1
|
Rutowicz K, Lüthi J, de Groot R, Holtackers R, Yakimovich Y, Pazmiño DM, Gandrillon O, Pelkmans L, Baroux C. Multiscale chromatin dynamics and high entropy in plant iPSC ancestors. J Cell Sci 2024; 137:jcs261703. [PMID: 38738286 PMCID: PMC11234377 DOI: 10.1242/jcs.261703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
Plant protoplasts provide starting material for of inducing pluripotent cell masses that are competent for tissue regeneration in vitro, analogous to animal induced pluripotent stem cells (iPSCs). Dedifferentiation is associated with large-scale chromatin reorganisation and massive transcriptome reprogramming, characterised by stochastic gene expression. How this cellular variability reflects on chromatin organisation in individual cells and what factors influence chromatin transitions during culturing are largely unknown. Here, we used high-throughput imaging and a custom supervised image analysis protocol extracting over 100 chromatin features of cultured protoplasts. The analysis revealed rapid, multiscale dynamics of chromatin patterns with a trajectory that strongly depended on nutrient availability. Decreased abundance in H1 (linker histones) is hallmark of chromatin transitions. We measured a high heterogeneity of chromatin patterns indicating intrinsic entropy as a hallmark of the initial cultures. We further measured an entropy decline over time, and an antagonistic influence by external and intrinsic factors, such as phytohormones and epigenetic modifiers, respectively. Collectively, our study benchmarks an approach to understand the variability and evolution of chromatin patterns underlying plant cell reprogramming in vitro.
Collapse
Affiliation(s)
- Kinga Rutowicz
- Plant Developmental Genetics, Institute of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Joel Lüthi
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - Reinoud de Groot
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - René Holtackers
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - Yauhen Yakimovich
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - Diana M. Pazmiño
- Plant Developmental Genetics, Institute of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Olivier Gandrillon
- Laboratory of Biology and Modeling of the Cell, University of Lyon, ENS de Lyon,69342 Lyon, France
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - Célia Baroux
- Plant Developmental Genetics, Institute of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| |
Collapse
|
2
|
Fourneaux C, Racine L, Koering C, Dussurgey S, Vallin E, Moussy A, Parmentier R, Brunard F, Stockholm D, Modolo L, Picard F, Gandrillon O, Paldi A, Gonin-Giraud S. Differentiation is accompanied by a progressive loss in transcriptional memory. BMC Biol 2024; 22:58. [PMID: 38468285 PMCID: PMC10929117 DOI: 10.1186/s12915-024-01846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Cell differentiation requires the integration of two opposite processes, a stabilizing cellular memory, especially at the transcriptional scale, and a burst of gene expression variability which follows the differentiation induction. Therefore, the actual capacity of a cell to undergo phenotypic change during a differentiation process relies upon a modification in this balance which favors change-inducing gene expression variability. However, there are no experimental data providing insight on how fast the transcriptomes of identical cells would diverge on the scale of the very first two cell divisions during the differentiation process. RESULTS In order to quantitatively address this question, we developed different experimental methods to recover the transcriptomes of related cells, after one and two divisions, while preserving the information about their lineage at the scale of a single cell division. We analyzed the transcriptomes of related cells from two differentiation biological systems (human CD34+ cells and T2EC chicken primary erythrocytic progenitors) using two different single-cell transcriptomics technologies (scRT-qPCR and scRNA-seq). CONCLUSIONS We identified that the gene transcription profiles of differentiating sister cells are more similar to each other than to those of non-related cells of the same type, sharing the same environment and undergoing similar biological processes. More importantly, we observed greater discrepancies between differentiating sister cells than between self-renewing sister cells. Furthermore, a progressive increase in this divergence from first generation to second generation was observed when comparing differentiating cousin cells to self renewing cousin cells. Our results are in favor of a gradual erasure of transcriptional memory during the differentiation process.
