1
|
Alemu MD, Ben-Zeev S, Barak V, Tutus Y, Cakmak I, Saranga Y. Genomic loci associated with grain protein and mineral nutrients concentrations in Eragrostis tef under contrasting water regimes. FRONTIERS IN PLANT SCIENCE 2024; 15:1458408. [PMID: 39759240 PMCID: PMC11695128 DOI: 10.3389/fpls.2024.1458408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/11/2024] [Indexed: 01/07/2025]
Abstract
Climate change is becoming a global challenge, threating agriculture's capacity to meet the food and nutritional requirements of the growing population. Underutilized crops present an opportunity to address climate change and nutritional deficiencies. Tef is a stress-resilient cereal crop, producing gluten-free grain of high nutritional quality. However, knowledge is lacking on tef's diversity of grain nutritional properties, their interaction with environmental conditions (e.g., water availability) and the underlying genomic loci. We assessed the effect of water availability on tef grain nutrient concentrations and identify the associated genomic loci. A collection of 223 tef genotypes, a subset of tef diversity panel 300 (TDP-300), were grown in the field under well-watered and water-limited conditions in 2021, and phenotyped for 11 traits including: grain protein and mineral concentrations and seed color. A genome-wide association study was conducted using 28,837 single-nucleotide polymorphisms (SNPs) and phenotypic data to identify marker-trait associations (MTAs). Tef grain nutrient concentrations exhibited wide genetic diversity with a significant influence of environment. Protein and most micronutrients were more concentrated under water-limited conditions, whereas most macronutrients were higher in the well-watered environment. A total of 59 SNPs were associated with one or more of the studied traits, resulting in 65 MTAs detected under both water treatments, and providing insights into the genetic basis of grain nutrients. Five SNPs reflected multiple associations, with four detecting the same trait under both treatments (multiple-environment effect), and one associated with both Zn and K (pleiotropic effect). In addition, two pairs of closely linked SNPs reflected multiple-environment effects. While multiple-environment associations provide greater support for the integrity of these MTAs, the pleiotropic locus hints at a common mechanism controlling two mineral ions. The identified MTAs shed new light on the genomic architecture of tef's nutritional properties and provide the basis to enhance tef grain nutritional quality alongside drought resilience.
Collapse
Affiliation(s)
- Muluken Demelie Alemu
- R. H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Crop Research, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Shiran Ben-Zeev
- R. H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vered Barak
- R. H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yusuf Tutus
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Türkiye
| | - Ismail Cakmak
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Türkiye
| | - Yehoshua Saranga
- R. H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
2
|
Bohra A, Choudhary M, Bennett D, Joshi R, Mir RR, Varshney RK. Drought-tolerant wheat for enhancing global food security. Funct Integr Genomics 2024; 24:212. [PMID: 39535570 DOI: 10.1007/s10142-024-01488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Wheat is among the most produced grain crops of the world and alone provides a fifth of the world's calories and protein. Wheat has played a key role in food security since the crop served as a Neolithic founder crop for the establishment of world agriculture. Projections showing a decline in global wheat yields in changing climates imply that food security targets could be jeopardized. Increased frequency and intensity of drought occurrence is evident in major wheat-producing regions worldwide, and notably, the wheat-producing area under drought is projected to swell globally by 60% by the end of the 21st century. Wheat yields are significantly reduced due to changes in plant morphological, physiological, biochemical, and molecular activities in response to drought stress. Advances in wheat genetics, multi-omics technologies and plant phenotyping have enhanced the understanding of crop responses to drought conditions. Research has elucidated key genomic regions, candidate genes, signalling molecules and associated networks that orchestrate tolerance mechanisms under drought stress. Robust and low-cost selection tools are now available in wheat for screening genetic variations for drought tolerance traits. New breeding techniques and selection tools open a unique opportunity to tailor future wheat crop with optimal trait combinations that help withstand extreme drought. Adoption of the new wheat varieties will increase crop diversity in rain-fed agriculture and ensure sustainable improvements in crop yields to safeguard the world's food security in drier environments.
Collapse
Affiliation(s)
- Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, PAU campus, Ludhiana, 141001, India
| | - Dion Bennett
- Australian Grain technologies (AGT), Northam, WA, 6401, Australia
| | - Rohit Joshi
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST, Srinagar, 190025, Shalimar, India
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
3
|
Khan A, Ahmad M, Shani MY, Khan MKR, Rahimi M, Tan DKY. Identifying the physiological traits associated with DNA marker using genome wide association in wheat under heat stress. Sci Rep 2024; 14:20134. [PMID: 39209932 PMCID: PMC11362520 DOI: 10.1038/s41598-024-70630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Heat stress poses a significant environmental challenge that profoundly impacts wheat productivity. It disrupts vital physiological processes such as photosynthesis, by impeding the functionality of the photosynthetic apparatus and compromising plasma membrane stability, thereby detrimentally affecting grain development in wheat. The scarcity of identified marker trait associations pertinent to thermotolerance presents a formidable obstacle in the development of marker-assisted selection strategies against heat stress. To address this, wheat accessions were systematically exposed to both normal and heat stress conditions and phenotypic data were collected on physiological traits including proline content, canopy temperature depression, cell membrane injury, photosynthetic rate, transpiration rate (at vegetative and reproductive stage and 'stay-green'. Principal component analysis elucidated the most significant contributors being proline content, transpiration rate, and canopy temperature depression, which exhibited a synergistic relationship with grain yield. Remarkably, cluster analysis delineated the wheat accessions into four discrete groups based on physiological attributes. Moreover, to explore the relationship between physiological traits and DNA markers, 158 wheat accessions were genotyped with 186 SSRs. Allelic frequency and polymorphic information content value were found to be highest on genome A (4.94 and 0.688), chromosome 1A (5.00 and 0.712), and marker Xgwm44 (13.0 and 0.916). Population structure, principal coordinate analysis and cluster analysis also partitioned the wheat accessions into four subpopulations based on genotypic data, highlighting their genetic homogeneity. Population diversity and presence of linkage disequilibrium established the suitability of population for association mapping. Additionally, linkage disequilibrium decay was most pronounced within a 15-20 cM region on chromosome 1A. Association mapping revealed highly significant marker trait associations at Bonferroni correction P < 0.00027. Markers Xwmc418 (located on chromosome 3D) and Xgwm233 (chromosome 7A) demonstrated associations with transpiration rate, while marker Xgwm494 (chromosome 3A) exhibited an association with photosynthetic rates at both vegetative and reproductive stages under heat stress conditions. Additionally, markers Xwmc201 (chromosome 6A) and Xcfa2129 (chromosome 1A) displayed robust associations with canopy temperature depression, while markers Xbarc163 (chromosome 4B) and Xbarc49 (chromosome 5A) were strongly associated with cell membrane injury at both stages. Notably, marker Xbarc49 (chromosome 5A) exhibited a significant association with the 'stay-green' trait under heat stress conditions. These results offers the potential utility in marker-assisted selection, gene pyramiding and genomic selection models to predict performance of wheat accession under heat stress conditions.
Collapse
Affiliation(s)
- Adeel Khan
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, 38950, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan.
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan.
| | - Munir Ahmad
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Muhammad Yousaf Shani
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, 38950, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Muhammad Kashif Riaz Khan
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, 38950, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Mehdi Rahimi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Daniel K Y Tan
- Plant Breeding Institute, Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
4
|
Elias M, Chere D, Lule D, Serba D, Tirfessa A, Gelmesa D, Tesso T, Bantte K, Menamo TM. Multi-locus genome-wide association study reveal genomic regions underlying root system architecture traits in Ethiopian sorghum germplasm. THE PLANT GENOME 2024; 17:e20436. [PMID: 38361379 DOI: 10.1002/tpg2.20436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
The identification of genomic regions underlying the root system architecture (RSA) is vital for improving crop abiotic stress tolerance. To improve sorghum (Sorghum bicolor L. Moench) for environmental stress tolerance, information on genetic variability and genomic regions linked to RSA traits is paramount. The aim of this study was, therefore, to investigate common quantitative trait nucleotides (QTNs) via multiple methodologies and identify genomic regions linked to RSA traits in a panel of 274 Ethiopian sorghum accessions. Multi-locus genome-wide association study was conducted using 265,944 high-quality single nucleotide polymorphism markers. Considering the QTN detected by at least three different methods, a total of 17 reliable QTNs were found to be significantly associated with root angle, number, length, and dry weight. Four QTNs were detected on chromosome SBI-05, followed by SBI-01 and SBI-02 with three QTNs each. Among the 17 QTNs, 11 are colocated with previously identified root traits quantitative trait loci and the remaining six are genome regions with novel genes. A total of 118 genes are colocated with these up- and down-streams of the QTNs. Moreover, five QTNs were found intragenic. These QTNs are S5_8994835 (number of nodal roots), S10_55702393 (number of nodal roots), S1_56872999 (nodal root angle), S9_1212069 (nodal root angle), and S5_5667192 (root dry weight) intragenic regions of Sobic.005G073101, Sobic.010G198000, Sobic.001G273000, Sobic.009G013600, and Sobic.005G054700, respectively. Particularly, Sobic.005G073101, Sobic.010G198000, and Sobic.009G013600 were found responsible for the plant growth hormone-induced RSA. These genes may regulate root development in the seedling stage. Further analysis on these genes might be important to explore the genetic structure of RSA of sorghum.
