and manual control tasks and whether learning can be retained following GVS application. In a between-subjects experiment design, 36 healthy subjects performed repeated trials, capturing the learning of either (a) a functional mobility task, navigating an obstacle course on a compliant surface with degraded visual cues or (b) a manual control task, using a joystick to null self-roll tilt against a pseudo-random disturbance while seated in the dark. In the “learning” phase of trials, bilateral, bipolar GVS was applied continuously. The GVS waveform also differed between subjects in each task group: (1) white noisy galvanic vestibular stimulation (nGVS) at 0.3 mA (2) high-level random GVS at 0.7 mA (selected from pilot testing as destabilizing, but not painful), or (3) with the absence of stimulation (i.e., sham). Following the “learning” trials, all subjects were blindly transitioned to sham GVS, upon which they immediately completed another series of trials to assess any aftereffects. In the functional mobility task, we found nGVS significantly improved task learning (p = 0.03, mean learning metric 171% more than the sham group). Further, improvements in learning the functional mobility task with nGVS were retained, even once the GVS application was stopped. The benefits in learning with nGVS were not observed in the manual control task. High level GVS tended to inhibit learning in both tasks, but not significantly so. Even once the high-level stimulation was stopped, the impaired performance remained. Improvements in learning with nGVS may be due to increased information throughput resulting from stochastic resonance. The benefit of nGVS for functional mobility, but not manual control nulling, may be due to the multisensory (e.g., visual and proprioceptive), strategic, motor coordination, or spatial awareness aspects of the former task. Learning improvements with nGVS have the potential to benefit individuals who perform functional mobility tasks, such as astronauts, firefighters, high performance athletes, and soldiers.
Collapse
Affiliation(s)
- Esther J Putman
- Ann and H.J. Smead Aerospace Engineering Sciences, University of Colorado, Boulder, Boulder, CO, United States
| | | | - Torin K Clark
- Ann and H.J. Smead Aerospace Engineering Sciences, University of Colorado, Boulder, Boulder, CO, United States
| |
Collapse
|
14
|
Lee S, Smith PF, Lee WH, McKeown MJ. Frequency-Specific Effects of Galvanic Vestibular Stimulation on Response-Time Performance in Parkinson's Disease. Front Neurol 2021; 12:758122. [PMID: 34795633 PMCID: PMC8593161 DOI: 10.3389/fneur.2021.758122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Galvanic vestibular stimulation (GVS) is being increasingly explored as a non-invasive brain stimulation technique to treat symptoms in Parkinson's disease (PD). To date, behavioral GVS effects in PD have been explored with only two stimulus types, direct current and random noise (RN). The interaction between GVS effects and anti-parkinsonian medication is unknown. In the present study, we designed multisine (ms) stimuli and investigated the effects of ms and RN GVS on motor response time. In comparison to the RN stimulus, the ms stimuli contained sinusoidal components only at a set of desired frequencies and the phases were optimized to improve participants' comfort. We hypothesized GVS motor effects were a function of stimulation frequency, and specifically, that band-limited ms-GVS would result in better motor performance than conventionally used broadband RN-GVS. Materials and Methods: Eighteen PD patients (PDMOFF/PDMON: off-/on-levodopa medication) and 20 healthy controls (HC) performed a simple reaction time task while receiving sub-threshold GVS. Each participant underwent nine stimulation conditions: off-stimulation, RN (4–200 Hz), ms-θ (4–8 Hz), ms-α (8–13 Hz), ms-β (13–30 Hz), ms-γ (30–50 Hz), ms-h1 (50–100 Hz), ms-h2 (100–150 Hz), and ms-h3 (150–200 Hz). Results: The ms-γ resulted in shorter response time (RPT) in both PDMOFF and HC groups compared with the RN. In addition, the RPT of the PDMOFF group decreased during the ms-β while the RPT of the HC group decreased during the ms-α, ms-h1, ms-h2, and ms-h3. There was considerable inter-subject variability in the optimum stimulus type, although the frequency range tended to fall within 8–100 Hz. Levodopa medication significantly reduced the baseline RPT of the PD patients. In contrast to the off-medication state, GVS did not significantly change RPT of the PD patients in the on-medication state. Conclusions: Using band-limited ms-GVS, we demonstrated that the GVS frequency for the best RPT varied considerably across participants and was >30 Hz for half of the PDMOFF patients. Moreover, dopaminergic medication was found to influence GVS effects in PD patients. Our results indicate the common “one-size-fits-all” RN approach is suboptimal for PD, and therefore personalized stimuli aiming to address this variability is warranted to improve GVS effects.