Collapse
Affiliation(s)
- Camille Fourneaux
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Laëtitia Racine
- Ecole Pratique des Hautes Etudes, PSL Research University, Sorbonne Université, INSERM, CRSA, Paris, 75012, France
| | - Catherine Koering
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Sébastien Dussurgey
- Plateforme AniRA-Cytométrie, Université Claude Bernard Lyon 1, CNRS UAR3444, Inserm US8, ENS de Lyon, SFR Biosciences, Lyon, F-69007, France
| | - Elodie Vallin
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Alice Moussy
- Ecole Pratique des Hautes Etudes, PSL Research University, Sorbonne Université, INSERM, CRSA, Paris, 75012, France
| | - Romuald Parmentier
- Ecole Pratique des Hautes Etudes, PSL Research University, Sorbonne Université, INSERM, CRSA, Paris, 75012, France
| | - Fanny Brunard
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Daniel Stockholm
- Ecole Pratique des Hautes Etudes, PSL Research University, Sorbonne Université, INSERM, CRSA, Paris, 75012, France
| | - Laurent Modolo
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Franck Picard
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Olivier Gandrillon
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
- Inria Center, Grenoble Rhone-Alpes, Equipe Dracula, Villeurbanne, F69100, France
| | - Andras Paldi
- Ecole Pratique des Hautes Etudes, PSL Research University, Sorbonne Université, INSERM, CRSA, Paris, 75012, France
| | - Sandrine Gonin-Giraud
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
3
|
Aslan Kamil M, Fourneaux C, Yilmaz A, Stavros S, Parmentier R, Paldi A, Gonin-Giraud S, deMello AJ, Gandrillon O. An image-guided microfluidic system for single-cell lineage tracking. PLoS One 2023; 18:e0288655. [PMID: 37527253 PMCID: PMC10393162 DOI: 10.1371/journal.pone.0288655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Cell lineage tracking is a long-standing and unresolved problem in biology. Microfluidic technologies have the potential to address this problem, by virtue of their ability to manipulate and process single-cells in a rapid, controllable and efficient manner. Indeed, when coupled with traditional imaging approaches, microfluidic systems allow the experimentalist to follow single-cell divisions over time. Herein, we present a valve-based microfluidic system able to probe the decision-making processes of single-cells, by tracking their lineage over multiple generations. The system operates by trapping single-cells within growth chambers, allowing the trapped cells to grow and divide, isolating sister cells after a user-defined number of divisions and finally extracting them for downstream transcriptome analysis. The platform incorporates multiple cell manipulation operations, image processing-based automation for cell loading and growth monitoring, reagent addition and device washing. To demonstrate the efficacy of the microfluidic workflow, 6C2 (chicken erythroleukemia) and T2EC (primary chicken erythrocytic progenitors) cells are tracked inside the microfluidic device over two generations, with a cell viability rate in excess of 90%. Sister cells are successfully isolated after division and extracted within a 500 nL volume, which was demonstrated to be compatible with downstream single-cell RNA sequencing analysis.
Collapse
Affiliation(s)
- Mahmut Aslan Kamil
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Camille Fourneaux
- Laboratory of Biology and Modelling of the Cell, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard, Lyon, France
| | | | - Stavrakis Stavros
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Romuald Parmentier
- Ecole Pratique des Hautes Etudes, St-Antoine Research Center, Inserm U938, PSL Research University, Paris, France
| | - Andras Paldi
- Ecole Pratique des Hautes Etudes, St-Antoine Research Center, Inserm U938, PSL Research University, Paris, France
| | - Sandrine Gonin-Giraud
- Laboratory of Biology and Modelling of the Cell, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard, Lyon, France
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Olivier Gandrillon
- Laboratory of Biology and Modelling of the Cell, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard, Lyon, France
- Inria, France
| |
Collapse
|
4
|
Zreika S, Fourneaux C, Vallin E, Modolo L, Seraphin R, Moussy A, Ventre E, Bouvier M, Ozier-Lafontaine A, Bonnaffoux A, Picard F, Gandrillon O, Gonin-Giraud S. Evidence for close molecular proximity between reverting and undifferentiated cells. BMC Biol 2022; 20:155. [PMID: 35794592 PMCID: PMC9258043 DOI: 10.1186/s12915-022-01363-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND According to Waddington's epigenetic landscape concept, the differentiation process can be illustrated by a cell akin to a ball rolling down from the top of a hill (proliferation state) and crossing furrows before stopping in basins or "attractor states" to reach its stable differentiated state. However, it is now clear that some committed cells can retain a certain degree of plasticity and reacquire phenotypical characteristics of a more pluripotent cell state. In line with this dynamic model, we have previously shown that differentiating cells (chicken erythrocytic progenitors (T2EC)) retain for 24 h the ability to self-renew when transferred back in self-renewal conditions. Despite those intriguing and promising results, the underlying molecular state of those "reverting" cells remains unexplored. The aim of the present study was therefore to molecularly characterize the T2EC reversion process by combining advanced statistical tools to make the most of single-cell transcriptomic data. For this purpose, T2EC, initially maintained in a self-renewal medium (0H), were induced to differentiate for 24H (24H differentiating cells); then, a