Collapse
Affiliation(s)
- Masarat Elias
- School of Plant Science, Haramaya University, Dire Dawa, Ethiopia
| | - Diriba Chere
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| | - Dagnachew Lule
- Ethiopia Agricultural Transformation Institute, Addis Ababa, Ethiopia
| | - Desalegn Serba
- United States Department of Agriculture, Agricultural Research Service, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| | - Alemu Tirfessa
- Ethiopian Institute of Agricultural Research (EIAR), Melkassa Agricultural Research Center, Adama, Ethiopia
| | - Dandena Gelmesa
- School of Plant Science, Haramaya University, Dire Dawa, Ethiopia
| | - Tesfaye Tesso
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| | - Kassahun Bantte
- Department of Plant Science and Horticulture, Jimma University, Jimma, Ethiopia
| | - Temesgen M Menamo
- Department of Plant Science and Horticulture, Jimma University, Jimma, Ethiopia
| |
Collapse
|
5
|
Chang-Brahim I, Koppensteiner LJ, Beltrame L, Bodner G, Saranti A, Salzinger J, Fanta-Jende P, Sulzbachner C, Bruckmüller F, Trognitz F, Samad-Zamini M, Zechner E, Holzinger A, Molin EM. Reviewing the essential roles of remote phenotyping, GWAS and explainable AI in practical marker-assisted selection for drought-tolerant winter wheat breeding. FRONTIERS IN PLANT SCIENCE 2024; 15:1319938. [PMID: 38699541 PMCID: PMC11064034 DOI: 10.3389/fpls.2024.1319938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/13/2024] [Indexed: 05/05/2024]
Abstract
Marker-assisted selection (MAS) plays a crucial role in crop breeding improving the speed and precision of conventional breeding programmes by quickly and reliably identifying and selecting plants with desired traits. However, the efficacy of MAS depends on several prerequisites, with precise phenotyping being a key aspect of any plant breeding programme. Recent advancements in high-throughput remote phenotyping, facilitated by unmanned aerial vehicles coupled to machine learning, offer a non-destructive and efficient alternative to traditional, time-consuming, and labour-intensive methods. Furthermore, MAS relies on knowledge of marker-trait associations, commonly obtained through genome-wide association studies (GWAS), to understand complex traits such as drought tolerance, including yield components and phenology. However, GWAS has limitations that artificial intelligence (AI) has been shown to partially overcome. Additionally, AI and its explainable variants, which ensure transparency and interpretability, are increasingly being used as recognised problem-solving tools throughout the breeding process. Given these rapid technological advancements, this review provides an overview of state-of-the-art methods and processes underlying each MAS, from phenotyping, genotyping and association analyses to the integration of explainable AI along the entire workflow. In this context, we specifically address the challenges and importance of breeding winter wheat for greater drought tolerance with stable yields, as regional droughts during critical developmental stages pose a threat to winter wheat production. Finally, we explore the transition from scientific progress to practical implementation and discuss ways to bridge the gap between cutting-edge developments and breeders, expediting MAS-based winter wheat breeding for drought tolerance.
Collapse
Affiliation(s)
- Ignacio Chang-Brahim
- Unit Bioresources, Center for Health & Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | | | - Lorenzo Beltrame
- Unit Assistive and Autonomous Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Gernot Bodner
- Department of Crop Sciences, Institute of Agronomy, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Anna Saranti
- Human-Centered AI Lab, Department of Forest- and Soil Sciences, Institute of Forest Engineering, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Jules Salzinger
- Unit Assistive and Autonomous Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Phillipp Fanta-Jende
- Unit Assistive and Autonomous Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Christoph Sulzbachner
- Unit Assistive and Autonomous Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Felix Bruckmüller
- Unit Assistive and Autonomous Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Friederike Trognitz
- Unit Bioresources, Center for Health & Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | | | - Elisabeth Zechner
- Verein zur Förderung einer nachhaltigen und regionalen Pflanzenzüchtung, Zwettl, Austria
| | - Andreas Holzinger
- Human-Centered AI Lab, Department of Forest- and Soil Sciences, Institute of Forest Engineering, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Eva M. Molin
- Unit Bioresources, Center for Health & Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
- Human-Centered AI Lab, Department of Forest- and Soil Sciences, Institute of Forest Engineering, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| |
Collapse
|
6
|
Fofana B, Soto-Cerda B, Zaidi M, Main D, Fillmore S. Genome-wide genetic architecture for plant maturity and drought tolerance in diploid potatoes. Front Genet 2024; 14:1306519. [PMID: 38357658 PMCID: PMC10864671 DOI: 10.3389/fgene.2023.1306519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
Cultivated potato (Solanum tuberosum) is known to be highly susceptible to drought. With climate change and its frequent episodes of drought, potato growers will face increased challenges to achieving their yield goals. Currently, a high proportion of untapped potato germplasm remains within the diploid potato relatives, and the genetic architecture of the drought tolerance and maturity traits of diploid potatoes is still unknown. As such, a panel of 384 ethyl methanesulfonate-mutagenized diploid potato clones were evaluated for drought tolerance and plant maturity under field conditions. Genome-wide association studies (GWAS) were conducted to dissect the genetic architecture of the traits. The results obtained from the genetic structure analysis of the panel showed five main groups and seven subgroups. Using the Genome Association and Prediction Integrated Tool-mixed linear model GWAS statistical model, 34 and 17 significant quantitative trait nucleotides (QTNs) were found associated with maturity and drought traits, respectively. Chromosome 5 carried most of the QTNs, some of which were also detected by using the restricted two-stage multi-locus multi-allele-GWAS haploblock-based model, and two QTNs were found to be pleiotropic for both maturity and drought traits. Using the non-parametric U-test, one and three QTNs, with 5.13%-7.4% phenotypic variations explained, showed favorable allelic effects that increase the maturity and drought trait values. The quantitaive trait loci (QTLs)/QTNs associated with maturity and drought trait were found co-located in narrow (0.5-1 kb) genomic regions with 56 candidate genes playing roles in plant development and senescence and in abiotic stress responses. A total of 127 potato clones were found to be late maturing and tolerant to drought, while nine were early to moderate-late maturing and tolerant to drought. Taken together, the data show that the studied germplasm panel and the identified candidate genes are prime genetic resources for breeders and biologists in conventional breeding and targeted gene editing as climate adaptation tools.
Collapse
Affiliation(s)
- Bourlaye Fofana
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, Charlottetown, PE, Canada
| | - Braulio Soto-Cerda
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Temuco, Chile
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Moshin Zaidi
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, Charlottetown, PE, Canada
| | - David Main
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, Charlottetown, PE, Canada
| | - Sherry Fillmore
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS, Canada
| |
Collapse
|
7
|
Zaïm M, Sanchez-Garcia M, Belkadi B, Filali-Maltouf A, Al Abdallat A, Kehel Z, Bassi FM. Genomic regions of durum wheat involved in water productivity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:316-333. [PMID: 37702385 PMCID: PMC10735558 DOI: 10.1093/jxb/erad357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Durum wheat is a staple food in the Mediterranean Basin, mostly cultivated under rainfed conditions. As such, the crop is often exposed to moisture stress. Therefore, the identification of genetic factors controlling the capacity of genotypes to convert moisture into grain yield (i.e., water productivity) is quintessential to stabilize production despite climatic variations. A global panel of 384 accessions was tested across 18 Mediterranean environments (in Morocco, Lebanon, and Jordan) representing a vast range of moisture levels. The accessions were assigned to water responsiveness classes, with genotypes 'Responsive to Low Moisture' reaching an average +1.5 kg ha-1 mm-1 yield advantage. Genome wide association studies revealed that six loci explained most of this variation. A second validation panel tested under moisture stress confirmed that carrying the positive allele at three loci on chromosomes 1B, 2A, and 7B generated an average water productivity gain of +2.2 kg ha-1 mm-1. These three loci were tagged by kompetitive allele specific PCR (KASP) markers, and these were used to screen a third independent validation panel composed of elites tested across moisture stressed sites. The three KASP combined predicted up to 10% of the variation for grain yield at 60% accuracy. These loci are now ready for molecular pyramiding and transfer across cultivars to improve the moisture conversion of durum wheat.
