1
|
Serna JDP, Alves OC, Abreu F, Acosta-Avalos D. Magnetite in the abdomen and antennae of Apis mellifera honeybees. J Biol Phys 2024; 50:215-228. [PMID: 38727764 PMCID: PMC11106226 DOI: 10.1007/s10867-024-09656-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/16/2024] [Indexed: 05/21/2024] Open
Abstract
The detection of magnetic fields by animals is known as magnetoreception. The ferromagnetic hypothesis explains magnetoreception assuming that magnetic nanoparticles are used as magnetic field transducers. Magnetite nanoparticles in the abdomen of Apis mellifera honeybees have been proposed in the literature as the magnetic field transducer. However, studies with ants and stingless bees have shown that the whole body of the insect contain magnetic material, and that the largest magnetization is in the antennae. The aim of the present study is to investigate the magnetization of all the body parts of honeybees as has been done with ants and stingless bees. To do that, the head without antennae, antennae, thorax, and abdomen obtained from Apis mellifera honeybees were analyzed using magnetometry and Ferromagnetic Resonance (FMR) techniques. The magnetometry and FMR measurements show the presence of magnetic material in all honeybee body parts. Our results present evidence of the presence of biomineralized magnetite nanoparticles in the honeybee abdomen and, for the first time, magnetite in the antennae. FMR measurements permit to identify the magnetite in the abdomen as biomineralized. As behavioral experiments reported in the literature have shown that the abdomen is involved in magnetoreception, new experimental approaches must be done to confirm or discard the involvement of the antennae in magnetoreception.
Collapse
Affiliation(s)
- Jilder Dandy Peña Serna
- Coordenação de Física Aplicada (COMAN), Centro Brasileiro de Pesquisas Físicas (CBPF), R. Xavier Sigaud, 150, Rio de Janeiro, 22290-180, Brazil
| | - Odivaldo Cambraia Alves
- Universidade Federal Fluminense (UFF), Outeiro de São Joao Batista, Campus do Valonguinho, Centro, RJ, Niterói 24020-141, Brazil
| | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-902, Brazil
| | - Daniel Acosta-Avalos
- Coordenação de Física Aplicada (COMAN), Centro Brasileiro de Pesquisas Físicas (CBPF), R. Xavier Sigaud, 150, Rio de Janeiro, 22290-180, Brazil.
| |
Collapse
|
2
|
Serna JDP, Antonialli-Junior W, Antonio DS, Batista NR, Alves OC, Abreu F, Acosta-Avalos D. Magnetic nanoparticles in the body parts of Polistes versicolor and Polybia paulista wasps are biomineralized: evidence from magnetization measurements and ferromagnetic resonance spectroscopy. Biometals 2023; 36:877-886. [PMID: 36602694 DOI: 10.1007/s10534-022-00485-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
The detection of the geomagnetic field by animals to use as a cue in homing and migration is known as magnetoreception. The ferromagnetic hypothesis explains magnetoreception assuming that magnetic nanoparticles in cellular structures are used as magnetic field transducers. Considering magnetoreception in social insects, the most studied has been the honeybee Apis mellifera and only in two wasp species (Vespa orientalis and Polybia paulista) have been shown a magnetosensitive behavior. In the present report the body parts (abdomen, head and antennae) of Polistes versicolor and Polybia paulista wasps were studied aiming to find biomineralized magnetic nanoparticles, using magnetometry measurements and ferromagnetic resonance spectroscopy. The magnetometry measurements show the presence of magnetic nanoparticles in all body parts, being characterized as mixtures of superparamagnetic, single domain and pseudo-single domain nanoparticles. From the ferromagnetic resonance spectra were obtained the asymmetry ratio A and the effective g factor geff, and those parameters are consistent with the presence of biomineralized magnetic nanoparticles in both wasps. In the case of Polybia paulista, the magnetic nanoparticles can be associated with some sort of magnetosensor once this wasp is magnetosensitive. For Polistes versicolor, the results indicate that this wasp can be magnetosensitive as Polybia paulista once their magnetic nanoparticles are biomineralized in the body. Behavioral studies with Polistes versicolor wasps deserve to be performed.
Collapse
Affiliation(s)
- Jilder Dandy Peña Serna
- Coordenação de Materia Condensada, Física Aplicada e Nanociencia, Centro Brasileiro de Pesquisas Físicas - CBPF, R. Xavier Sigaud, 150, Rio de Janeiro, 22290-180, Brazil
| | - William Antonialli-Junior
- Laboratorio de Ecologia Comportamental, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil
| | - Denise Sguarizi Antonio
- Laboratorio de Ecologia Comportamental, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil
| | - Nathan Rodrigues Batista
- Laboratorio de Ecologia Comportamental, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil
| | - Odivaldo Cambraia Alves
- Universidade Federal Fluminense-UFF, Outeiro de São Joao Batista, Campus do Valonguinho, Centro, Niterói, RJ, 24020-141, Brazil
| | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Daniel Acosta-Avalos
- Coordenação de Materia Condensada, Física Aplicada e Nanociencia, Centro Brasileiro de Pesquisas Físicas - CBPF, R. Xavier Sigaud, 150, Rio de Janeiro, 22290-180, Brazil.