Collapse
Affiliation(s)
- Soojin Lee
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, BC, Canada.,Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Won Hee Lee
- Department of Software Convergence, Kyung Hee University, Yongin, South Korea
| | - Martin J McKeown
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, BC, Canada.,Faculty of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
McLaren R, Smith PF, Lord S, Kaur PK, Zheng Y, Taylor D. Noisy Galvanic Vestibular Stimulation Combined With a Multisensory Balance Program in Older Adults With Moderate to High Fall Risk: Protocol for a Feasibility Study for a Randomized Controlled Trial. JMIR Res Protoc 2021; 10:e32085. [PMID: 34609323 PMCID: PMC8527374 DOI: 10.2196/32085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022] Open
Abstract
Background Reduced mobility and falls are common among older adults. Balance retraining programs are effective in reducing falls and in improving balance and mobility. Noisy galvanic vestibular stimulation is a low-level electrical stimulation used to reduce the threshold for the firing of vestibular neurons via a mechanism of stochastic resonance. Objective This study aims to determine the feasibility of using noisy galvanic vestibular stimulation to augment a balance training program for older adults at risk of falls. We hypothesize that noisy galvanic vestibular stimulation will enhance the effects of balance retraining in older adults at risk of falls Methods In this 3-armed randomized controlled trial, community dwelling older adults at risk of falling will be randomly assigned to a noisy galvanic vestibular stimulation plus balance program (noisy galvanic vestibular stimulation group), sham plus balance program (sham group), or a no treatment group (control). Participants will attend the exercise group twice a week for 8 weeks with assessment of balance and gait pretreatment, posttreatment, and at 3 months postintervention. Primary outcome measures include postural sway, measured by center of pressure velocity, area and root mean square, and gait parameters such as speed, step width, step variability, and double support time. Spatial memory will also be measured using the triangle completion task and the 4 Mountains Test. Results Recruitment began in November 2020. Data collection and analysis are expected to be completed by December 2022. Conclusions This study will evaluate the feasibility of using noisy galvanic vestibular stimulation alongside balance retraining in older adults at risk of falls and will inform the design of a fully powered randomized controlled trial. Trial Registration New Zealand Clinical Trials Registry (ACTRN12620001172998); https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=379944 International Registered Report Identifier (IRRID) DERR1-10.2196/32085
Collapse
Affiliation(s)
- Ruth McLaren
- Rehabilitation Innovation Centre, School of Clinical Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sue Lord
- Rehabilitation Innovation Centre, School of Clinical Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Preet Kamal Kaur
- Rehabilitation Innovation Centre, School of Clinical Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Denise Taylor
- Rehabilitation Innovation Centre, School of Clinical Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
16
|
Assländer L, Giboin LS, Gruber M, Schniepp R, Wuehr M. No evidence for stochastic resonance effects on standing balance when applying noisy galvanic vestibular stimulation in young healthy adults. Sci Rep 2021; 11:12327. [PMID: 34112904 PMCID: PMC8192540 DOI: 10.1038/s41598-021-91808-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022] Open
Abstract
Noisy galvanic vestibular stimulation (nGVS) at imperceptible levels has been shown to reduce body sway. This reduction was commonly attributed to the mechanism of stochastic resonance (SR). However, it has never been explicitly tested whether nGVS-induced effects on body sway consistently follow a SR-like bell-shaped performance curve with maximal reductions in a particular range of noise intensities. To test this, body sway in 21 young healthy participants was measured during varying nGVS amplitudes while standing with eyes closed in 3 conditions (quiet stance, sway referencing, sinusoidal platform tilts). Presence of SR-like response dynamics in each trial was assessed (1) by a goodness-of-fit analysis using an established SR-curve model and (2) by ratings from 3 human experts. In accordance to theory, we found reductions of body sway at one nGVS amplitude in most trials (75–95%). However, only few trials exhibited SR-like bell-shaped performance curves with increasing noise amplitudes (10–33%). Instead, body sway measures rather fluctuated randomly across nGVS amplitudes. This implies that, at least in young healthy adults, nGVS effects on body sway are incompatible with SR. Thus, previously reported reductions of body sway at particular nGVS intensities more likely result from inherent variations of the performance metric or by other yet unknown mechanisms.