Collapse
Affiliation(s)
- Meryem Zaïm
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, University Mohammed V in Rabat, Morocco
- ICARDA, Biodiversity and Integrated Gene Management, P.O. Box 6299, Rabat Institutes, Rabat, Morocco
| | - Miguel Sanchez-Garcia
- ICARDA, Biodiversity and Integrated Gene Management, P.O. Box 6299, Rabat Institutes, Rabat, Morocco
| | - Bouchra Belkadi
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, University Mohammed V in Rabat, Morocco
| | - Abdelkarim Filali-Maltouf
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, University Mohammed V in Rabat, Morocco
| | - Ayed Al Abdallat
- Faculty of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Zakaria Kehel
- ICARDA, Biodiversity and Integrated Gene Management, P.O. Box 6299, Rabat Institutes, Rabat, Morocco
| | - Filippo M Bassi
- ICARDA, Biodiversity and Integrated Gene Management, P.O. Box 6299, Rabat Institutes, Rabat, Morocco
| |
Collapse
|
8
|
Rabieyan E, Bihamta MR, Moghaddam ME, Alipour H, Mohammadi V, Azizyan K, Javid S. Analysis of genetic diversity and genome-wide association study for drought tolerance related traits in Iranian bread wheat. BMC PLANT BIOLOGY 2023; 23:431. [PMID: 37715130 PMCID: PMC10503013 DOI: 10.1186/s12870-023-04416-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 08/20/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Drought is most likely the most significant abiotic stress affecting wheat yield. The discovery of drought-tolerant genotypes is a promising strategy for dealing with the world's rapidly diminishing water resources and growing population. A genome-wide association study (GWAS) was conducted on 298 Iranian bread wheat landraces and cultivars to investigate the genetic basis of yield, yield components, and drought tolerance indices in two cropping seasons (2018-2019 and 2019-2020) under rainfed and well-watered environments. RESULTS A heatmap display of hierarchical clustering divided cultivars and landraces into four categories, with high-yielding and drought-tolerant genotypes clustering in the same group. The results of the principal component analysis (PCA) demonstrated that selecting genotypes based on the mean productivity (MP), geometric mean productivity (GMP), harmonic mean (HM), and stress tolerance index (STI) can help achieve high-yield genotypes in the environment. Genome B had the highest number of significant marker pairs in linkage disequilibrium (LD) for both landraces (427,017) and cultivars (370,359). Similar to cultivars, marker pairs on chromosome 4A represented the strongest LD (r2 = 0.32). However, the genomes D, A, and B have the highest LD, respectively. The single-locus mixed linear model (MLM) and multi-locus random-SNP-effect mixed linear model (mrMLM) identified 1711 and 1254 significant marker-trait association (MTAs) (-log10 P > 3) for all traits, respectively. A total of 874 common quantitative trait nucleotides (QTNs) were simultaneously discovered by both MLM and mrMLM methods. Gene ontology revealed that 11, 18, 6, and 11 MTAs were found in protein-coding regions (PCRs) for spike weight (SW), thousand kernel weight (TKW), grain number per spike (GN), and grain yield (GY), respectively. CONCLUSION The results identified rich regions of quantitative trait loci (QTL) on Ch. 4A and 5A suggest that these chromosomes are important for drought tolerance and could be used in wheat breeding programs. Furthermore, the findings indicated that landraces studied in Iranian bread wheat germplasm possess valuable alleles, that are responsive to water-limited conditions. This GWAS experiment is one of the few types of research conducted on drought tolerance that can be exploited in the genome-mediated development of novel varieties of wheat.
Collapse
Affiliation(s)
- Ehsan Rabieyan
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | - Mohammad Reza Bihamta
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran.
| | - Mohsen Esmaeilzadeh Moghaddam
- Cereal Department, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Hadi Alipour
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Valiollah Mohammadi
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | - Kobra Azizyan
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | - Saeideh Javid
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| |
Collapse
|
9
|
Barratt LJ, He Z, Fellgett A, Wang L, Mason SM, Bancroft I, Harper AL. Co-expression network analysis of diverse wheat landraces reveals markers of early thermotolerance and a candidate master regulator of thermotolerance genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:614-626. [PMID: 37077043 PMCID: PMC10953029 DOI: 10.1111/tpj.16248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Triticum aestivum L. (bread wheat) is a crop relied upon by billions of people around the world, as a major source of both income and calories. Rising global temperatures, however, pose a genuine threat to the livelihood of these people, as wheat growth and yields are extremely vulnerable to damage by heat stress. Here we present the YoGI wheat landrace panel, comprising 342 accessions that show remarkable phenotypic and genetic diversity thanks to their adaptation to different climates. We quantified the abundance of 110 790 transcripts from the panel and used these data to conduct weighted co-expression network analysis and to identify hub genes in modules associated with abiotic stress tolerance. We found that the expression of three hub genes, all heat-shock proteins (HSPs), were significantly correlated with early thermotolerance in a validation panel of landraces. These hub genes belong to the same module, with one (TraesCS4D01G207500.1) being a candidate master-regulator potentially controlling the expression of the other two hub genes, as well as a suite of other HSPs and heat-stress transcription factors (HSFs). In this work, therefore, we identify three validated hub genes, the expression of which can serve as markers of thermotolerance during early development, and suggest that TraesCS4D01G207500.1 is a potential master regulator of HSP and HSF expression - presenting the YoGI landrace panel as an invaluable tool for breeders wishing to determine and introduce novel alleles into modern varieties, for the production of climate-resilient crops.
Collapse
Affiliation(s)
- Liam J. Barratt
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Zhesi He
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Alison Fellgett
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Lihong Wang
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Simon McQueen Mason
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Ian Bancroft
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Andrea L. Harper
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| |
Collapse
|
10
|
Li W, Lin M, Li J, Liu D, Tan W, Yin X, Zhai Y, Zhou Y, Xing W. Genome-wide association study of drought tolerance traits in sugar beet germplasms at the seedling stage. Front Genet 2023; 14:1198600. [PMID: 37547461 PMCID: PMC10401439 DOI: 10.3389/fgene.2023.1198600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction: Sugar beets are an important crop for global sugar production. Intense drought and the increasing lack of water resources pose a great threat to sugar beet cultivation. It is a priority to investigate favourable germplasms and functional genes to improve the breeding of drought tolerant plants. Methods: Thus, in this study, 328 sugar beet germplasms were used in a genome-wide association study (GWAS) to identify single nucleotide polymorphism (SNP) markers and candidate genes associated with drought tolerance. Results: The results showed that under drought stress (9% PEG-6000), there were 11 significantly associated loci on chromosomes 2, 3, 5, 7, and 9 from the 108946 SNPs filtered using a mixed linear model (MLM). Genome-wide association analysis combined with qRT-PCR identified 13 genes that were significantly differentially expressed in drought-tolerant extreme materials. Discussion: These candidate genes mainly exhibited functions such as regulating sugar metabolism, maintaining internal environmental stability and participating in photosystem repair. This study provides valuable information for exploring the molecular mechanisms of drought tolerance and improvement in sugar beet.
Collapse
Affiliation(s)
- Wangsheng Li
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Ming Lin
- Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Jiajia Li
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Dali Liu
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Wenbo Tan
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Xilong Yin
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yan Zhai
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yuanhang Zhou
- Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wang Xing
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| |
Collapse
|
11
|
Adel S, Carels N. Plant Tolerance to Drought Stress with Emphasis on Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112170. [PMID: 37299149 DOI: 10.3390/plants12112170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 06/12/2023]
Abstract
Environmental stresses, such as drought, have negative effects on crop yield. Drought is a stress whose impact tends to increase in some critical regions. However, the worldwide population is continuously increasing and climate change may affect its food supply in the upcoming years. Therefore, there is an ongoing effort to understand the molecular processes that may contribute to improving drought tolerance of strategic crops. These investigations should contribute to delivering drought-tolerant cultivars by selective breeding. For this reason, it is worthwhile to review regularly the literature concerning the molecular mechanisms and technologies that could facilitate gene pyramiding for drought tolerance. This review summarizes achievements obtained using QTL mapping, genomics, synteny, epigenetics, and transgenics for the selective breeding of drought-tolerant wheat cultivars. Synthetic apomixis combined with the msh1 mutation opens the way to induce and stabilize epigenomes in crops, which offers the potential of accelerating selective breeding for drought tolerance in arid and semi-arid regions.
Collapse
Affiliation(s)
- Sarah Adel
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Nicolas Carels
- Laboratory of Biological System Modeling, Center of Technological Development for Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-361, Brazil
| |
Collapse
|
12
|
Hashem M, Sandhu KS, Ismail SM, Börner A, Sallam A. Validation and marker-assisted selection of DArT-genomic regions associated with wheat yield-related traits under normal and drought conditions. Front Genet 2023; 14:1195566. [PMID: 37292145 PMCID: PMC10245129 DOI: 10.3389/fgene.2023.1195566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Quantitative trait loci (QTL) is one of the most important steps in marker-assisted selection. Few studies have validated quantitative trait loci for marker-assisted selection of yield traits under drought stress conditions in wheat. A set of 138 highly diverse wheat genotypes were tested under normal and drought stress conditions for 2 years. Plant height, heading date, spike length, grain number per spike, grain yield per spike, and 1000-kernel weight were scored. High genetic variation was found among genotypes in all traits scored under both conditions in the 2 years. The same panel was genotyped using a diversity-array technology (DArT) marker, and a genome-wide association study was performed to find alleles associated with yield traits under all conditions. A set of 191 significant DArT markers were identified in this study. The results of the genome-wide association study revealed eight common markers in wheat that were significantly associated with the same traits under both conditions in the 2 years. Out of the eight markers, seven were located on the D genome except one marker. Four validated markers were located on the 3D chromosome and found in complete linkage disequilibrium. Moreover, these four markers were significantly associated with the heading date under both conditions and the grain yield per spike under drought stress condition in the 2 years. This high-linkage disequilibrium genomic region was located within the TraesCS3D02G002400 gene model. Furthermore, of the eight validated markers, seven were previously reported to be associated with yield traits under normal and drought conditions. The results of this study provided very promising DArT markers that can be used for marker-assisted selection to genetically improve yield traits under normal and drought conditions.