part of these cells was transferred back to the self-renewal medium (48H reverting cells) and the other part was maintained in the differentiation medium for another 24H (48H differentiating cells). For each time point, cell transcriptomes were generated using scRT-qPCR and scRNAseq. RESULTS Our results showed a strong overlap between 0H and 48H reverting cells when applying dimensional reduction. Moreover, the statistical comparison of cell distributions and differential expression analysis indicated no significant differences between these two cell groups. Interestingly, gene pattern distributions highlighted that, while 48H reverting cells have gene expression pattern more similar to 0H cells, they are not completely identical, which suggest that for some genes a longer delay may be required for the cells to fully recover. Finally, sparse PLS (sparse partial least square) analysis showed that only the expression of 3 genes discriminates 48H reverting and 0H cells. CONCLUSIONS Altogether, we show that reverting cells return to an earlier molecular state almost identical to undifferentiated cells and demonstrate a previously undocumented physiological and molecular plasticity during the differentiation process, which most likely results from the dynamic behavior of the underlying molecular network.
Collapse
Affiliation(s)
- Souad Zreika
- Laboratory of Biology and Modelling of the Cell, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
- Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli, 1300, Lebanon
| | - Camille Fourneaux
- Laboratory of Biology and Modelling of the Cell, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Elodie Vallin
- Laboratory of Biology and Modelling of the Cell, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurent Modolo
- Laboratory of Biology and Modelling of the Cell, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Rémi Seraphin
- Laboratory of Biology and Modelling of the Cell, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Alice Moussy
- Ecole Pratique des Hautes Etudes, PSL Research University, UMRS951, INSERM, Univ-Evry, Paris, France
| | - Elias Ventre
- Laboratory of Biology and Modelling of the Cell, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
- Inria Team Dracula, Inria Center Grenoble Rhone-Alpes, Grenoble, France
- Institut Camille Jordan, CNRS UMR 5208, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Matteo Bouvier
- Laboratory of Biology and Modelling of the Cell, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
- Vidium solutions, Lyon, France
| | - Anthony Ozier-Lafontaine
- Nantes Université, Centrale Nantes, Laboratoire de mathématiques Jean Leray, LMJL, F-44000, Nantes, France
| | - Arnaud Bonnaffoux
- Laboratory of Biology and Modelling of the Cell, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
- Vidium solutions, Lyon, France
| | - Franck Picard
- Laboratory of Biology and Modelling of the Cell, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Olivier Gandrillon
- Laboratory of Biology and Modelling of the Cell, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
- Inria Team Dracula, Inria Center Grenoble Rhone-Alpes, Grenoble, France
| | - Sandrine Gonin-Giraud
- Laboratory of Biology and Modelling of the Cell, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
5
|
Hematopoietic differentiation is characterized by a transient peak of entropy at a single-cell level. BMC Biol 2022; 20:60. [PMID: 35260165 PMCID: PMC8905725 DOI: 10.1186/s12915-022-01264-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/22/2022] [Indexed: 12/11/2022] Open
Abstract
Background Mature blood cells arise from hematopoietic stem cells in the bone marrow by a process of differentiation along one of several different lineage trajectories. This is often represented as a series of discrete steps of increasing progenitor cell commitment to a given lineage, but as for differentiation in general, whether the process is instructive or stochastic remains controversial. Here, we examine this question by analyzing single-cell transcriptomic data from human bone marrow cells, assessing cell-to-cell variability along the trajectories of hematopoietic differentiation into four different types of mature blood cells. The instructive model predicts that cells will be following the same sequence of instructions and that there will be minimal variability of gene expression between them throughout the process, while the stochastic model predicts a role for cell-to-cell variability when lineage commitments are being made. Results Applying Shannon entropy to measure cell-to-cell variability among human hematopoietic bone marrow cells at the same stage of differentiation, we observed a transient peak of gene expression variability occurring at characteristic points in all hematopoietic differentiation pathways. Strikingly, the genes whose cell-to-cell variation of expression fluctuated the most over the course of a given differentiation trajectory are pathway-specific genes, whereas genes which showed the greatest variation of mean expression are common to all pathways. Finally, we showed that the level of cell-to-cell variation is increased in the most immature compartment of hematopoiesis in myelodysplastic syndromes. Conclusions These data suggest that human hematopoietic differentiation could be better conceptualized as a dynamical stochastic process with a transient stage of cellular indetermination, and strongly support the stochastic view of differentiation. They also highlight the need to consider the role of stochastic gene expression in complex physiological processes and pathologies such as cancers, paving the way for possible noise-based therapies through epigenetic regulation. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01264-9.