Collapse
Affiliation(s)
- L Assländer
- Human Performance Research Centre, University of Konstanz, Konstanz, Germany.
| | - L S Giboin
- Human Performance Research Centre, University of Konstanz, Konstanz, Germany
| | - M Gruber
- Human Performance Research Centre, University of Konstanz, Konstanz, Germany
| | - R Schniepp
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University, Munich, Germany.,Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - M Wuehr
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
17
|
Lotfi Y, Farahani A, Azimiyan M, Moossavi A, Bakhshi E. Comparison of efficacy of vestibular rehabilitation and noisy galvanic vestibular stimulation to improve dizziness and balance in patients with multiple sclerosis. J Vestib Res 2021; 31:541-551. [PMID: 33967075 DOI: 10.3233/ves-201609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Dizziness and imbalance are common symptoms in patients with multiple sclerosis (PwMS), and rehabilitation interventions varying greatly in effectiveness. OBJECTIVE To compare the effectiveness of vestibular rehabilitation therapy (VRT) and noisy galvanic vestibular stimulation (nGVS) on dizziness and balance in PwMS. METHODS This was a single-blind, randomized controlled trial. Twenty-four PwMS were randomly divided into groups of VRT, nGVS, and Control. The VRT and the nGVS groups underwent the intervention program. The patients were assessed with the composite score in anteroposterior and lateral directions (CS AP and LAT) obtained by sensory organization test (SOT), Dizziness Handicap Inventory (DHI), and Activities-Specific Balance Confidence Scale (ABC). RESULTS The VRT group showed greater improvements in CS AP and LAT, DHI total score, and ABC total score compared with the nGVS group and the control group. No significant difference was found between the nGVS group and the control group. These results were approximately stable at the 4-week follow-up. CONCLUSIONS These findings provided evidence for effectiveness of the VRT in improvement of dizziness and balance in PwMS. These improvements were not associated with the nGVS. Further studies are needed to assess the effectiveness of the nGVS on dizziness and balance in PwMS.
Collapse
Affiliation(s)
- Yones Lotfi
- Department of Audiology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Akram Farahani
- Department of Audiology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mojtaba Azimiyan
- Department of Clinical Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Abdollah Moossavi
- Department of Otolaryngology and Head and Neck Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Enayatollah Bakhshi
- Department of Biostatistics, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
18
|
Lajoie K, Marigold DS, Valdés BA, Menon C. The potential of noisy galvanic vestibular stimulation for optimizing and assisting human performance. Neuropsychologia 2021; 152:107751. [PMID: 33434573 DOI: 10.1016/j.neuropsychologia.2021.107751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/17/2022]
Abstract
Noisy galvanic vestibular stimulation (nGVS) is an emerging non-invasive brain stimulation technique. It involves applying alternating currents of different frequencies and amplitudes presented in a random, or noisy, manner through electrodes on the mastoid bones behind the ears. Because it directly activates vestibular hair cells and afferents and has an indirect effect on a variety of brain regions, it has the potential to impact many different functions. The objective of this review is twofold: (1) to review how nGVS affects motor, sensory, and cognitive performance in healthy adults; and (2) to discuss potential clinical applications of nGVS. First, we introduce the technique. We then describe the regions receiving and processing vestibular information. Next, we discuss the effects of nGVS on motor, sensory, and cognitive function in healthy adults. Subsequently, we outline its potential clinical applications. Finally, we highlight other electrical stimulation technologies and discuss why nGVS offers an alternative or complementary approach. Overall, nGVS appears promising for optimizing human performance and as an assistive technology, though further research is required.