Collapse
Affiliation(s)
- Mostafa Hashem
- Department of Genetics, Faculty of Agriculture, Assiut University, Assuit, Egypt
| | | | - Saleh M. Ismail
- Soils and Water Department, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, Assuit, Egypt
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
13
|
Reddy SS, Saini DK, Singh GM, Sharma S, Mishra VK, Joshi AK. Genome-wide association mapping of genomic regions associated with drought stress tolerance at seedling and reproductive stages in bread wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1166439. [PMID: 37251775 PMCID: PMC10213333 DOI: 10.3389/fpls.2023.1166439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/14/2023] [Indexed: 05/31/2023]
Abstract
Understanding the genetic architecture of drought stress tolerance in bread wheat at seedling and reproductive stages is crucial for developing drought-tolerant varieties. In the present study, 192 diverse wheat genotypes, a subset from the Wheat Associated Mapping Initiative (WAMI) panel, were evaluated at the seedling stage in a hydroponics system for chlorophyll content (CL), shoot length (SLT), shoot weight (SWT), root length (RLT), and root weight (RWT) under both drought and optimum conditions. Following that, a genome-wide association study (GWAS) was carried out using the phenotypic data recorded during the hydroponics experiment as well as data available from previously conducted multi-location field trials under optimal and drought stress conditions. The panel had previously been genotyped using the Infinium iSelect 90K SNP array with 26,814 polymorphic markers. Using single as well as multi-locus models, GWAS identified 94 significant marker-trait associations (MTAs) or SNPs associated with traits recorded at the seedling stage and 451 for traits recorded at the reproductive stage. The significant SNPs included several novel, significant, and promising MTAs for different traits. The average LD decay distance for the whole genome was approximately 0.48 Mbp, ranging from 0.07 Mbp (chromosome 6D) to 4.14 Mbp (chromosome 2A). Furthermore, several promising SNPs revealed significant differences among haplotypes for traits such as RLT, RWT, SLT, SWT, and GY under drought stress. Functional annotation and in silico expression analysis revealed important putative candidate genes underlying the identified stable genomic regions such as protein kinases, O-methyltransferases, GroES-like superfamily proteins, NAD-dependent dehydratases, etc. The findings of the present study may be useful for improving yield potential, and stability under drought stress conditions.
Collapse
Affiliation(s)
- S Srinatha Reddy
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - G Mahendra Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Sandeep Sharma
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vinod Kumar Mishra
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Arun Kumar Joshi
- Borlaug Institute of South Asia (BISA), NASC Complex, DPS Marg, New Delhi, India
- CIMMYT, NASC Complex, DPS Marg, New Delhi, India
| |
Collapse
|
14
|
Rahimi Y, Khahani B, Jamali A, Alipour H, Bihamta MR, Ingvarsson PK. Genome-wide association study to identify genomic loci associated with early vigor in bread wheat under simulated water deficit complemented with quantitative trait loci meta-analysis. G3 (BETHESDA, MD.) 2023; 13:jkac320. [PMID: 36458966 PMCID: PMC10248217 DOI: 10.1093/g3journal/jkac320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
A genome-wide association study (GWAS) was used to identify associated loci with early vigor under simulated water deficit and grain yield under field drought in a diverse collection of Iranian bread wheat landraces. In addition, a meta-quantitative trait loci (MQTL) analysis was used to further expand our approach by retrieving already published quantitative trait loci (QTL) from recombinant inbred lines, double haploids, back-crosses, and F2 mapping populations. In the current study, around 16%, 14%, and 16% of SNPs were in significant linkage disequilibrium (LD) in the A, B, and D genomes, respectively, and varied between 5.44% (4A) and 21.85% (6A). Three main subgroups were identified among the landraces with different degrees of admixture, and population structure was further explored through principal component analysis. Our GWAS identified 54 marker-trait associations (MTAs) that were located across the wheat genome but with the highest number found in the B sub-genome. The gene ontology (GO) analysis of MTAs revealed that around 75% were located within or closed to protein-coding genes. In the MQTL analysis, 23 MQTLs, from a total of 215 QTLs, were identified and successfully projected onto the reference map. MQT-YLD4, MQT-YLD9, MQT-YLD13, MQT-YLD17, MQT-YLD18, MQT-YLD19, and MQTL-RL1 contributed to the highest number of projected QTLs and were therefore regarded as the most reliable and stable QTLs under water deficit conditions. These MQTLs greatly facilitate the identification of putative candidate genes underlying at each MQTL interval due to the reduced confidence of intervals associated with MQTLs. These findings provide important information on the genetic basis of early vigor traits and grain yield under water deficit conditions and set the foundation for future investigations into adaptation to water deficit in bread wheat.
Collapse
Affiliation(s)
- Yousef Rahimi
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Bahman Khahani
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, 71441-65186 Shiraz, Iran
| | - Ali Jamali
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Tehran, 31587-77871 Karaj, Iran
| | - Hadi Alipour
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University, 5756151818 Urmia, Iran
| | - Mohammad Reza Bihamta
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Tehran, 31587-77871 Karaj, Iran
| | - Pär K Ingvarsson
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| |
Collapse
|
15
|
Mulugeta B, Tesfaye K, Ortiz R, Johansson E, Hailesilassie T, Hammenhag C, Hailu F, Geleta M. Marker-trait association analyses revealed major novel QTLs for grain yield and related traits in durum wheat. FRONTIERS IN PLANT SCIENCE 2023; 13:1009244. [PMID: 36777537 PMCID: PMC9909559 DOI: 10.3389/fpls.2022.1009244] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
The growing global demand for wheat for food is rising due to the influence of population growth and climate change. The dissection of complex traits by employing a genome-wide association study (GWAS) allows the identification of DNA markers associated with complex traits to improve the productivity of crops. We used GWAS with 10,045 single nucleotide polymorphism (SNP) markers to search for genomic regions associated with grain yield and related traits based on diverse panels of Ethiopian durum wheat. In Ethiopia, multi-environment trials of the genotypes were carried out at five locations. The genotyping was conducted using the 25k Illumina Wheat SNP array to explore population structure, linkage disequilibrium (LD), and marker-trait associations (MTAs). For GWAS, the multi-locus Fixed and Random Model Circulating Probability Unification (FarmCPU) model was applied. Broad-sense heritability estimates were high, ranging from 0.63 (for grain yield) to 0.97 (for thousand-kernel weight). The population structure based on principal component analysis, and model-based cluster analysis revealed two genetically distinct clusters with limited admixtures. The LD among SNPs declined within the range of 2.02-10.04 Mbp with an average of 4.28 Mbp. The GWAS scan based on the mean performance of the genotypes across the environments identified 44 significant MTAs across the chromosomes. Twenty-six of these MTAs are novel, whereas the remaining 18 were previously reported and confirmed in this study. We also identified candidate genes for the novel loci potentially regulating the traits. Hence, this study highlights the significance of the Ethiopian durum wheat gene pool for improving durum wheat globally. Furthermore, a breeding strategy focusing on accumulating favorable alleles at these loci could improve durum wheat production in the East African highlands and elsewhere.
Collapse
Affiliation(s)
- Behailu Mulugeta
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Sinana Agricultural Research Center, Oromia Agricultural Research Institute, Bale-Robe, Ethiopia
| | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Director General, Bio and Emerging Technology Institute (BETin), Addis Ababa, Ethiopia
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Cecilia Hammenhag
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Faris Hailu
- Department of Biology and Biotechnology, Wollo University, Dessie, Ethiopia
| | - Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
16
|
Esposito S, Taranto F, Vitale P, Ficco DBM, Colecchia SA, Stevanato P, De Vita P. Unlocking the molecular basis of wheat straw composition and morphological traits through multi-locus GWAS. BMC PLANT BIOLOGY 2022; 22:519. [PMID: 36344939 PMCID: PMC9641881 DOI: 10.1186/s12870-022-03900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Rapid reductions in emissions from fossil fuel burning are needed to curb global climate change. Biofuel production from crop residues can contribute to reducing the energy crisis and environmental deterioration. Wheat is a renewable source for biofuels owing to the low cost and high availability of its residues. Thus, identifying candidate genes controlling these traits is pivotal for efficient biofuel production. Here, six multi-locus genome-wide association (ML-GWAS) models were applied using 185 tetraploid wheat accessions to detect quantitative trait nucleotides (QTNs) for fifteen traits associated with biomass composition. RESULTS Among the 470 QTNs, only 72 identified by at least two models were considered as reliable. Among these latter, 16 also showed a significant effect on the corresponding trait (p.value < 0.05). Candidate genes survey carried out within 4 Mb flanking the QTNs, revealed putative biological functions associated with lipid transfer and metabolism, cell wall modifications, cell cycle, and photosynthesis. Four genes encoded as Cellulose Synthase (CeSa), Anaphase promoting complex (APC/C), Glucoronoxylan 4-O Methyltransferase (GXM) and HYPONASTIC LEAVES1 (HYL1) might be responsible for an increase in cellulose, and natural and acid detergent fiber (NDF and ADF) content in tetraploid wheat. In addition, the SNP marker RFL_Contig3228_2154 associated with the variation in stem solidness (Q.Scsb-3B) was validated through two molecular methods (High resolution melting; HRM and RNase H2-dependent PCR; rhAMP). CONCLUSIONS The study provides new insights into the genetic basis of biomass composition traits on tetraploid wheat. The application of six ML-GWAS models on a panel of diverse wheat genotypes represents an efficient approach to dissect complex traits with low heritability such as wheat straw composition. The discovery of genes/genomic regions associated with biomass production and straw quality parameters is expected to accelerate the development of high-yielding wheat varieties useful for biofuel production.
