1
|
Pashirova T, Shaihutdinova Z, Tatarinov D, Titova A, Malanyeva A, Vasileva O, Gabdurakhmanov K, Dudnikov S, Schopfer LM, Lockridge O, Masson P. Pharmacokinetics and fate of free and encapsulated IRD800CW-labelled human BChE intravenously administered in mice. Int J Biol Macromol 2024; 282:137305. [PMID: 39515732 DOI: 10.1016/j.ijbiomac.2024.137305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Human butyrylcholinesterase (BChE) is an efficient bioscavenger of toxicants. Highly purified BChE was labelled with the near infrared fluorescent IRDye800CW. The goal was to determine the pharmacokinetics and fate of enzyme in mice. BChE-IRDye800CW was encapsulated in polyethylene glycol-polypropylene sulfide-based spherical polymersome nanoreactors with the following characteristics: 140 nm diameter, ξ = -6 mV, PDI ≤ 0.2, 1 year stability. Encapsulation did not alter the functional properties of BChE. Free and encapsulated enzyme were injected intravenously to CD-1 mice (single dose of enzyme 1.5 mg/kg and PEG-PPS polymersomes 25 mg/kg) and were analyzed for 8 days using an in vivo imaging system. Results showed that the pharmacokinetic distribution α-phase of encapsulated BChE (t1/2 = 17.6 h) was longer than for free enzyme (t1/2 = 6.6 h). The mean half-time for elimination β-phase was 2-time longer for encapsulated enzyme than for free enzyme (150 vs 72 h). Transient changes in infrared fluorescence in organs showed that BChE is eliminated from liver. However, free and encapsulated enzymes were cleared via different pathways. This first study of pharmacokinetics and fate of BChE encapsulated in polymersomes initiates research of new formulations of bioscavengers aimed at increasing the residence time of enzymes in the blood stream.
Collapse
Affiliation(s)
- Tatiana Pashirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russian Federation.
| | - Zukhra Shaihutdinova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russian Federation
| | - Dmitry Tatarinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russian Federation
| | - Angelina Titova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Albina Malanyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Olga Vasileva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Kamil Gabdurakhmanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Sergei Dudnikov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | | | - Oksana Lockridge
- University of Nebraska Medical Center, Eppley Institute, Omaha, NE, USA
| | - Patrick Masson
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation.
| |
Collapse
|
2
|
Gupta V, Lourenço SP, Hidalgo IJ. Development of Gene Therapy Vectors: Remaining Challenges. J Pharm Sci 2021; 110:1915-1920. [DOI: 10.1016/j.xphs.2020.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
|
3
|
Organophosphate detoxification by membrane-engineered red blood cells. Acta Biomater 2021; 124:270-281. [PMID: 33529769 DOI: 10.1016/j.actbio.2021.01.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/31/2022]
Abstract
Biotherapeutics have achieved global economic success due to their high specificity towards their drug targets, providing exceptional safety and efficiency. The ongoing shift away from small molecule drugs towards biotherapeutics heightens the need to further improve the pharmacokinetics of these biological drugs. Three pervasive obstacles that limit the therapeutic capacity of biotherapeutics are proteolytic degradation, circulating half-life, and the development of anti-drug antibodies. These challenges can culminate in limited efficiency and consequently warrant the need for higher drug doses and more frequent administration. We have explored the coupling of biotherapeutics to long-lived and biocompatible red blood cells (RBCs) to address limited pharmacokinetics. Butyrylcholinesterase (BChE), for example, provides prophylactic protection against organophosphate nerve agents (OPNAs), yet the short circulation life of the drug requires extraordinary doses. Herein, we report the rapid and tunable chemical engineering of BChE to RBC membranes to create a cell-based delivery system that retains the enzyme activity and enhances stability. In a three-step process that first pre-modifies BChE with a cell-reactive polymer chain, primes the cells for engineering, and then grafts the conjugates to the cells, we attached over 2 million BChE molecules to the surface of each RBC without diminishing the bioscavenging capacity of the enzyme. Critically, this membrane-engineering approach was cell-tolerated with minimal hemolysis observed. These results provide strong evidence for the ability of engineered RBCs to serve as an enhanced biotherapeutic delivery vehicle. STATEMENT OF SIGNIFICANCE: Organophosphate nerve agents (OPNAs) are one of the most lethal forms of chemical warfare. After exposure to OPNAs, a patient is given life-saving therapeutics, such as atropine and oxime. However, these drugs are limited, and the patient can still suffer from irreparable injuries. Given the toxicity of OPNAs, access to a prophylactic is vital. We have created an enhanced delivery system for prophylactic butyrylcholinesterase (BChE) by engineering this biotherapeutic to the red blood cell (RBC) surface. In three simple steps that first pre-modifies BChE with a cell-reactive polymer, primes the cells for engineering, and then grafts the conjugates to the cells, we attached over 2 million BChE molecules to a single RBC while retaining the enzyme's activity and enhancing its stability.