Collapse
Affiliation(s)
- Kim Lajoie
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC, Canada
| | - Daniel S Marigold
- Sensorimotor Neuroscience Lab, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
| | - Bulmaro A Valdés
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC, Canada
| | - Carlo Menon
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC, Canada.
| |
Collapse
|
19
|
Matsugi A, Oku K, Mori N. The Effects of Stochastic Galvanic Vestibular Stimulation on Body Sway and Muscle Activity. Front Hum Neurosci 2020; 14:591671. [PMID: 33381017 PMCID: PMC7767904 DOI: 10.3389/fnhum.2020.591671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/18/2020] [Indexed: 12/23/2022] Open
Abstract
Objective: This study aimed to investigate whether galvanic vestibular stimulation with stochastic noise (nGVS) modulates the body sway and muscle activity of the lower limbs, depending on visual and somatosensory information from the foot using rubber-foam. Methods: Seventeen healthy young adults participated in the study. Each subject maintained an upright standing position on a force plate with/without rubber-foam, with their eyes open/closed, to measure the position of their foot center of pressure. Thirty minutes after baseline measurements under four possible conditions (eyes open/closed with/without rubber-foam) performed without nGVS (intensity: 1 mA, duration: 40 s), the stimulation trials (sham-nGVS/real-nGVS) were conducted under the same conditions in random order, which were then repeated a week or more later. The total center of pressure (COP) path length movement (COP-TL) and COP movement velocity in the mediolateral (Vel-ML) and anteroposterior (Vel-AP) directions were recorded for 30 s during nGVS. Furthermore, electromyography activity of the right tibial anterior muscle and soleus muscle was recorded for the same time and analyzed. Results: Three-way analysis of variance and post-hoc multiple comparison revealed a significant increment in COP-related parameters by nGVS, and a significant increment in soleus muscle activity on rubber. There was no significant effect of eye condition on any parameter. Conclusions: During nGVS (1 mA), body sway and muscle activity in the lower limb may be increased depending not on the visual condition, but on the foot somatosensory condition.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Daitou, Japan
| | - Kosuke Oku
- Department of Rehabilitation, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Nobuhiko Mori
- Department of Neuromodulation and Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
20
|
Nooristani M, Bigras C, Lafontaine L, Bacon BA, Maheu M, Champoux F. Vestibular function modulates the impact of nGVS on postural control in older adults. J Neurophysiol 2020; 125:489-495. [PMID: 33296620 DOI: 10.1152/jn.00512.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previous studies have reported an important relationship between increasing age, vestibular impairment, and increased risk of falls. Recently, noisy galvanic vestibular stimulation (nGVS) has been shown to improve postural control in older adults during and potentially following stimulation. However, this effect of nGVS in older adults has not been examined in interaction with the integrity of the vestibular function. We aimed at determining the effect of nGVS on postural control in older adults with and without vestibular impairment and examining the sustained effect of nGVS as compared with a sham stimulation. Thirty-six older adults were assigned to the nGVS group (n = 24) or the sham group (n = 12). In the nGVS group, 12 participants had normal vestibular function and 12 had vestibular impairment. Static postural control was assessed prior to stimulation, during stimulation, and immediately following 30 min of nGVS. Results showed that nGVS induced a significant improvement in sway velocity (P < 0.001) and path length (P < 0.001) compared with sham stimulation. Furthermore, nGVS induced a significantly greater improvement of sway velocity (P < 0.05) and path length (P < 0.05) in older adults with vestibular impairment compared with older adults with normal vestibular function. Improvements in sway velocity (P < 0.001) and path length (P < 0.001) induced by nGVS were sustained immediately following stimulation. These findings suggest that nGVS improves postural control in older adults, and that the effect of nGVS varies depending on the integrity of the vestibular function. Results also show that nGVS effect on postural control, compared with a sham stimulation, can be sustained after the end of stimulation.NEW & NOTEWORTHY The present study is the first study to investigate the impact of vestibular function on the improvement of postural control induced by nGVS in older adults and to compare the improvement of postural control of older adults with and without vestibular impairment. Our results also suggest that nGVS is beneficial for all older adults, and even more for those with a vestibular impairment. Therefore, it could be an approach to reduce falls.