Collapse
Affiliation(s)
- Salvatore Esposito
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, 71122 Foggia, Italy
| | - Francesca Taranto
- Institute of Biosciences and Bioresources, (CNR-IBBR), 70126 Bari, Italy
| | - Paolo Vitale
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, 71122 Foggia, Italy
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, 71122 Foggia, Italy
| | - Donatella Bianca Maria Ficco
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, 71122 Foggia, Italy
| | - Salvatore Antonio Colecchia
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, 71122 Foggia, Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Padova, Legnaro Italy
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, 71122 Foggia, Italy
| |
Collapse
|
17
|
El Gataa Z, Samir K, Tadesse W. Genetic Dissection of Drought Tolerance of Elite Bread Wheat ( Triticum aestivum L.) Genotypes Using Genome Wide Association Study in Morocco. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202705. [PMID: 36297729 PMCID: PMC9611990 DOI: 10.3390/plants11202705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/01/2023]
Abstract
Drought is one of the most important yield-limiting factors in Morocco. Identification and deployment of drought-tolerant wheat varieties are important to cope with the challenge of terminal moisture stress and increase wheat productivity. A panel composed of 200 elite spring bread wheat genotypes was phenotyped for yield and agronomic traits for 2 years (2020 and 2021) in Morocco under rainfed and irrigated environments. The panel was genotyped using 20K SNPs and, after filtration, a total of 15,735 SNP markers were used for a genome-wide association study (GWAS) using a mixed linear model (MLM) to identify marker-trait associations (MTA) and putative genes associated with grain yield and yield-related traits under rainfed and irrigated conditions. Significant differences were observed among the elite genotypes for grain yield and yield-related traits. Grain yield performance ranged from 0.97 to 6.16 t/ha under rainfed conditions at Sidi Al-Aidi station and from 3.31 to 9.38 t/h under irrigated conditions at Sidi Al-Aidi station, while Grain yield at Merchouch station ranged from 2.32 to 6.16 t/h under rainfed condition. A total of 159 MTAs (p < 0.001) and 46 genes were discovered, with 67 MTAs recorded under rainfed conditions and 37 MTAs recorded under irrigated conditions at the Sidi Al-Aidi station, while 55 MTAs were recorded under rainfed conditions at Merchouch station. The marker ‘BobWhite_c2988_493’ on chromosome 2B was significantly correlated with grain yield under rainfed conditions. Under irrigated conditions, the marker ‘AX-94653560’ on chromosome 2D was significantly correlated with grain yield at Sidi Al-Aidi station. The maker ‘RAC875_c17918_321’ located on chromosome 4A, associated with grain yield was linked with the gene TraesCS4A02G322700, which encodes for F-box domain-containing protein. The markers and candidate genes discovered in this study should be further validated for their potential use in marker-assisted selection to generate high-yielding wheat genotypes with drought tolerance.
Collapse
Affiliation(s)
- Zakaria El Gataa
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10080, Morocco
- Faculty of Sciences Ben M’sick, University Hassan II of Casablanca, Casablanca 7955, Morocco
| | - Karima Samir
- Faculty of Sciences Ben M’sick, University Hassan II of Casablanca, Casablanca 7955, Morocco
| | - Wuletaw Tadesse
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10080, Morocco
| |
Collapse
|
18
|
Vishal MK, Saluja R, Aggrawal D, Banerjee B, Raju D, Kumar S, Chinnusamy V, Sahoo RN, Adinarayana J. Leaf Count Aided Novel Framework for Rice ( Oryza sativa L.) Genotypes Discrimination in Phenomics: Leveraging Computer Vision and Deep Learning Applications. PLANTS (BASEL, SWITZERLAND) 2022; 11:2663. [PMID: 36235529 PMCID: PMC9614605 DOI: 10.3390/plants11192663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Drought is a detrimental factor to gaining higher yields in rice (Oryza sativa L.), especially amid the rising occurrence of drought across the globe. To combat this situation, it is essential to develop novel drought-resilient varieties. Therefore, screening of drought-adaptive genotypes is required with high precision and high throughput. In contemporary emerging science, high throughput plant phenotyping (HTPP) is a crucial technology that attempts to break the bottleneck of traditional phenotyping. In traditional phenotyping, screening significant genotypes is a tedious task and prone to human error while measuring various plant traits. In contrast, owing to the potential advantage of HTPP over traditional phenotyping, image-based traits, also known as i-traits, were used in our study to discriminate 110 genotypes grown for genome-wide association study experiments under controlled (well-watered), and drought-stress (limited water) conditions, under a phenomics experiment in a controlled environment with RGB images. Our proposed framework non-destructively estimated drought-adaptive plant traits from the images, such as the number of leaves, convex hull, plant-aspect ratio (plant spread), and similarly associated geometrical and morphological traits for analyzing and discriminating genotypes. The results showed that a single trait, the number of leaves, can also be used for discriminating genotypes. This critical drought-adaptive trait was associated with plant size, architecture, and biomass. In this work, the number of leaves and other characteristics were estimated non-destructively from top view images of the rice plant for each genotype. The estimation of the number of leaves for each rice plant was conducted with the deep learning model, YOLO (You Only Look Once). The leaves were counted by detecting corresponding visible leaf tips in the rice plant. The detection accuracy was 86-92% for dense to moderate spread large plants, and 98% for sparse spread small plants. With this framework, the susceptible genotypes (MTU1010, PUSA-1121 and similar genotypes) and drought-resistant genotypes (Heera, Anjali, Dular and similar genotypes) were grouped in the core set with a respective group of drought-susceptible and drought-tolerant genotypes based on the number of leaves, and the leaves' emergence during the peak drought-stress period. Moreover, it was found that the number of leaves was significantly associated with other pertinent morphological, physiological and geometrical traits. Other geometrical traits were measured from the RGB images with the help of computer vision.
Collapse
Affiliation(s)
| | - Rohit Saluja
- CSE, Indian Institute of Technology Bombay, Mumbai 400076, India
- Indian Institute of Information Technology, Hyderabad 500032, India
| | | | - Biplab Banerjee
- CSRE, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dhandapani Raju
- Indian Council of Agricultural Research—Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Sudhir Kumar
- Indian Council of Agricultural Research—Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Viswanathan Chinnusamy
- Indian Council of Agricultural Research—Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Rabi Narayan Sahoo
- Indian Council of Agricultural Research—Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | | |
Collapse
|
19
|
Bapela T, Shimelis H, Tsilo TJ, Mathew I. Genetic Improvement of Wheat for Drought Tolerance: Progress, Challenges and Opportunities. PLANTS (BASEL, SWITZERLAND) 2022; 11:1331. [PMID: 35631756 PMCID: PMC9144332 DOI: 10.3390/plants11101331] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 06/01/2023]
Abstract
Wheat production and productivity are challenged by recurrent droughts associated with climate change globally. Drought and heat stress resilient cultivars can alleviate yield loss in marginal production agro-ecologies. The ability of some crop genotypes to thrive and yield in drought conditions is attributable to the inherent genetic variation and environmental adaptation, presenting opportunities to develop drought-tolerant varieties. Understanding the underlying genetic, physiological, biochemical, and environmental mechanisms and their interactions is key critical opportunity for drought tolerance improvement. Therefore, the objective of this review is to document the progress, challenges, and opportunities in breeding for drought tolerance in wheat. The paper outlines the following key aspects: (1) challenges associated with breeding for adaptation to drought-prone environments, (2) opportunities such as genetic variation in wheat for drought tolerance, selection methods, the interplay between above-ground phenotypic traits and root attributes in drought adaptation and drought-responsive attributes and (3) approaches, technologies and innovations in drought tolerance breeding. In the end, the paper summarises genetic gains and perspectives in drought tolerance breeding in wheat. The review will serve as baseline information for wheat breeders and agronomists to guide the development and deployment of drought-adapted and high-performing new-generation wheat varieties.
Collapse
Affiliation(s)
- Theresa Bapela
- African Centre for Crop Improvement, University of Kwa-Zulu Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa; (H.S.); (I.M.)