| |
Collapse
|
3
|
Molina-Montenegro MA, Acuña-Rodríguez IS, Ballesteros GI, Baldelomar M, Torres-Díaz C, Broitman BR, Vázquez DP. Electromagnetic fields disrupt the pollination service by honeybees. SCIENCE ADVANCES 2023; 9:eadh1455. [PMID: 37172085 PMCID: PMC10181175 DOI: 10.1126/sciadv.adh1455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/11/2023] [Indexed: 05/14/2023]
Abstract
We assessed the effect that electromagnetic field (EMF) exerts on honeybees' pollination efficiency using field and laboratory experiments. First, we measured levels of gene and protein expression in metabolic pathways involved in stress and behavioral responses elicited by EMF. Second, we assessed the effect of EMF on honeybee behavior and seed production by the honeybee-pollinated California poppy and, lastly, by measuring the consequences of pollination failure on plants' community richness and abundance. EMF exposure exerted strong physiological stress on honeybees as shown by the enhanced expression of heat-shock proteins and genes involved in antioxidant activity and affected the expression levels of behavior-related genes. Moreover, California poppy individuals growing near EMF received fewer honeybee visits and produced fewer seeds than plants growing far from EMF. Last, we found a hump-shaped relationship between EMF and plant species richness and plant abundance. Our study provides conclusive evidence of detrimental impacts of EMF on honeybee's pollination behavior, leading to negative effects on plant community.
Collapse
Affiliation(s)
- Marco A. Molina-Montenegro
- Centro de Ecología Integrativa (CEI), Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Talca, Chile
| | - Ian S. Acuña-Rodríguez
- Centro de Ecología Integrativa (CEI), Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Talca, Chile
- Instituto de Investigación Interdisciplinaria (I), Universidad de Talca, Campus Talca, Talca, Chile
| | - Gabriel I. Ballesteros
- Centro de Ecología Integrativa (CEI), Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Talca, Chile
- Instituto de Investigación Interdisciplinaria (I), Universidad de Talca, Campus Talca, Talca, Chile
| | - Mariela Baldelomar
- Centro de Ecología Integrativa (CEI), Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Talca, Chile
| | - Cristian Torres-Díaz
- Grupo de Biodiversidad y Cambio Global (BCG), Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile
| | - Bernardo R. Broitman
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Viña del Mar, Chile
| | - Diego P. Vázquez
- Instituto Argentino de Investigaciones de las Zonas Áridas, CONICET, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
4
|
Mannino G, Casacci LP, Bianco Dolino G, Badolato G, Maffei ME, Barbero F. The Geomagnetic Field (GMF) Is Necessary for Black Garden Ant ( Lasius niger L.) Foraging and Modulates Orientation Potentially through Aminergic Regulation and MagR Expression. Int J Mol Sci 2023; 24:ijms24054387. [PMID: 36901820 PMCID: PMC10002094 DOI: 10.3390/ijms24054387] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The geomagnetic field (GMF) can affect a wide range of animal behaviors in various habitats, primarily providing orientation cues for homing or migratory events. Foraging patterns, such as those implemented by Lasius niger, are excellent models to delve into the effects of GMF on orientation abilities. In this work, we assessed the role of GMF by comparing the L. niger foraging and orientation performance, brain biogenic amine (BA) contents, and the expression of genes related to the magnetosensory complex and reactive oxygen species (ROS) of workers exposed to near-null magnetic fields (NNMF, ~40 nT) and GMF (~42 µT). NNMF affected workers' orientation by increasing the time needed to find the food source and return to the nest. Moreover, under NNMF conditions, a general drop in BAs, but not melatonin, suggested that the lower foraging performance might be correlated to a decrease in locomotory and chemical perception abilities, potentially driven by dopaminergic and serotoninergic regulations, respectively. The variation in the regulation of genes related to the magnetosensory complex in NNMF shed light on the mechanism of ant GMF perception. Overall, our work provides evidence that the GMF, along with chemical and visual cues, is necessary for the L. niger orientation process.
Collapse
|
5
|
Balmori A. Electromagnetic radiation as an emerging driver factor for the decline of insects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144913. [PMID: 33636787 DOI: 10.1016/j.scitotenv.2020.144913] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
The biodiversity of insects is threatened worldwide. Numerous studies have reported the serious decline in insects that has occurred in recent decades. The same is happening with the important group of pollinators, with an essential utility for pollination of crops. Loss of insect diversity and abundance is expected to provoke cascading effects on food webs and ecosystem services. Many authors point out that reductions in insect abundance must be attributed mainly to agricultural practices and pesticide use. On the other hand, evidence for the effects of non-thermal microwave radiation on insects has been known for at least 50 years. The review carried out in this study shows that electromagnetic radiation should be considered seriously as a complementary driver for the dramatic decline in insects, acting in synergy with agricultural intensification, pesticides, invasive species and climate change. The extent that anthropogenic electromagnetic radiation represents a significant threat to insect pollinators is unresolved and plausible. For these reasons, and taking into account the benefits they provide to nature and humankind, the precautionary principle should be applied before any new deployment (such 5G) is considered.
Collapse
|
6
|
Alattar E, Elwasife K, Radwan E. Effects of magnetic field treated water on some growth parameters of corn (<i>Zea mays</i>) plants. AIMS BIOPHYSICS 2021. [DOI: 10.3934/biophy.2021021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Krochmal AR, Roth TC, Simmons NT. The geomagnetic field does not appear to influence navigation in Eastern painted turtles. Ethology 2020. [DOI: 10.1111/eth.13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Timothy C. Roth
- Department of Psychology Franklin and Marshall College Lancaster Pennsylvania
| | - Nathaniel T. Simmons
- Department of Biology Washington College Chestertown Maryland
- Still Pond Chestertown, Maryland
| |
Collapse
|