Collapse
Affiliation(s)
- Mujda Nooristani
- École d'orthophonie et d'audiologie, Université de Montréal, Montréal, Québec, Canada.,Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Charlotte Bigras
- École d'orthophonie et d'audiologie, Université de Montréal, Montréal, Québec, Canada
| | - Louise Lafontaine
- École d'orthophonie et d'audiologie, Université de Montréal, Montréal, Québec, Canada.,Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | | | - Maxime Maheu
- École d'orthophonie et d'audiologie, Université de Montréal, Montréal, Québec, Canada
| | - François Champoux
- École d'orthophonie et d'audiologie, Université de Montréal, Montréal, Québec, Canada.,Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| |
Collapse
|
21
|
Ahmed RAMA, Fahmy EM, Awad AM, Hamdy MM, Shaker HAAR. Efficacy of transmastoidal galvanic stimulation on recovery outcomes in patients with unilateral peripheral vestibular disorders: a randomized controlled trial. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2020. [DOI: 10.1186/s41983-020-00207-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Peripheral vestibular disorders are common disorders among population with increased prevalence with age advancement, manifested by balance disorders and postural instability that negatively affect daily activities and social participation.
Objectives
To investigate the effect of transmastoidal galvanic stimulation added to a designed vestibular rehabilitation program on recovery outcomes in Egyptian patients with unilateral peripheral vestibular disorders.
Subjects and methods
Forty patients (from both sexes) diagnosed with unilateral peripheral vestibular weakness were evenly and randomly designated into two groups: study and control groups. The study group received transmastoidal galvanic stimulation, in addition to a vestibular rehabilitation program, whereas control group undergone vestibular rehabilitation program only. Treatment sessions were conducted three times weekly for four successive weeks. Assessment of vestibular canal weakness was carried out using videonystagmography, postural stability using computerized posturography, while participation in daily activities was carried out using Vestibular Disorders Activities of Daily Living Scale (VADL). All assessment measures were carried out pre- and post-treatment.
Results
Study group showed improvement of post-treatment scores of canal weakness, postural stability parameters, and VADL scale in reverse to control group that showed improvement of scores of preference and VADL only. A statistically significant difference was found between both groups in post-treatment scores of canal weakness, total equilibrium composite, and vestibular component with more improvement in the study group.
Conclusion
Adding transmastoidal galvanic stimulation to vestibular rehabilitation exercises for unilateral peripheral vestibular disorders improves the recovery outcomes of vestibular canal weakness, equilibrium, and vestibular components of postural stability.
Trial registration
Clinical trials identification number (NCT04010435). Registered 7 March 2019—retrospectively registered, https://register.clinicaltrials.gov/prs/app/action/LoginUser?ts=1&cx=-jg9qo4
Collapse
|
22
|
Nooristani M, Moïn-Darbari K, Pagé S, Bacon BA, Champoux F. Audiomotor interaction induced by mental imagery. Exp Brain Res 2020; 238:2469-2473. [PMID: 32839854 DOI: 10.1007/s00221-020-05903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
Mental imagery can induce audiovisual integration, but whether it can induce interactions in other modalities remains uncertain. It has been demonstrated that audiomotor interaction can be generated following training, but whether such audiomotor interaction can be induced by auditory imagery training remains unknown. The present study aims at determining whether auditory mental imagery could induce a multimodal association with postural control. We examined static postural control in the presence of a frequency-modulated sound in three groups of participants, prior to and following a short period of training designed to create an association between auditory mental imagery of sounds and postural swaying. Results suggest that mental imagery impacted performance, as a significant decrease in postural control was observed in the experimental group following mental imagery training. Results of the control groups confirmed that the effect of mental imagery was not due to response bias, but to a significant multimodal interaction following training. These findings are in accordance with previous studies suggesting that mental imagery stimuli can interact with perceptual stimuli of a different sensory modality and lead to multisensory integration. The results also confirm that audiomotor interaction can be generated a mental imagery training. However, the full extent of mental imagery influence on multimodal interaction remains to be determined.