- Agricultural Research Council—Small Grain, Bethlehem 9700, South Africa;
| | - Hussein Shimelis
- African Centre for Crop Improvement, University of Kwa-Zulu Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa; (H.S.); (I.M.)
| | - Toi John Tsilo
- Agricultural Research Council—Small Grain, Bethlehem 9700, South Africa;
| | - Isack Mathew
- African Centre for Crop Improvement, University of Kwa-Zulu Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa; (H.S.); (I.M.)
| |
Collapse
|
20
|
Abady S, Shimelis H, Janila P, Yaduru S, Shayanowako AIT, Deshmukh D, Chaudhari S, Manohar SS. Assessment of the genetic diversity and population structure of groundnut germplasm collections using phenotypic traits and SNP markers: Implications for drought tolerance breeding. PLoS One 2021; 16:e0259883. [PMID: 34788339 PMCID: PMC8598071 DOI: 10.1371/journal.pone.0259883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023] Open
Abstract
Profiling the genetic composition and relationships among groundnut germplasm collections is essential for the breeding of new cultivars. The objectives of this study were to assess the genetic diversity and population structure among 100 improved groundnut genotypes using agronomic traits and high-density single nucleotide polymorphism (SNP) markers. The genotypes were evaluated for agronomic traits and drought tolerance at the International Crop Research Institute for the Semi-Arid Tropics (ICRISAT)/India across two seasons. Ninety-nine of the test genotypes were profiled with 16363 SNP markers. Pod yield per plant (PY), seed yield per plant (SY), and harvest index (HI) were significantly (p < 0.05) affected by genotype × environment interaction effects. Genotypes ICGV 07222, ICGV 06040, ICGV 01260, ICGV 15083, ICGV 10143, ICGV 03042, ICGV 06039, ICGV 14001, ICGV 11380, and ICGV 13200 ranked top in terms of pod yield under both drought-stressed and optimum conditions. PY exhibited a significant (p ≤ 0.05) correlation with SY, HI, and total biomass (TBM) under both test conditions. Based on the principal component (PC) analysis, PY, SY, HSW, shelling percentage (SHP), and HI were allocated in PC 1 and contributed to the maximum variability for yield under the two water regimes. Hence, selecting these traits could be successful for screening groundnut genotypes under drought-stressed and optimum conditions. The model-based population structure analysis grouped the studied genotypes into three sub-populations. Dendrogram for phenotypic and genotypic also grouped the studied 99 genotypes into three heterogeneous clusters. Analysis of molecular variance revealed that 98% of the total genetic variation was attributed to individuals, while only 2% of the total variance was due to variation among the subspecies. The genetic distance between the Spanish bunch and Virginia bunch types ranged from 0.11 to 0.52. The genotypes ICGV 13189, ICGV 95111, ICGV 14421, and ICGV 171007 were selected for further breeding based on their wide genetic divergence. Data presented in this study will guide groundnut cultivar development emphasizing economic traits and adaptation to water-limited agro-ecologies, including in Ethiopia.
Collapse
Affiliation(s)
- Seltene Abady
- African Centre for Crop Improvement (ACCI), School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, South Africa
- School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Hussein Shimelis
- African Centre for Crop Improvement (ACCI), School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Pasupuleti Janila
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Telangana, India
| | - Shasidhar Yaduru
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Telangana, India
| | - Admire I. T. Shayanowako
- African Centre for Crop Improvement (ACCI), School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Dnyaneshwar Deshmukh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Telangana, India
| | - Sunil Chaudhari
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Telangana, India
| | - Surendra S. Manohar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Telangana, India
| |
Collapse
|
21
|
Shariatipour N, Heidari B, Tahmasebi A, Richards C. Comparative Genomic Analysis of Quantitative Trait Loci Associated With Micronutrient Contents, Grain Quality, and Agronomic Traits in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:709817. [PMID: 34712248 PMCID: PMC8546302 DOI: 10.3389/fpls.2021.709817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/06/2021] [Indexed: 05/02/2023]
Abstract
Comparative genomics and meta-quantitative trait loci (MQTLs) analysis are important tools for the identification of reliable and stable QTLs and functional genes controlling quantitative traits. We conducted a meta-analysis to identify the most stable QTLs for grain yield (GY), grain quality traits, and micronutrient contents in wheat. A total of 735 QTLs retrieved from 27 independent mapping populations reported in the last 13 years were used for the meta-analysis. The results showed that 449 QTLs were successfully projected onto the genetic consensus map which condensed to 100 MQTLs distributed on wheat chromosomes. This consolidation of MQTLs resulted in a three-fold reduction in the confidence interval (CI) compared with the CI for the initial QTLs. Projection of QTLs revealed that the majority of QTLs and MQTLs were in the non-telomeric regions of chromosomes. The majority of micronutrient MQTLs were located on the A and D genomes. The QTLs of thousand kernel weight (TKW) were frequently associated with QTLs for GY and grain protein content (GPC) with co-localization occurring at 55 and 63%, respectively. The co- localization of QTLs for GY and grain Fe was found to be 52% and for QTLs of grain Fe and Zn, it was found to be 66%. The genomic collinearity within Poaceae allowed us to identify 16 orthologous MQTLs (OrMQTLs) in wheat, rice, and maize. Annotation of promising candidate genes (CGs) located in the genomic intervals of the stable MQTLs indicated that several CGs (e.g., TraesCS2A02G141400, TraesCS3B02G040900, TraesCS4D02G323700, TraesCS3B02G077100, and TraesCS4D02G290900) had effects on micronutrients contents, yield, and yield-related traits. The mapping refinements leading to the identification of these CGs provide an opportunity to understand the genetic mechanisms driving quantitative variation for these traits and apply this information for crop improvement programs.
Collapse
Affiliation(s)
- Nikwan Shariatipour
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ahmad Tahmasebi
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Christopher Richards
- USDA ARS National Laboratory for Genetic Resources Preservation, Fort Collins, CO, United States
| |
Collapse
|
22
|
Mekonnen T, Sneller CH, Haileselassie T, Ziyomo C, Abeyo BG, Goodwin SB, Lule D, Tesfaye K. Genome-Wide Association Study Reveals Novel Genetic Loci for Quantitative Resistance to Septoria Tritici Blotch in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:671323. [PMID: 34630445 PMCID: PMC8500178 DOI: 10.3389/fpls.2021.671323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Septoria tritici blotch, caused by the fungus Zymoseptoria titici, poses serious and persistent challenges to wheat cultivation in Ethiopia and worldwide. Deploying resistant cultivars is a major component of controlling septoria tritici blotch (STB). Thus, the objective of this study was to elucidate the genomic architecture of STB resistance in an association panel of 178 bread wheat genotypes. The association panel was phenotyped for STB resistance, phenology, yield, and yield-related traits in three locations for 2 years. The panel was also genotyped for single nucleotide polymorphism (SNP) markers using the genotyping-by-sequencing (GBS) method, and a total of 7,776 polymorphic SNPs were used in the subsequent analyses. Marker-trait associations were also computed using a genome association and prediction integrated tool (GAPIT). The study then found that the broad-sense heritability for STB resistance ranged from 0.58 to 0.97 and 0.72 to 0.81 at the individual and across-environment levels, respectively, indicating the presence of STB resistance alleles in the association panel. Population structure and principal component analyses detected two sub-groups with greater degrees of admixture. A linkage disequilibrium (LD) analysis in 338,125 marker pairs also detected the existence of significant (p ≤ 0.01) linkage in 27.6% of the marker pairs. Specifically, in all chromosomes, the LD between SNPs declined within 2.26-105.62 Mbp, with an overall mean of 31.44 Mbp. Furthermore, the association analysis identified 53 loci that were significantly (false discovery rate, FDR, <0.05) associated with STB resistance, further pointing to 33 putative quantitative trait loci (QTLs). Most of these shared similar chromosomes with already published Septoria resistance genes, which were distributed across chromosomes 1B, 1D, 2A, 2B, 2D, 3A,3 B, 3D, 4A, 5A, 5B, 6A, 7A, 7B, and 7D. However, five of the putative QTLs identified on chromosomes 1A, 5D, and 6B appeared to be novel. Dissecting the detected loci on IWGSC RefSeq Annotation v2.1 revealed the existence of disease resistance-associated genes in the identified QTL regions that are involved in plant defense responses. These putative QTLs explained 2.7-13.2% of the total phenotypic variation. Seven of the QTLs (R 2 = 2.7-10.8%) for STB resistance also co-localized with marker-trait associations (MTAs) for agronomic traits. Overall, this analysis reported on putative QTLs for adult plant resistance to STB and some important agronomic traits. The reported and novel QTLs have been identified previously, indicating the potential to improve STB resistance by pyramiding QTLs by marker-assisted selection.