Collapse
|
4
|
Hrvat NM, Kovarik Z. Counteracting poisoning with chemical warfare nerve agents. Arh Hig Rada Toksikol 2020; 71:266-284. [PMID: 33410774 PMCID: PMC7968514 DOI: 10.2478/aiht-2020-71-3459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/01/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphylation of the pivotal enzyme acetylcholinesterase (AChE) by nerve agents (NAs) leads to irreversible inhibition of the enzyme and accumulation of neurotransmitter acetylcholine, which induces cholinergic crisis, that is, overstimulation of muscarinic and nicotinic membrane receptors in the central and peripheral nervous system. In severe cases, subsequent desensitisation of the receptors results in hypoxia, vasodepression, and respiratory arrest, followed by death. Prompt action is therefore critical to improve the chances of victim's survival and recovery. Standard therapy of NA poisoning generally involves administration of anticholinergic atropine and an oxime reactivator of phosphylated AChE. Anticholinesterase compounds or NA bioscavengers can also be applied to preserve native AChE from inhibition. With this review of 70 years of research we aim to present current and potential approaches to counteracting NA poisoning.
Collapse
Affiliation(s)
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
5
|
Toker L, Silman I, Zeev-Ben-Mordehai T, Sussman JL, Schopfer LM, Lockridge O. Polyproline-rich peptides associated with Torpedo californica acetylcholinesterase tetramers. Chem Biol Interact 2020; 319:109007. [PMID: 32087110 DOI: 10.1016/j.cbi.2020.109007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/31/2020] [Accepted: 02/17/2020] [Indexed: 01/30/2023]
Abstract
Acetylcholinesterase (AChE) terminates cholinergic neurotransmission by hydrolyzing acetylcholine. The collagen-tailed AChE tetramer is a product of 2 genes, ACHE and ColQ. The AChE tetramer consists of 4 identical AChE subunits and one polyproline-rich peptide, whose function is to hold the 4 AChE subunits together. Our goal was to determine the amino acid sequence of the polyproline-rich peptide(s) in Torpedo californica AChE (TcAChE) tetramers to aid in the analysis of images that will be acquired by cryo-EM. Collagen-tailed AChE was solubilized from Torpedo californica electric organ, converted to 300 kDa tetramers by digestion with trypsin, and purified by affinity chromatography. Polyproline-rich peptides were released by denaturing the TcAChE tetramers in a boiling water bath, and reducing disulfide bonds with dithiothreitol. Carbamidomethylated peptides were separated from TcAChE protein on a spin filter before they were analyzed by liquid chromatography tandem mass spectrometry on a high resolution Orbitrap Fusion Lumos mass spectrometer. Of the 64 identified collagen-tail (ColQ) peptides, 60 were from the polyproline-rich region near the N-terminus of ColQ. The most abundant proline-rich peptides were SVNKCCLLTPPPPPMFPPPFFTETNILQE, at 40% of total mass-spectral signal intensity, and SVNKCCLLTPPPPPMFPPPFFTETNILQEVDLNNLPLEIKPTEPSCK, at 27% of total intensity. The high abundance of these 2 peptides makes them candidates for the principal form of the polyproline-rich peptide in the trypsin-treated TcAChE tetramers.
Collapse
Affiliation(s)
- Lilly Toker
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Israel Silman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Tzviya Zeev-Ben-Mordehai
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584, CH, Utrecht, the Netherlands.
| | - Joel L Sussman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Lawrence M Schopfer
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|