Collapse
Affiliation(s)
- M Nooristani
- Faculté de Médicine, École d'Orthophonie et d'Audiologie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7, Canada.
| | - K Moïn-Darbari
- Faculté de Médicine, École d'Orthophonie et d'Audiologie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| | - S Pagé
- Faculté de Médicine, École d'Orthophonie et d'Audiologie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| | - B A Bacon
- Department of Psychology, Carleton University, Ottawa, ON, Canada
| | - F Champoux
- Faculté de Médicine, École d'Orthophonie et d'Audiologie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
23
|
Inukai Y, Otsuru N, Saito K, Miyaguchi S, Kojima S, Yokota H, Nagasaka K, Onishi H. The after-effect of noisy galvanic vestibular stimulation on postural control in young people: A randomized controlled trial. Neurosci Lett 2020; 729:135009. [DOI: 10.1016/j.neulet.2020.135009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022]
|
24
|
Effects of perceptible and imperceptible galvanic vestibular stimulation on the postural control of patients with bilateral vestibulopathy. J Neurol 2020; 267:2383-2397. [DOI: 10.1007/s00415-020-09852-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 01/01/2023]
|
25
|
Keywan A, Badarna H, Jahn K, Wuehr M. No evidence for after-effects of noisy galvanic vestibular stimulation on motion perception. Sci Rep 2020; 10:2545. [PMID: 32054910 PMCID: PMC7018946 DOI: 10.1038/s41598-020-59374-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 01/27/2020] [Indexed: 11/09/2022] Open
Abstract
Noisy galvanic vestibular stimulation (nGVS) delivered at imperceptible intensities can improve vestibular function in health and disease. Here we evaluated whether nGVS effects on vestibular function are only present during active stimulation or may exhibit relevant post-stimulation after-effects. Initially, nGVS amplitudes that optimally improve posture were determined in 13 healthy subjects. Subsequently, effects of optimal nGVS amplitudes on vestibular roll-tilt direction recognition thresholds (DRT) were examined during active and sham nGVS. Ten of 13 subjects exhibited reduced DRTs during active nGVS compared to sham stimulation (p < 0.001). These 10 participants were then administered to 30 mins of active nGVS treatment while being allowed to move freely. Immediately post-treatment , DRTs were increased again (p = 0.044), reverting to baseline threshold levels (i.e. were comparable to the sham nGVS thresholds), and remained stable in a follow-up assessment after 30 min. After three weeks, participants returned for a follow-up experiment to control for learning effects, in which DRTs were measured during and immediately after 30 min application of sham nGVS. DRTs during both assessments did not differ from baseline level. These findings indicate that nGVS does not induce distinct post-stimulation effects on vestibular motion perception and favor the development of a wearable technology that continuously delivers nGVS to patients in order to enhance vestibular function.
Collapse
Affiliation(s)
- Aram Keywan
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University of Munich, University Hospital Grosshadern, Munich, Germany.
| | - Hiba Badarna
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University of Munich, University Hospital Grosshadern, Munich, Germany
| | - Klaus Jahn
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University of Munich, University Hospital Grosshadern, Munich, Germany.,Schoen Clinic Bad Aibling, Department of Neurology, Bad Aibling, Germany
| | - Max Wuehr
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University of Munich, University Hospital Grosshadern, Munich, Germany
| |
Collapse
|