Collapse
Affiliation(s)
- Tilahun Mekonnen
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Clay H. Sneller
- Biosciences Eastern and Central Africa (BecA), Nairobi, Kenya
| | | | - Cathrine Ziyomo
- Biosciences Eastern and Central Africa (BecA), Nairobi, Kenya
| | - Bekele G. Abeyo
- International Maize and Wheat Improvement Center- CIMMYT (Ethiopia), Addis Ababa, Ethiopia
| | - Stephen B. Goodwin
- United States Department of Agriculture (USDA)-Agricultural Research Service, West Lafayette, IN, United States
| | - Dagnachew Lule
- Oromia Agricultural Research Institute (OARI), Addis Ababa, Ethiopia
| | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Biotechnology Institute (EBTi), Addis Ababa, Ethiopia
| |
Collapse
|
23
|
Schierenbeck M, Alqudah AM, Lohwasser U, Tarawneh RA, Simón MR, Börner A. Genetic dissection of grain architecture-related traits in a winter wheat population. BMC PLANT BIOLOGY 2021; 21:417. [PMID: 34507551 PMCID: PMC8431894 DOI: 10.1186/s12870-021-03183-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/20/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND The future productivity of wheat (T. aestivum L.) as the most grown crop worldwide is of utmost importance for global food security. Thousand kernel weight (TKW) in wheat is closely associated with grain architecture-related traits, e.g. kernel length (KL), kernel width (KW), kernel area (KA), kernel diameter ratio (KDR), and factor form density (FFD). Discovering the genetic architecture of natural variation in these traits, identifying QTL and candidate genes are the main aims of this study. Therefore, grain architecture-related traits in 261 worldwide winter accessions over three field-year experiments were evaluated. RESULTS Genome-wide association analysis using 90K SNP array in FarmCPU model revealed several interesting genomic regions including 17 significant SNPs passing false discovery rate threshold and strongly associated with the studied traits. Four of associated SNPs were physically located inside candidate genes within LD interval e.g. BobWhite_c5872_589 (602,710,399 bp) found to be inside TraesCS6A01G383800 (602,699,767-602,711,726 bp). Further analysis reveals the four novel candidate genes potentially involved in more than one grain architecture-related traits with a pleiotropic effects e.g. TraesCS6A01G383800 gene on 6A encoding oxidoreductase activity was associated with TKW and KA. The allelic variation at the associated SNPs showed significant differences betweeen the accessions carying the wild and mutated alleles e.g. accessions carying C allele of BobWhite_c5872_589, TraesCS6A01G383800 had significantly higher TKW than the accessions carying T allele. Interestingly, these genes were highly expressed in the grain-tissues, demonstrating their pivotal role in controlling the grain architecture. CONCLUSIONS These results are valuable for identifying regions associated with kernel weight and dimensions and potentially help breeders in improving kernel weight and architecture-related traits in order to increase wheat yield potential and end-use quality.
Collapse
Affiliation(s)
- Matías Schierenbeck
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr 3, D-06466, Seeland, Germany.
- Cereals, Faculty of Agricultural Sciences and Forestry, National University of La Plata, La Plata, Argentina.
- CONICET CCT La Plata. La Plata, Buenos Aires, Argentina.
| | - Ahmad M Alqudah
- Department of Agroecology, Aarhus University at Flakkebjerg, Forsøgsvej 1, 4200, Slagelse, Denmark.
| | - Ulrike Lohwasser
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr 3, D-06466, Seeland, Germany
| | - Rasha A Tarawneh
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr 3, D-06466, Seeland, Germany
| | - María Rosa Simón
- Cereals, Faculty of Agricultural Sciences and Forestry, National University of La Plata, La Plata, Argentina
- CONICET CCT La Plata. La Plata, Buenos Aires, Argentina
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr 3, D-06466, Seeland, Germany
| |
Collapse
|
24
|
Amalova A, Abugalieva S, Babkenov A, Babkenova S, Turuspekov Y. Genome-wide association study of yield components in spring wheat collection harvested under two water regimes in Northern Kazakhstan. PeerJ 2021; 9:e11857. [PMID: 34395089 PMCID: PMC8323601 DOI: 10.7717/peerj.11857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background Bread wheat is the most important cereal in Kazakhstan, where it is grown on over 12 million hectares. One of the major constraints affecting wheat grain yield is drought due to the limited water supply. Hence, the development of drought-resistant cultivars is critical for ensuring food security in this country. Therefore, identifying quantitative trait loci (QTLs) associated with drought tolerance as an essential step in modern breeding activities, which rely on a marker-assisted selection approach. Methods A collection of 179 spring wheat accessions was tested under irrigated and rainfed conditions in Northern Kazakhstan over three years (2018, 2019, and 2020), during which data was collected on nine traits: heading date (HD), seed maturity date (SMD), plant height (PH), peduncle length (PL), number of productive spikes (NPS), spike length (SL), number of kernels per spike (NKS), thousand kernel weight (TKW), and kernels yield per m2 (YM2). The collection was genotyped using a 20,000 (20K) Illumina iSelect SNP array, and 8,662 polymorphic SNP markers were selected for a genome-wide association study (GWAS) to identify QTLs for targeted agronomic traits. Results Out of the total of 237 discovered QTLs, 50 were identified as being stable QTLs for irrigated and rainfed conditions in the Akmola region, Northern Kazakhstan; the identified QTLs were associated with all the studied traits except PH. The results indicate that nine QTLs for HD and 11 QTLs for SMD are presumably novel genetic factors identified in the irrigated and rainfed conditions of Northern Kazakhstan. The identified SNP markers of the QTLs for targeted traits in rainfed conditions can be applied to develop new competitive spring wheat cultivars in arid zones using a marker-assisted selection approach.
Collapse
Affiliation(s)
- Akerke Amalova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan.,Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Saule Abugalieva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan.,Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Adylkhan Babkenov
- A.I. Barayev Research and Production Centre of Grain Farming, Shortandy, Akmola Region, Kazakhstan
| | - Sandukash Babkenova
- A.I. Barayev Research and Production Centre of Grain Farming, Shortandy, Akmola Region, Kazakhstan
| | - Yerlan Turuspekov
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan.,Faculty of Agrobiology, Kazakh National Agrarian University, Almaty, Kazakhstan
| |
Collapse
|
25
|
Rabbi SMHA, Kumar A, Mohajeri Naraghi S, Simsek S, Sapkota S, Solanki S, Alamri MS, Elias EM, Kianian S, Missaoui A, Mergoum M. Genome-Wide Association Mapping for Yield and Related Traits Under Drought Stressed and Non-stressed Environments in Wheat. Front Genet 2021; 12:649988. [PMID: 34239537 PMCID: PMC8258415 DOI: 10.3389/fgene.2021.649988] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/28/2021] [Indexed: 12/02/2022] Open
Abstract
Understanding the genetics of drought tolerance in hard red spring wheat (HRSW) in northern USA is a prerequisite for developing drought-tolerant cultivars for this region. An association mapping (AM) study for drought tolerance in spring wheat in northern USA was undertaken using 361 wheat genotypes and Infinium 90K single-nucleotide polymorphism (SNP) assay. The genotypes were evaluated in nine different locations of North Dakota (ND) for plant height (PH), days to heading (DH), yield (YLD), test weight (TW), and thousand kernel weight (TKW) under rain-fed conditions. Rainfall data and soil type of the locations were used to assess drought conditions. A mixed linear model (MLM), which accounts for population structure and kinship (PC+K), was used for marker–trait association. A total of 69 consistent QTL involved with drought tolerance-related traits were identified, with p ≤ 0.001. Chromosomes 1A, 3A, 3B, 4B, 4D, 5B, 6A, and 6B were identified to harbor major QTL for drought tolerance. Six potential novel QTL were identified on chromosomes 3D, 4A, 5B, 7A, and 7B. The novel QTL were identified for DH, PH, and TKW. The findings of this study can be used in marker-assisted selection (MAS) for drought-tolerance breeding in spring wheat.
Collapse
Affiliation(s)
- S M Hisam A Rabbi
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | | | - Senay Simsek
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Suraj Sapkota
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin, GA, United States
| | - Shyam Solanki
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Mohammed S Alamri
- Department of Food Sciences and Nutrition, King Saud University, Riyadh, Saudi Arabia
| | - Elias M Elias
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Shahryar Kianian
- United States Department of Agriculture-The Agricultural Research Service (USDA-ARS) Cereal Disease Laboratory, University of Minnesota, St. Paul, MN, United States
| | - Ali Missaoui
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin, GA, United States.,Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, United States
| | - Mohamed Mergoum
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin, GA, United States.,Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, United States
| |
Collapse
|
26
|
Akman H, Zhang C, Ejeta G. Physio-morphological, biochemical, and anatomical traits of drought-tolerant and susceptible sorghum cultivars under pre- and post-anthesis drought. PHYSIOLOGIA PLANTARUM 2021; 172:912-921. [PMID: 33063861 DOI: 10.1111/ppl.13242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Understanding the physiological mechanisms that control drought tolerance in crop plants is vital for effective breeding. In this study, we characterized drought stress responses in four sorghum cultivars exhibiting differential levels of drought tolerance at pre- and post-anthesis. Greenhouse-grown plants were subjected to two types of drought treatment, water stress (WS) and desiccant-induced water stress (DA), timed to occur at pre- and post-anthesis. Multiple physiological measurements were then made revealing varying responses among the experimental cultivars. The pre- and post-flowering drought-tolerant cultivar P898012 showed a significantly higher net photosynthetic rate, higher transpiration rate, and greater stomatal conductance compared to the drought-susceptible cultivars at both pre- and post-anthesis. A significantly greater stomatal size was also detected in P898012, while the highest stomatal density was found in the drought-susceptible cultivar P721Q. Meanwhile, the two post-flowering drought-tolerant cultivars P898082 and B35 had a higher starch content and exhibited greater osmotic potential under post-anthesis water stress. Compared to WS and well-watered control plants, a greater increase in root biomass was observed in P898012 under DA at pre-anthesis. This finding suggests that plants invested more assimilates into the roots under severe DA at pre-anthesis. Overall, our results show good conformity between drought tolerance in sorghum and key physiological mechanisms of stomatal conductance, root growth patterns, and starch accumulation, all of which act as coping mechanisms during critical drought-sensitive growth stages.