Collapse
|
6
|
Ventre E, Espinasse T, Bréhier CE, Calvez V, Lepoutre T, Gandrillon O. Reduction of a stochastic model of gene expression: Lagrangian dynamics gives access to basins of attraction as cell types and metastabilty. J Math Biol 2021; 83:59. [PMID: 34739605 DOI: 10.1007/s00285-021-01684-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 09/02/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022]
Abstract
Differentiation is the process whereby a cell acquires a specific phenotype, by differential gene expression as a function of time. This is thought to result from the dynamical functioning of an underlying Gene Regulatory Network (GRN). The precise path from the stochastic GRN behavior to the resulting cell state is still an open question. In this work we propose to reduce a stochastic model of gene expression, where a cell is represented by a vector in a continuous space of gene expression, to a discrete coarse-grained model on a limited number of cell types. We develop analytical results and numerical tools to perform this reduction for a specific model characterizing the evolution of a cell by a system of piecewise deterministic Markov processes (PDMP). Solving a spectral problem, we find the explicit variational form of the rate function associated to a large deviations principle, for any number of genes. The resulting Lagrangian dynamics allows us to define a deterministic limit of which the basins of attraction can be identified to cellular types. In this context the quasipotential, describing the transitions between these basins in the weak noise limit, can be defined as the unique solution of an Hamilton-Jacobi equation under a particular constraint. We develop a numerical method for approximating the coarse-grained model parameters, and show its accuracy for a symmetric toggle-switch network. We deduce from the reduced model an approximation of the stationary distribution of the PDMP system, which appears as a Beta mixture. Altogether those results establish a rigorous frame for connecting GRN behavior to the resulting cellular behavior, including the calculation of the probability of jumps between cell types.
Collapse
Affiliation(s)
- Elias Ventre
- ENS de Lyon, CNRS UMR 5239, Laboratory of Biology and Modelling of the Cell, Lyon, France. .,Inria Center Grenoble Rhone-Alpes, Team Dracula, Villeurbanne, France. .,Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, Villeurbanne, France.
| | - Thibault Espinasse
- Inria Center Grenoble Rhone-Alpes, Team Dracula, Villeurbanne, France.,Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, Villeurbanne, France
| | - Charles-Edouard Bréhier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, Villeurbanne, France
| | - Vincent Calvez
- Inria Center Grenoble Rhone-Alpes, Team Dracula, Villeurbanne, France.,Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, Villeurbanne, France
| | - Thomas Lepoutre
- Inria Center Grenoble Rhone-Alpes, Team Dracula, Villeurbanne, France.,Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, Villeurbanne, France
| | - Olivier Gandrillon
- ENS de Lyon, CNRS UMR 5239, Laboratory of Biology and Modelling of the Cell, Lyon, France.,Inria Center Grenoble Rhone-Alpes, Team Dracula, Villeurbanne, France
| |
Collapse
|
7
|
Duchesne R, Guillemin A, Gandrillon O, Crauste F. Practical identifiability in the frame of nonlinear mixed effects models: the example of the in vitro erythropoiesis. BMC Bioinformatics 2021; 22:478. [PMID: 34607573 PMCID: PMC8489053 DOI: 10.1186/s12859-021-04373-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/28/2021] [Indexed: 12/02/2022] Open
Abstract
Background Nonlinear mixed effects models provide a way to mathematically describe experimental data involving a lot of inter-individual heterogeneity. In order to assess their practical identifiability and estimate confidence intervals for their parameters, most mixed effects modelling programs use the Fisher Information Matrix. However, in complex nonlinear models, this approach can mask practical unidentifiabilities. Results Herein we rather propose a multistart approach, and use it to simplify our model by reducing the number of its parameters, in order to make it identifiable. Our model describes several cell populations involved in the in vitro differentiation of chicken erythroid progenitors grown in the same environment. Inter-individual variability observed in cell population counts is explained by variations of the differentiation and proliferation rates between replicates of the experiment. Alternatively, we test a model with varying initial condition. Conclusions We conclude by relating experimental variability to precise and identifiable variations between the replicates of the experiment of some model parameters.
Collapse
Affiliation(s)
- Ronan Duchesne
- Laboratory of Biology and Modeling of the Cell, CNRS UMR 5239, INSERM U1210, Université de Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, 69007, Lyon, France. .,Inria Team Dracula, Inria Center Grenoble Rhône-Alpes, Lyon, France.
| | - Anissa Guillemin
- Laboratory of Biology and Modeling of the Cell, CNRS UMR 5239, INSERM U1210, Université de Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, 69007, Lyon, France
| | - Olivier Gandrillon
- Laboratory of Biology and Modeling of the Cell, CNRS UMR 5239, INSERM U1210, Université de Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, 69007, Lyon, France.,Inria Team Dracula, Inria Center Grenoble Rhône-Alpes, Lyon, France
| | | |
Collapse
|
8
|
Joober R, Karama S. Randomness and nondeterminism: from genes to free will with implications for psychiatry. J Psychiatry Neurosci 2021; 46:E500-E505. [PMID: 34415691 PMCID: PMC8410475 DOI: 10.1503/jpn.210141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Ridha Joober
- From the Department of Psychiatry, McGill University, Montreal, Que., Canada (Joober, Karama); and the Douglas Hospital Research Centre, Montreal, Que., Canada (Joober, Karama)
| | - Sherif Karama
- From the Department of Psychiatry, McGill University, Montreal, Que., Canada (Joober, Karama); and the Douglas Hospital Research Centre, Montreal, Que., Canada (Joober, Karama)
| |
Collapse
|
9
|
Guillemin A, Stumpf MPH. Noise and the molecular processes underlying cell fate decision-making. Phys Biol 2021; 18:011002. [PMID: 33181489 DOI: 10.1088/1478-3975/abc9d1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell fate decision-making events involve the interplay of many molecular processes, ranging from signal transduction to genetic regulation, as well as a set of molecular and physiological feedback loops. Each aspect offers a rich field of investigation in its own right, but to understand the whole process, even in simple terms, we need to consider them together. Here we attempt to characterise this process by focussing on the roles of noise during cell fate decisions. We use a range of recent results to develop a view of the sequence of events by which a cell progresses from a pluripotent or multipotent to a differentiated state: chromatin organisation, transcription factor stoichiometry, and cellular signalling all change during this progression, and all shape cellular variability, which becomes maximal at the transition state.
Collapse
Affiliation(s)
- Anissa Guillemin
- School of BioSciences, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
10
|
Ghazanfar S, Lin Y, Su X, Lin DM, Patrick E, Han ZG, Marioni JC, Yang JYH. Investigating higher-order interactions in single-cell data with scHOT. Nat Methods 2020; 17:799-806. [PMID: 32661426 PMCID: PMC7610653 DOI: 10.1038/s41592-020-0885-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Single-cell genomics has transformed our ability to examine cell fate choice. Examining cells along a computationally ordered 'pseudotime' offers the potential to unpick subtle changes in variability and covariation among key genes. We describe an approach, scHOT-single-cell higher-order testing-which provides a flexible and statistically robust framework for identifying changes in higher-order interactions among genes. scHOT can be applied for cells along a continuous trajectory or across space and accommodates various higher-order measurements including variability or correlation. We demonstrate the use of scHOT by studying coordinated changes in higher-order interactions during embryonic development of the mouse liver. Additionally, scHOT identifies subtle changes in gene-gene correlations across space using spatially resolved transcriptomics data from the mouse olfactory bulb. scHOT meaningfully adds to first-order differential expression testing and provides a framework for interrogating higher-order interactions using single-cell data.
Collapse
Affiliation(s)
- Shila Ghazanfar
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Yingxin Lin
- School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Xianbin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - David Ming Lin
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Ellis Patrick
- School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
| | - Jean Yee Hwa Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|