Collapse
Affiliation(s)
- Hayati Akman
- Department of Seed Technology, Sarayönü Vocational School, Selçuk University, Konya, Turkey
| | - Cankui Zhang
- Department of Agronomy, Center for Plant Biology, College of Agriculture, Purdue University, West Lafayette, Indiana, USA
| | - Gebisa Ejeta
- Department of Agronomy, Center for Plant Biology, College of Agriculture, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
27
|
Nkhata W, Shimelis H, Melis R, Chirwa R, Mzengeza T, Mathew I, Shayanowako A. Genome-wide association analysis of bean fly resistance and agro-morphological traits in common bean. PLoS One 2021; 16:e0250729. [PMID: 33914796 PMCID: PMC8084209 DOI: 10.1371/journal.pone.0250729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/12/2021] [Indexed: 11/19/2022] Open
Abstract
The bean fly (Ophiomyia spp) is a key insect pest causing significant crop damage and yield loss in common bean (Phaseolus vulgaris L., 2n = 2x = 22). Development and deployment of agronomic superior and bean fly resistant common bean varieties aredependent on genetic variation and the identification of genes and genomic regions controlling economic traits. This study's objective was to determine the population structure of a diverse panel of common bean genotypes and deduce associations between bean fly resistance and agronomic traits based on single nucleotide polymorphism (SNP) markers. Ninety-nine common bean genotypes were phenotyped in two seasons at two locations and genotyped with 16 565 SNP markers. The genotypes exhibited significant variation for bean fly damage severity (BDS), plant mortality rate (PMR), and pupa count (PC). Likewise, the genotypes showed significant variation for agro-morphological traits such as days to flowering (DTF), days to maturity (DTM), number of pods per plant (NPP), number of seeds per pod (NSP), and grain yield (GYD). The genotypes were delineated into two populations, which were based on the Andean and Mesoamerican gene pools. The genotypes exhibited a minimum membership coefficient of 0.60 to their respective populations. Eighty-three significant (P<0.01) markers were identified with an average linkage disequilibrium of 0.20 at 12Mb across the 11 chromosomes. Three markers were identified, each having pleiotropic effects on two traits: M100049197 (BDS and NPP), M3379537 (DTF and PC), and M13122571 (NPP and GYD). The identified markers are useful for marker-assisted selection in the breeding program to develop common bean genotypes with resistance to bean fly damage.
Collapse
Affiliation(s)
- Wilson Nkhata
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Hussein Shimelis
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Rob Melis
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Rowland Chirwa
- Alliance of Biodiversity International and CIAT, Chitedze Agricultural Station, Lilongwe, Malawi
| | - Tenyson Mzengeza
- Department of Agricultural Research Service, Chitedze Agricultural Research Station, Lilongwe, Malawi
| | - Isack Mathew
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Admire Shayanowako
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| |
Collapse
|
28
|
Siddiqui MN, Léon J, Naz AA, Ballvora A. Genetics and genomics of root system variation in adaptation to drought stress in cereal crops. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1007-1019. [PMID: 33096558 PMCID: PMC7904151 DOI: 10.1093/jxb/eraa487] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/19/2020] [Indexed: 05/03/2023]
Abstract
Cereals are important crops worldwide that help meet food demands and nutritional needs. In recent years, cereal production has been challenged globally by frequent droughts and hot spells. A plant's root is the most relevant organ for the plant adaptation to stress conditions, playing pivotal roles in anchorage and the acquisition of soil-based resources. Thus, dissecting root system variations and trait selection for enhancing yield and sustainability under drought stress conditions should aid in future global food security. This review highlights the variations in root system attributes and their interplay with shoot architecture features to face water scarcity and maintain thus yield of major cereal crops. Further, we compile the root-related drought responsive quantitative trait loci/genes in cereal crops including their interspecies relationships using microsynteny to facilitate comparative genomic analyses. We then discuss the potential of an integrated strategy combining genomics and phenomics at genetic and epigenetic levels to explore natural genetic diversity as a basis for knowledge-based genome editing. Finally, we present an outline to establish innovative breeding leads for the rapid and optimized selection of root traits necessary to develop resilient crop varieties.
Collapse
Affiliation(s)
- Md Nurealam Siddiqui
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Ali A Naz
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| |
Collapse
|
29
|
Maulana F, Huang W, Anderson JD, Ma XF. Genome-Wide Association Mapping of Seedling Drought Tolerance in Winter Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:573786. [PMID: 33250908 PMCID: PMC7673388 DOI: 10.3389/fpls.2020.573786] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/01/2020] [Indexed: 05/25/2023]
Abstract
In the southern Great Plains of the United States, winter wheat grown for dual-purpose is often planted early, which puts it at risk for drought stress at the seedling stage in the autumn. To map quantitative trait loci (QTL) associated with seedling drought tolerance, a genome-wide association study (GWAS) was performed on a hard winter wheat association mapping panel. Two sets of plants were planted in the greenhouse initially under well-watered conditions. At the five-leaf stage, one set continued to receive the optimum amount of water, whereas watering was withdrawn from the other set (drought stress treatment) for 14 days to mimic drought stress. Large phenotypic variation was observed in leaf chlorophyll content, leaf chlorophyll fluorescence, shoot length, number of leaves per seedling, and seedling recovery. A mixed linear model analysis detected multiple significant QTL associated with seedling drought tolerance-related traits on chromosomes 1B, 2A, 2B, 2D, 3A, 3B, 3D, 4B, 5A, 5B, 6B, and 7B. Among those, 12 stable QTL responding to drought stress for various traits were identified. Shoot length and leaf chlorophyll fluorescence were good indicators in responding to drought stress because most of the drought responding QTL detected using means of these two traits were also detected in at least two experimental repeats. These stable QTL are more valuable for use in marker-assisted selection during wheat breeding. Moreover, different traits were mapped on several common chromosomes, such as 1B, 2B, 3B, and 6B, and two QTL clusters associated with three or more traits were located at 107-130 and 80-83 cM on chromosomes 2B and 6B, respectively. Furthermore, some QTL detected in this study co-localized with previously reported QTL for root and shoot traits at the seedling stage and canopy temperature at the grain-filling stage of wheat. In addition, several of the mapped chromosomes were also associated with drought tolerance during the flowering or grain-filling stage in wheat. Some significant single-nucleotide polymorphisms (SNPs) were aligned to candidate genes playing roles in plant abiotic stress responses. The SNP markers identified in this study will be further validated and used for marker-assisted breeding of seedling drought tolerance during dual-purpose wheat breeding.
Collapse
Affiliation(s)
- Frank Maulana
- Noble Research Institute, LLC, Ardmore, OK, United States
| | - Wangqi Huang
- Noble Research Institute, LLC, Ardmore, OK, United States
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | | | - Xue-Feng Ma
- Noble Research Institute, LLC, Ardmore, OK, United States
| |
Collapse
|
30
|
Khadka K, Raizada MN, Navabi A. Recent Progress in Germplasm Evaluation and Gene Mapping to Enable Breeding of Drought-Tolerant Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:1149. [PMID: 32849707 PMCID: PMC7417477 DOI: 10.3389/fpls.2020.01149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/15/2020] [Indexed: 05/02/2023]
Abstract
There is a need to increase wheat productivity to meet the food demands of the ever-growing human population. However, accelerated development of high yielding varieties is hindered by drought, which is worsening due to climate change. In this context, germplasm diversity is central to the development of drought-tolerant wheat. Extensive collections of these genetic resources are conserved in national and international genebanks. In addition to phenotypic assessments, the use of advanced molecular techniques (e.g., genotype by sequencing) to identify quantitative trait loci (QTLs) for drought tolerance related traits is useful for genome- and marker-assisted selection based approaches. Therefore, to assist wheat breeders at a critical time, we searched the recent peer-reviewed literature (2011-current), first, to identify wheat germplasm observed to be useful genetic sources for drought tolerance, and second, to report QTLs associated with drought tolerance. Though many breeders limit the parents used in breeding programs to a familiar core collection, the results of this review show that larger germplasm collections have been sources of useful genes for drought tolerance in wheat. The review also demonstrates that QTLs for drought tolerance in wheat are associated with diverse physio-morphological traits, at different growth stages. Here, we also briefly discuss the potential of genome engineering/editing to improve drought tolerance in wheat. The use of CRISPR-Cas9 and other gene-editing technologies can be used to fine-tune the expression of genes controlling drought adaptive traits, while high throughput phenotyping (HTP) techniques can potentially accelerate the selection process. These efforts are empowered by wheat researcher consortia.
Collapse
Affiliation(s)
- Kamal Khadka
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|